पी-एन जंक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{See also|पी-एन डायोड|अर्धचालक डायोड}}
{{See also|पी-एन डायोड|अर्धचालक डायोड}}


[[File:PN diode with electrical symbol.svg|thumb|280px|पी-एन जंक्शन सर्किट प्रतीक दिखाया गया है: त्रिकोण पी साइड से मिलता है।]]पी-एन जंक्शन अर्धचालक में क्रिस्टल के अंदर दो प्रकार की अर्धचालक सामग्री, पी-टाइप और एन-टाइप अर्धचालक के मध्य सीमा या इंटरफ़ेस है। पी (सकारात्मक) पक्ष में इलेक्ट्रॉन छिद्र की अधिकता होती है, जबकि एन (नकारात्मक) पक्ष में विद्युत रूप से तटस्थ परमाणुओं के बाहरी गोले में इलेक्ट्रॉनों की अधिकता होती है। यह विद्युत प्रवाह को केवल एक दिशा में जंक्शन से गुजरने की अनुमति देता है। पी-एन जंक्शन डोपिंग (अर्धचालक) द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा निर्मित किया गया है I यदि सामग्री के दो अलग-अलग टुकड़ों का उपयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छेद को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।{{Citation needed|date=April 2010}}
[[File:PN diode with electrical symbol.svg|thumb|280px|पी-एन जंक्शन सर्किट प्रतीक दिखाया गया है: त्रिकोण पी दिशा से मिलता है।]]पी-एन जंक्शन अर्धचालक में क्रिस्टल के अंदर दो प्रकार की अर्धचालक सामग्री, पी-टाइप और एन-टाइप अर्धचालक के मध्य सीमा या इंटरफ़ेस है। पी (सकारात्मक) पक्ष में इलेक्ट्रॉन छिद्र की अधिकता होती है, जबकि एन (नकारात्मक) पक्ष में विद्युत रूप से तटस्थ परमाणुओं के बाहरी गोले में इलेक्ट्रॉनों की अधिकता होती है। यह विद्युत प्रवाह को केवल एक दिशा में जंक्शन से गुजरने की अनुमति देता है। पी-एन जंक्शन डोपिंग (अर्धचालक) द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा निर्मित किया गया है I यदि सामग्री के दो अलग-अलग टुकड़ों का उपयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छेद को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।{{Citation needed|date=April 2010}}
पी-एन जंक्शन अर्धचालक डिवाइस जैसे डायोड, ट्रांजिस्टर, सौर सेल, प्रकाश उत्सर्जक डायोड (एलईडी), और एकीकृत सर्किट के प्राथमिक निर्माण खंड हैं; वे सक्रिय साइट हैं, जहां डिवाइस की इलेक्ट्रॉनिक क्रिया होती है। उदाहरण के लिए, सामान्य प्रकार का ट्रांजिस्टर, बाइपोलर जंक्शन ट्रांजिस्टर, एन-पी-एन या पी-एन-पी के रूप में श्रृंखला में दो पी-एन जंक्शन होते हैं; जबकि डायोड को पी-एन जंक्शन से निर्मित किया जा सकता है। स्कॉटटकी जंक्शन पी-एन जंक्शन का विशेष विषय है, जहाँ धातु एन-टाइप के अर्धचालक की भूमिका निभाते है।
पी-एन जंक्शन अर्धचालक डिवाइस जैसे डायोड, ट्रांजिस्टर, सौर सेल, प्रकाश उत्सर्जक डायोड (एलईडी), और एकीकृत सर्किट के प्राथमिक निर्माण खंड हैं; वे सक्रिय साइट हैं, जहां डिवाइस की इलेक्ट्रॉनिक क्रिया होती है। उदाहरण के लिए, सामान्य प्रकार का ट्रांजिस्टर, बाइपोलर जंक्शन ट्रांजिस्टर, एन-पी-एन या पी-एन-पी के रूप में श्रृंखला में दो पी-एन जंक्शन होते हैं; जबकि डायोड को पी-एन जंक्शन से निर्मित किया जा सकता है। स्कॉटटकी जंक्शन पी-एन जंक्शन का विशेष विषय है, जहाँ धातु एन-टाइप के अर्धचालक की भूमिका निभाते है।


Line 13: Line 13:
* प्रतिलोम बायस निम्न या धारा प्रवाह की दिशा में नहीं है।
* प्रतिलोम बायस निम्न या धारा प्रवाह की दिशा में नहीं है।


पी-एन जंक्शन के अग्र-पूर्वाग्रह और पश्च-पूर्वाग्रह गुणों का अर्थ है कि इसका उपयोग डायोड के रूप में किया जा सकता है। एक पी-एन जंक्शन डायोड विद्युत आवेशों को एक दिशा में प्रवाहित होने देता है, लेकिन विपरीत दिशा में नहीं; ऋणात्मक आवेश (इलेक्ट्रॉन) आसानी से जंक्शन से n से p तक प्रवाहित हो सकते हैं लेकिन p से n तक नहीं, और छिद्रों के लिए विपरीत सत्य है। जब पी-एन जंक्शन अग्र-अभिनत होता है, तो पी-एन जंक्शन के कम प्रतिरोध के कारण विद्युत आवेश स्वतंत्र रूप से प्रवाहित होता है। जब पी-एन जंक्शन रिवर्स-बायस्ड होता है, हालांकि, जंक्शन बाधा (और इसलिए प्रतिरोध) अधिक हो जाता है और चार्ज प्रवाह न्यूनतम होता है।
पी-एन जंक्शन के अग्र-पूर्वाग्रह और पश्च-पूर्वाग्रह गुणों का अर्थ है कि इसका उपयोग डायोड के रूप में किया जा सकता है। पी-एन जंक्शन डायोड विद्युत आवेशों को दिशा में प्रवाहित होने देता है, लेकिन विपरीत दिशा में नहीं; ऋणात्मक आवेश (इलेक्ट्रॉन) सरलता से जंक्शन में एन से पी तक प्रवाहित हो सकते हैं, लेकिन पी से एन तक नहीं प्रवाहित हो सकते हैं, और छिद्रों के लिए विपरीत सत्य है। जब पी-एन जंक्शन अग्र-अभिनत होता है, तो पी-एन जंक्शन के निम्न प्रतिरोध के कारण विद्युत आवेश स्वतंत्र रूप से प्रवाहित होते है। जब पी-एन जंक्शन विपरीत-बायस्ड होता है I चूँकि, जंक्शन बाधा अधिक हो जाते है, और आवेश प्रवाह न्यूनतम होता है।


=== संतुलन (शून्य पूर्वाग्रह) ===
=== संतुलन (शून्य पूर्वाग्रह) ===


पी-एन जंक्शन में, बाहरी लागू वोल्टेज के बिना, एक संतुलन स्थिति तक पहुंच जाती है जिसमें जंक्शन के पार एक संभावित अंतर बनता है। इस संभावित अंतर को बिल्ट-इन पोटेंशियल कहा जाता है <math>V_{\rm bi}</math>.
पी-एन जंक्शन में, बाहरी लागू वोल्टेज के बिना, संतुलन स्थिति तक पहुंच जाती है जिसमें जंक्शन के पार संभावित अंतर बनता है। इस संभावित अंतर को बिल्ट-इन पोटेंशियल कहा जाता है <math>V_{\rm bi}</math>.


जंक्शन पर, यादृच्छिक थर्मल माइग्रेशन के कारण एन-टाइप में कुछ मुक्त इलेक्ट्रॉन पी-टाइप में भटकते हैं। जैसे ही वे पी-टाइप में फैलते हैं, वे छिद्रों के साथ जुड़ जाते हैं, और एक दूसरे को रद्द कर देते हैं। इसी तरह से p-प्रकार के कुछ धनात्मक छिद्र n-प्रकार में घूमते हैं और मुक्त इलेक्ट्रॉनों के साथ जुड़ते हैं, और एक दूसरे को रद्द कर देते हैं। एन-टाइप में सकारात्मक रूप से चार्ज किए गए, दाता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और स्थानांतरित नहीं हो सकते हैं। इस प्रकार, n-प्रकार में, जंक्शन के निकट का क्षेत्र धनावेशित हो जाता है। पी-प्रकार में नकारात्मक रूप से आवेशित, स्वीकर्ता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और गति नहीं कर सकते। इस प्रकार, पी-प्रकार में, जंक्शन के पास का क्षेत्र ऋणात्मक रूप से आवेशित हो जाता है। नतीजा जंक्शन के पास एक क्षेत्र है जो इन चार्ज किए गए क्षेत्रों को बनाने वाले विद्युत क्षेत्र के माध्यम से जंक्शन से मोबाइल चार्ज को दूर करने के लिए कार्य करता है। पी-एन इंटरफ़ेस के पास के क्षेत्र अपनी तटस्थता खो देते हैं और उनके अधिकांश मोबाइल वाहक, स्पेस चार्ज क्षेत्र या कमी परत बनाते हैं (see [[:Image:Pn-junction-equilibrium.png|चित्रा ए)]]
जंक्शन पर, यादृच्छिक थर्मल माइग्रेशन के कारण एन-टाइप में कुछ मुक्त इलेक्ट्रॉन पी-टाइप में भटकते हैं। जैसे ही वे पी-टाइप में फैलते हैं, वे छिद्रों के साथ जुड़ जाते हैं, और एक दूसरे को रद्द कर देते हैं। इसी तरह से p-प्रकार के कुछ धनात्मक छिद्र n-प्रकार में घूमते हैं और मुक्त इलेक्ट्रॉनों के साथ जुड़ते हैं, और एक दूसरे को रद्द कर देते हैं। एन-टाइप में सकारात्मक रूप से चार्ज किए गए, दाता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और स्थानांतरित नहीं हो सकते हैं। इस प्रकार, n-प्रकार में, जंक्शन के निकट का क्षेत्र धनावेशित हो जाता है। पी-प्रकार में नकारात्मक रूप से आवेशित, स्वीकर्ता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और गति नहीं कर सकते। इस प्रकार, पी-प्रकार में, जंक्शन के पास का क्षेत्र ऋणात्मक रूप से आवेशित हो जाता है। नतीजा जंक्शन के पास एक क्षेत्र है जो इन चार्ज किए गए क्षेत्रों को बनाने वाले विद्युत क्षेत्र के माध्यम से जंक्शन से मोबाइल चार्ज को दूर करने के लिए कार्य करता है। पी-एन इंटरफ़ेस के पास के क्षेत्र अपनी तटस्थता खो देते हैं और उनके अधिकांश मोबाइल वाहक, स्पेस चार्ज क्षेत्र या कमी परत बनाते हैं (see [[:Image:Pn-junction-equilibrium.png|चित्रा ए)]]


[[File:Pn-junction-equilibrium.png|400px|left|thumb|चित्रा ए। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। इलेक्ट्रॉन और छेद की सघनता क्रमशः नीली और लाल रेखाओं के साथ रिपोर्ट की जाती है। ग्रे क्षेत्र चार्ज-न्यूट्रल हैं। लाइट-रेड ज़ोन सकारात्मक रूप से चार्ज होता है। हल्का नीला क्षेत्र ऋणात्मक रूप से आवेशित होता है। विद्युत क्षेत्र नीचे दिखाया गया है, इलेक्ट्रॉनों और छिद्रों पर इलेक्ट्रोस्टैटिक बल और जिस दिशा में प्रसार इलेक्ट्रॉनों और छिद्रों को स्थानांतरित करता है। (लॉग सघनता वक्र वास्तव में क्षेत्र की ताकत के साथ अलग-अलग ढलान के साथ चिकना होना चाहिए।)]]विद्युत क्षेत्र created by the space charge region opposes the diffusion process for both electrons and holes. There are two concurrent phenomena: the diffusion process that tends to generate more space charge, and the electric field generated by the space charge that tends to counteract the diffusion. The carrier concentration profile at equilibrium is shown in [[:Image:Pn-junction-equilibrium.png|चित्र A ]]में नीली और लाल रेखाएँ हैं। यह भी दिखाया गया है कि संतुलन स्थापित करने वाली दो प्रतिसंतुलन घटनाएं हैं।
[[File:Pn-junction-equilibrium.png|400px|left|thumb|चित्रा ए। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। इलेक्ट्रॉन और छेद की सघनता क्रमशः नीली और लाल रेखाओं के साथ रिपोर्ट की जाती है। ग्रे क्षेत्र चार्ज-न्यूट्रल हैं। लाइट-रेड ज़ोन सकारात्मक रूप से चार्ज होता है। हल्का नीला क्षेत्र ऋणात्मक रूप से आवेशित होता है। विद्युत क्षेत्र नीचे दिखाया गया है, इलेक्ट्रॉनों और छिद्रों पर इलेक्ट्रोस्टैटिक बल और जिस दिशा में प्रसार इलेक्ट्रॉनों और छिद्रों को स्थानांतरित करता है। (लॉग सघनता वक्र वास्तव में क्षेत्र की ताकत के साथ अलग-अलग ढलान के साथ चिकना होना चाहिए।)]]विद्युत क्षेत्र स्पेस चार्ज क्षेत्र द्वारा निर्मित इलेक्ट्रॉनों और छिद्रों दोनों के लिए प्रसार प्रक्रिया का विरोध करता है। दो समवर्ती घटनाएं हैं: प्रसार प्रक्रिया जो अधिक स्थान आवेश उत्पन्न करती है, और विद्युत क्षेत्र जो अंतरिक्ष आवेश द्वारा उत्पन्न होता है जो प्रसार का प्रतिकार करता है। संतुलन पर वाहक एकाग्रता प्रोफ़ाइल में दिखाया गया है [[:Image:Pn-junction-equilibrium.png|चित्र A ]]में नीली और लाल रेखाएँ हैं। यह भी दिखाया गया है कि संतुलन स्थापित करने वाली दो प्रतिसंतुलन घटनाएं हैं।


[[File:Pn-junction-equilibrium-graphs.png|400px|right|thumb|चित्रा बी। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। जंक्शन के तहत, चार्ज घनत्व, विद्युत क्षेत्र और वोल्टेज के लिए भूखंडों की सूचना दी जाती है। (लॉग एकाग्रता घटता वास्तव में वोल्टेज की तरह चिकना होना चाहिए।)]]स्पेस चार्ज क्षेत्र निश्चित आयनों (दाता (अर्धचालक) या स्वीकर्ता (अर्धचालक)) द्वारा प्रदान किए गए शुद्ध आवेश वाला एक क्षेत्र है जिसे बहुसंख्यक वाहक द्वारा खुला छोड़ दिया गया है diffusion. When equilibrium is reached, the charge density is approximated by the displayed step function. In fact, since the y-axis of figure A is log-scale, the region is almost completely depleted of majority carriers (leaving a charge density equal to the net doping level), and the edge between the space charge region and the neutral region is quite sharp (see [[:Image:Pn-junction-equilibrium-graphs.png|आकृति बी, क्यू (एक्स) ग्राफ)। स्पेस चार्ज क्षेत्र में पी-एन इंटरफेस के दोनों किनारों पर चार्ज का समान परिमाण होता है, इस प्रकार यह इस उदाहरण में कम डॉप्ड पक्ष पर आगे बढ़ता है (आंकड़े ए और बी में एन पक्ष)।
[[File:Pn-junction-equilibrium-graphs.png|400px|right|thumb|चित्रा बी। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। जंक्शन के तहत, चार्ज घनत्व, विद्युत क्षेत्र और वोल्टेज के लिए भूखंडों की सूचना दी जाती है। (लॉग एकाग्रता घटता वास्तव में वोल्टेज की तरह चिकना होना चाहिए।)]]स्पेस चार्ज क्षेत्र निश्चित आयनों (दाता (अर्धचालक) या स्वीकर्ता (अर्धचालक)) द्वारा प्रदान किए गए शुद्ध आवेश वाला एक क्षेत्र है जिसे बहुसंख्यक वाहक द्वारा खुला छोड़ दिया गया है diffusion. When equilibrium is reached, the charge density is approximated by the displayed step function. In fact, since the y-axis of figure A is log-scale, the region is almost completely depleted of majority carriers (leaving a charge density equal to the net doping level), and the edge between the space charge region and the neutral region is quite sharp (see [[:Image:Pn-junction-equilibrium-graphs.png|आकृति बी, क्यू (एक्स) ग्राफ)। स्पेस चार्ज क्षेत्र में पी-एन इंटरफेस के दोनों किनारों पर चार्ज का समान परिमाण होता है, इस प्रकार यह इस उदाहरण में कम डॉप्ड पक्ष पर आगे बढ़ता है (आंकड़े ए और बी में एन पक्ष)।
Line 103: Line 103:


== गैर-सुधारात्मक जंक्शन ==
== गैर-सुधारात्मक जंक्शन ==
{{unreferenced section|date=November 2013}}
उपरोक्त आरेखों में, धातु के तारों और अर्धचालक सामग्री के मध्य संपर्क भी धातु-अर्धचालक जंक्शन बनाता है जिसे स्कॉटकी डायोड कहा जाता है। एक सरलीकृत आदर्श स्थिति में एक अर्धचालक डायोड कभी काम नहीं करेगा, क्योंकि यह श्रृंखला में आगे-पीछे जुड़े कई डायोड से बना होगा। लेकिन, व्यवहार में, धातु टर्मिनलों को छूने वाले अर्धचालक के हिस्से के भीतर सतह की अशुद्धियाँ उन कमी परतों की चौड़ाई को बहुत कम कर देती हैं, इस हद तक कि धातु-अर्धचालक जंक्शन डायोड के रूप में कार्य नहीं करते हैं। ये गैर-संशोधक जंक्शन लागू वोल्टेज ध्रुवीयता के बावजूद ओमिक संपर्कों के रूप में व्यवहार करते हैं।
उपरोक्त आरेखों में, धातु के तारों और अर्धचालक सामग्री के मध्य संपर्क भी धातु-अर्धचालक जंक्शन बनाता है जिसे स्कॉटकी डायोड कहा जाता है। एक सरलीकृत आदर्श स्थिति में एक अर्धचालक डायोड कभी काम नहीं करेगा, क्योंकि यह श्रृंखला में आगे-पीछे जुड़े कई डायोड से बना होगा। लेकिन, व्यवहार में, धातु टर्मिनलों को छूने वाले अर्धचालक के हिस्से के भीतर सतह की अशुद्धियाँ उन कमी परतों की चौड़ाई को बहुत कम कर देती हैं, इस हद तक कि धातु-अर्धचालक जंक्शन डायोड के रूप में कार्य नहीं करते हैं। ये गैर-संशोधक जंक्शन लागू वोल्टेज ध्रुवीयता के बावजूद ओमिक संपर्कों के रूप में व्यवहार करते हैं।


== निर्माण ==
== निर्माण ==
पी-एन जंक्शन डोपिंग (अर्धचालक) द्वारा बनाया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा (क्रिस्टल की एक परत को एक प्रकार के डोपेंट के साथ डोपेंट के एक अन्य प्रकार के डोपेंट के साथ क्रिस्टल की एक परत के ऊपर बढ़ाना) . यदि सामग्री के दो अलग-अलग टुकड़ों का उपयोग किया जाता है, तो यह अर्धचालक्स के मध्य एक अनाज की सीमा का परिचय देगा जो इलेक्ट्रॉनों और इलेक्ट्रॉन छेद को बिखेर कर इसकी उपयोगिता को गंभीर रूप से बाधित करेगा।{{Citation needed|date=April 2010}}
पी-एन जंक्शन डोपिंग द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा (क्रिस्टल की सतह को डोपेंट के साथ अन्य प्रकार के डोपेंट के साथ क्रिस्टल की सतह के ऊपर बढ़ाना है) I यदि सामग्री के दो भिन्न-भिन्न टुकड़ों का प्रयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छेद को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।{{Citation needed|date=April 2010}}
 
 
== इतिहास ==
== इतिहास ==


पी-एन जंक्शन के आविष्कार का श्रेय आमतौर पर 1939 में बेल लैब्स के अमेरिकी भौतिक विज्ञानी रसेल ओहल को दिया जाता है।<ref>{{cite book|author1-link=Michael Riordan (physicist) |last=Riordan |first=Michael|author2-link=Lillian Hoddeson |first2=Lillian |last2=Hoddeson |title=क्रिस्टल फायर: ट्रांजिस्टर का आविष्कार और सूचना युग का जन्म|publisher=W. W. Norton & Company |year=1988 |location=USA |pages= 88–97 |url= https://books.google.com/books?id=SZ6wm5ZSUmsC&pg=PA92 |isbn=978-0-393-31851-7}}</ref> दो साल बाद (1941), वादिम लश्कर्योव ने क्यू में पी-एन जंक्शनों की खोज की सूचना दी<sub>2</sub>और सिल्वर सल्फाइड फोटोकल्स और सेलेनियम रेक्टीफायर्स।<ref>{{cite journal |first=V. E. |last=Lashkaryov |author-link=Vadim Lashkaryov |title=थर्मोप्रोब विधि द्वारा बाधा परत की जांच|language=en|journal=Ukr. J. Phys. |issn=2071-0194 |volume=53 |issue=special edition |pages=53–56 |date=2008 |orig-year=1941 |url=http://ujp.bitp.kiev.ua/files/journals/53/si/53SI11p.pdf |url-status=dead |archive-url=https://web.archive.org/web/20150928014344/http://ujp.bitp.kiev.ua/files/journals/53/si/53SI11p.pdf |archive-date=2015-09-28 }}</ref>
पी-एन जंक्शन के आविष्कार का श्रेय सामान्यतः 1939 में बेल लैब्स के अमेरिकी भौतिक विज्ञानी रसेल ओहल को दिया जाता है।<ref>{{cite book|author1-link=Michael Riordan (physicist) |last=Riordan |first=Michael|author2-link=Lillian Hoddeson |first2=Lillian |last2=Hoddeson |title=क्रिस्टल फायर: ट्रांजिस्टर का आविष्कार और सूचना युग का जन्म|publisher=W. W. Norton & Company |year=1988 |location=USA |pages= 88–97 |url= https://books.google.com/books?id=SZ6wm5ZSUmsC&pg=PA92 |isbn=978-0-393-31851-7}}</ref> दो साल पच्छात 1941, वादिम लश्कर्योव ने Cu<sub>2</sub>और सिल्वर सल्फाइड फोटोकल्स और सेलेनियम रेक्टीफायर्स क्यू में पी-एन जंक्शनों की के परिक्षण की सूचना दी।<ref>{{cite journal |first=V. E. |last=Lashkaryov |author-link=Vadim Lashkaryov |title=थर्मोप्रोब विधि द्वारा बाधा परत की जांच|language=en|journal=Ukr. J. Phys. |issn=2071-0194 |volume=53 |issue=special edition |pages=53–56 |date=2008 |orig-year=1941 |url=http://ujp.bitp.kiev.ua/files/journals/53/si/53SI11p.pdf |url-status=dead |archive-url=https://web.archive.org/web/20150928014344/http://ujp.bitp.kiev.ua/files/journals/53/si/53SI11p.pdf |archive-date=2015-09-28 }}</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
{{Commons category|PN-junction diagrams}}
{{Commons category|PN-junction diagrams}}
Line 120: Line 115:
* मिश्र धातु जंक्शन ट्रांजिस्टर
* मिश्र धातु जंक्शन ट्रांजिस्टर
* समाई-वोल्टेज प्रोफाइलिंग
* समाई-वोल्टेज प्रोफाइलिंग
* गहरे स्तर की क्षणिक स्पेक्ट्रोस्कोपी
* गहन स्तर की क्षणिक स्पेक्ट्रोस्कोपी
* डेलोकलाइज्ड इलेक्ट्रॉन
* डेलोकलाइज्ड इलेक्ट्रॉन
* डायोड मॉडलिंग
* डायोड मॉडलिंग

Revision as of 22:32, 20 March 2023

पी-एन जंक्शन सर्किट प्रतीक दिखाया गया है: त्रिकोण पी दिशा से मिलता है।

पी-एन जंक्शन अर्धचालक में क्रिस्टल के अंदर दो प्रकार की अर्धचालक सामग्री, पी-टाइप और एन-टाइप अर्धचालक के मध्य सीमा या इंटरफ़ेस है। पी (सकारात्मक) पक्ष में इलेक्ट्रॉन छिद्र की अधिकता होती है, जबकि एन (नकारात्मक) पक्ष में विद्युत रूप से तटस्थ परमाणुओं के बाहरी गोले में इलेक्ट्रॉनों की अधिकता होती है। यह विद्युत प्रवाह को केवल एक दिशा में जंक्शन से गुजरने की अनुमति देता है। पी-एन जंक्शन डोपिंग (अर्धचालक) द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा निर्मित किया गया है I यदि सामग्री के दो अलग-अलग टुकड़ों का उपयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छेद को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।[citation needed]

पी-एन जंक्शन अर्धचालक डिवाइस जैसे डायोड, ट्रांजिस्टर, सौर सेल, प्रकाश उत्सर्जक डायोड (एलईडी), और एकीकृत सर्किट के प्राथमिक निर्माण खंड हैं; वे सक्रिय साइट हैं, जहां डिवाइस की इलेक्ट्रॉनिक क्रिया होती है। उदाहरण के लिए, सामान्य प्रकार का ट्रांजिस्टर, बाइपोलर जंक्शन ट्रांजिस्टर, एन-पी-एन या पी-एन-पी के रूप में श्रृंखला में दो पी-एन जंक्शन होते हैं; जबकि डायोड को पी-एन जंक्शन से निर्मित किया जा सकता है। स्कॉटटकी जंक्शन पी-एन जंक्शन का विशेष विषय है, जहाँ धातु एन-टाइप के अर्धचालक की भूमिका निभाते है।

गुण

सिलिकॉन परमाणु (सी) लगभग 45,000,000 गुना बढ़ गए है।

पी-एन जंक्शन में आधुनिक अर्धचालक इलेक्ट्रॉनिक्स के लिए उपयोगी गुण होते है। पी-डॉप्ड अर्धचालक अपेक्षाकृत विद्युत चालक होते है। एन-डोप्ड अर्धचालक के विषय में भी यही सच है, लेकिन उनके मध्य जंक्शन, आवेश वाहकों के निम्न क्षेत्र बन सकते है, और इसलिए अन्य-प्रवाहकीय, दो अर्धचालक क्षेत्रों के सापेक्ष वोल्टेज पर निर्भर करते है। इस अन्य-प्रवाहकीय सतह में हेरफेर करके, पी-एन जंक्शनों को सामान्यतः डायोड के रूप में उपयोग किया जाता है: सर्किट तत्व जो एक दिशा में विद्युत् के प्रवाह की अनुमति देते हैं, लेकिन दूसरी (विपरीत) दिशा में नहीं अनुमति देते हैं।

बायस पी-एन जंक्शन क्षेत्र के सापेक्ष वोल्टेज के अनुप्रयोग है:

  • अग्रिम बायस सरल धारा प्रवाह की दिशा में है I
  • प्रतिलोम बायस निम्न या धारा प्रवाह की दिशा में नहीं है।

पी-एन जंक्शन के अग्र-पूर्वाग्रह और पश्च-पूर्वाग्रह गुणों का अर्थ है कि इसका उपयोग डायोड के रूप में किया जा सकता है। पी-एन जंक्शन डायोड विद्युत आवेशों को दिशा में प्रवाहित होने देता है, लेकिन विपरीत दिशा में नहीं; ऋणात्मक आवेश (इलेक्ट्रॉन) सरलता से जंक्शन में एन से पी तक प्रवाहित हो सकते हैं, लेकिन पी से एन तक नहीं प्रवाहित हो सकते हैं, और छिद्रों के लिए विपरीत सत्य है। जब पी-एन जंक्शन अग्र-अभिनत होता है, तो पी-एन जंक्शन के निम्न प्रतिरोध के कारण विद्युत आवेश स्वतंत्र रूप से प्रवाहित होते है। जब पी-एन जंक्शन विपरीत-बायस्ड होता है I चूँकि, जंक्शन बाधा अधिक हो जाते है, और आवेश प्रवाह न्यूनतम होता है।

संतुलन (शून्य पूर्वाग्रह)

पी-एन जंक्शन में, बाहरी लागू वोल्टेज के बिना, संतुलन स्थिति तक पहुंच जाती है जिसमें जंक्शन के पार संभावित अंतर बनता है। इस संभावित अंतर को बिल्ट-इन पोटेंशियल कहा जाता है .

जंक्शन पर, यादृच्छिक थर्मल माइग्रेशन के कारण एन-टाइप में कुछ मुक्त इलेक्ट्रॉन पी-टाइप में भटकते हैं। जैसे ही वे पी-टाइप में फैलते हैं, वे छिद्रों के साथ जुड़ जाते हैं, और एक दूसरे को रद्द कर देते हैं। इसी तरह से p-प्रकार के कुछ धनात्मक छिद्र n-प्रकार में घूमते हैं और मुक्त इलेक्ट्रॉनों के साथ जुड़ते हैं, और एक दूसरे को रद्द कर देते हैं। एन-टाइप में सकारात्मक रूप से चार्ज किए गए, दाता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और स्थानांतरित नहीं हो सकते हैं। इस प्रकार, n-प्रकार में, जंक्शन के निकट का क्षेत्र धनावेशित हो जाता है। पी-प्रकार में नकारात्मक रूप से आवेशित, स्वीकर्ता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और गति नहीं कर सकते। इस प्रकार, पी-प्रकार में, जंक्शन के पास का क्षेत्र ऋणात्मक रूप से आवेशित हो जाता है। नतीजा जंक्शन के पास एक क्षेत्र है जो इन चार्ज किए गए क्षेत्रों को बनाने वाले विद्युत क्षेत्र के माध्यम से जंक्शन से मोबाइल चार्ज को दूर करने के लिए कार्य करता है। पी-एन इंटरफ़ेस के पास के क्षेत्र अपनी तटस्थता खो देते हैं और उनके अधिकांश मोबाइल वाहक, स्पेस चार्ज क्षेत्र या कमी परत बनाते हैं (see चित्रा ए)

चित्रा ए। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। इलेक्ट्रॉन और छेद की सघनता क्रमशः नीली और लाल रेखाओं के साथ रिपोर्ट की जाती है। ग्रे क्षेत्र चार्ज-न्यूट्रल हैं। लाइट-रेड ज़ोन सकारात्मक रूप से चार्ज होता है। हल्का नीला क्षेत्र ऋणात्मक रूप से आवेशित होता है। विद्युत क्षेत्र नीचे दिखाया गया है, इलेक्ट्रॉनों और छिद्रों पर इलेक्ट्रोस्टैटिक बल और जिस दिशा में प्रसार इलेक्ट्रॉनों और छिद्रों को स्थानांतरित करता है। (लॉग सघनता वक्र वास्तव में क्षेत्र की ताकत के साथ अलग-अलग ढलान के साथ चिकना होना चाहिए।)

विद्युत क्षेत्र स्पेस चार्ज क्षेत्र द्वारा निर्मित इलेक्ट्रॉनों और छिद्रों दोनों के लिए प्रसार प्रक्रिया का विरोध करता है। दो समवर्ती घटनाएं हैं: प्रसार प्रक्रिया जो अधिक स्थान आवेश उत्पन्न करती है, और विद्युत क्षेत्र जो अंतरिक्ष आवेश द्वारा उत्पन्न होता है जो प्रसार का प्रतिकार करता है। संतुलन पर वाहक एकाग्रता प्रोफ़ाइल में दिखाया गया है चित्र A में नीली और लाल रेखाएँ हैं। यह भी दिखाया गया है कि संतुलन स्थापित करने वाली दो प्रतिसंतुलन घटनाएं हैं।

चित्रा बी। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। जंक्शन के तहत, चार्ज घनत्व, विद्युत क्षेत्र और वोल्टेज के लिए भूखंडों की सूचना दी जाती है। (लॉग एकाग्रता घटता वास्तव में वोल्टेज की तरह चिकना होना चाहिए।)

स्पेस चार्ज क्षेत्र निश्चित आयनों (दाता (अर्धचालक) या स्वीकर्ता (अर्धचालक)) द्वारा प्रदान किए गए शुद्ध आवेश वाला एक क्षेत्र है जिसे बहुसंख्यक वाहक द्वारा खुला छोड़ दिया गया है diffusion. When equilibrium is reached, the charge density is approximated by the displayed step function. In fact, since the y-axis of figure A is log-scale, the region is almost completely depleted of majority carriers (leaving a charge density equal to the net doping level), and the edge between the space charge region and the neutral region is quite sharp (see [[:Image:Pn-junction-equilibrium-graphs.png|आकृति बी, क्यू (एक्स) ग्राफ)। स्पेस चार्ज क्षेत्र में पी-एन इंटरफेस के दोनों किनारों पर चार्ज का समान परिमाण होता है, इस प्रकार यह इस उदाहरण में कम डॉप्ड पक्ष पर आगे बढ़ता है (आंकड़े ए और बी में एन पक्ष)।

फॉरवर्ड बायस

In forward bias, the p-type is connected with the positive terminal and the n-type is connected with the negative terminal.

पीएन जंक्शन ऑपरेशन आगे-पूर्वाग्रह मोड में, घटती चौड़ाई दिखा रहा है।

पैनल ऊर्जा बैंड आरेख, विद्युत क्षेत्र और शुद्ध आवेश घनत्व दिखाते हैं। पी और एन दोनों जंक्शनों को 1e15 सेमी पर डोप किया गया है-3 (160 µC/सेमी3) डोपिंग स्तर, जिसके कारण ~0.59 V की अंतर्निहित क्षमता होती है। कमी की चौड़ाई को p–n जंक्शन पर सिकुड़ते वाहक गति से अनुमान लगाया जा सकता है, जिसके परिणामस्वरूप विद्युत प्रतिरोध कम हो जाता है। इलेक्ट्रॉन जो पी-एन जंक्शन को पी-टाइप सामग्री (या छेद जो एन-टाइप सामग्री में पार करते हैं) में पास के तटस्थ क्षेत्र में फैल जाते हैं। निकट-तटस्थ क्षेत्रों में अल्पसंख्यक प्रसार की मात्रा वर्तमान की मात्रा निर्धारित करती है जो डायोड के माध्यम से प्रवाहित हो सकती है।

केवल बहुसंख्यक वाहक (एन-टाइप सामग्री में इलेक्ट्रॉन या पी-टाइप में छेद) मैक्रोस्कोपिक लंबाई के लिए अर्धचालक के माध्यम से प्रवाह कर सकते हैं। इसे ध्यान में रखते हुए, जंक्शन पर इलेक्ट्रॉनों के प्रवाह पर विचार करें। आगे का पूर्वाग्रह इलेक्ट्रॉनों पर एक बल का कारण बनता है जो उन्हें N की ओर से P की ओर धकेलता है। आगे के पूर्वाग्रह के साथ, कमी क्षेत्र काफी संकीर्ण है कि इलेक्ट्रॉन जंक्शन को पार कर सकते हैं और पी-टाइप सामग्री में इंजेक्ट कर सकते हैं। हालांकि, वे पी-टाइप सामग्री के माध्यम से अनिश्चित काल तक प्रवाह जारी नहीं रखते हैं, क्योंकि यह उनके लिए छिद्रों के साथ पुनर्संयोजन करने के लिए ऊर्जावान रूप से अनुकूल है। पुनर्संयोजन से पहले पी-टाइप सामग्री के माध्यम से एक इलेक्ट्रॉन की औसत लंबाई को प्रसार लंबाई कहा जाता है, और यह आमतौर पर माइक्रोमीटर के क्रम में होता है।[1] यद्यपि इलेक्ट्रॉन पी-प्रकार की सामग्री में केवल थोड़ी दूरी पर प्रवेश करते हैं, विद्युत प्रवाह निर्बाध रूप से जारी रहता है, क्योंकि छिद्र (बहुसंख्यक वाहक) विपरीत दिशा में प्रवाहित होने लगते हैं। कुल करंट (इलेक्ट्रॉन और होल करंट का योग) अंतरिक्ष में स्थिर है, क्योंकि किसी भी बदलाव से समय के साथ चार्ज बिल्डअप होगा (यह किरचॉफ का वर्तमान नियम है)। पी-टाइप क्षेत्र से एन-टाइप क्षेत्र में छिद्रों का प्रवाह एन से पी तक इलेक्ट्रॉनों के प्रवाह के समान है (इलेक्ट्रॉनों और छिद्रों की अदला-बदली भूमिकाएं और सभी धाराओं और वोल्टेज के संकेत उलट जाते हैं)।

इसलिए, डायोड के माध्यम से वर्तमान प्रवाह की मैक्रोस्कोपिक तस्वीर में एन-टाइप क्षेत्र के माध्यम से जंक्शन की ओर बहने वाले इलेक्ट्रॉन शामिल होते हैं, पी-टाइप क्षेत्र के माध्यम से जंक्शन की ओर विपरीत दिशा में बहने वाले छेद, और वाहक की दो प्रजातियां लगातार पुनर्संयोजन करती हैं जंक्शन के आसपास। इलेक्ट्रॉन और छिद्र विपरीत दिशाओं में यात्रा करते हैं, लेकिन उनके पास विपरीत चार्ज भी होते हैं, इसलिए समग्र धारा डायोड के दोनों किनारों पर एक ही दिशा में होती है, जैसा कि आवश्यक है।

शॉकली डायोड समीकरण हिमस्खलन (रिवर्स-बायस्ड कंडक्टिंग) क्षेत्र के बाहर एक पी-एन जंक्शन के आगे-पूर्वाग्रह परिचालन विशेषताओं को मॉडल करता है।

रिवर्स बायस

रिवर्स बायस में एक सिलिकॉन पी-एन जंक्शन।

पी-टाइप क्षेत्र को वोल्टेज आपूर्ति के नकारात्मक टर्मिनल से और एन-टाइप क्षेत्र को पॉजिटिव टर्मिनल से जोड़ना रिवर्स बायस से मेल खाता है। यदि एक डायोड रिवर्स-बायस्ड है, तो कैथोड पर वोल्टेज एनोड की तुलना में तुलनात्मक रूप से अधिक होता है। इसलिए, डायोड के टूटने तक बहुत कम धारा प्रवाहित होती है। कनेक्शन आसन्न आरेख में चित्रित किए गए हैं।

क्योंकि पी-प्रकार की सामग्री अब बिजली आपूर्ति के नकारात्मक टर्मिनल से जुड़ी हुई है, पी-प्रकार की सामग्री में 'इलेक्ट्रॉन छेद' को जंक्शन से दूर खींच लिया जाता है, चार्ज किए गए आयनों को पीछे छोड़ दिया जाता है और कमी क्षेत्र की चौड़ाई बढ़ जाती है . इसी तरह, क्योंकि एन-टाइप क्षेत्र सकारात्मक टर्मिनल से जुड़ा हुआ है, इलेक्ट्रॉनों को समान प्रभाव से जंक्शन से दूर खींच लिया जाता है। यह वोल्टेज बाधा को बढ़ाता है जिससे आवेश वाहकों के प्रवाह के लिए एक उच्च प्रतिरोध होता है, इस प्रकार न्यूनतम विद्युत प्रवाह को पी-एन जंक्शन को पार करने की अनुमति मिलती है। पी-एन जंक्शन के प्रतिरोध में वृद्धि के परिणामस्वरूप जंक्शन एक इन्सुलेटर के रूप में व्यवहार करता है।

जैसे-जैसे रिवर्स-बायस वोल्टेज बढ़ता है, डिप्लेशन ज़ोन इलेक्ट्रिक फील्ड की ताकत बढ़ती जाती है। एक बार जब विद्युत क्षेत्र की तीव्रता एक महत्वपूर्ण स्तर से अधिक बढ़ जाती है, तो पी-एन जंक्शन रिक्तीकरण क्षेत्र टूट जाता है और करंट प्रवाहित होने लगता है, आमतौर पर या तो जेनर ब्रेकडाउन या हिमस्खलन ब्रेकडाउन प्रक्रियाओं द्वारा। ये दोनों ब्रेकडाउन प्रक्रियाएं गैर-विनाशकारी हैं और प्रतिवर्ती हैं, जब तक कि वर्तमान प्रवाह की मात्रा उस स्तर तक नहीं पहुंचती है जो अर्धचालक सामग्री को ज़्यादा गरम करती है और थर्मल क्षति का कारण बनती है।

जेनर डायोड रेगुलेटर सर्किट में लाभ के लिए इस प्रभाव का उपयोग किया जाता है। जेनर डायोड में कम ब्रेकडाउन वोल्टेज होता है। ब्रेकडाउन वोल्टेज के लिए एक मानक मान उदाहरण के लिए 5.6 वी है। इसका मतलब है कि कैथोड पर वोल्टेज एनोड पर वोल्टेज से लगभग 5.6 वी अधिक नहीं हो सकता है (हालांकि वर्तमान के साथ थोड़ी वृद्धि होती है), क्योंकि डायोड टूट जाता है , और इसलिए आचरण करें, यदि वोल्टेज अधिक हो जाता है। यह वास्तव में डायोड पर वोल्टेज को सीमित करता है।

रिवर्स बायसिंग का एक अन्य अनुप्रयोग वैरेक्टर डायोड है, जहां कमी क्षेत्र की चौड़ाई (रिवर्स बायस वोल्टेज के साथ नियंत्रित) डायोड की समाई को बदल देती है।

शासी समीकरण

कमी क्षेत्र का आकार

पी-एन जंक्शन के लिए, मान लीजिए नकारात्मक रूप से आवेशित स्वीकर्ता परमाणुओं की सांद्रता हो और सकारात्मक रूप से आवेशित दाता परमाणुओं की सांद्रता हो। होने देना और क्रमशः इलेक्ट्रॉनों और छिद्रों की संतुलन सांद्रता हो। इस प्रकार, प्वासों के समीकरण द्वारा:

कहां विद्युत क्षमता है, चार्ज घनत्व है, अनुमति है और इलेक्ट्रॉन आवेश का परिमाण है।

एक सामान्य मामले के लिए, डोपेंट की एक एकाग्रता प्रोफ़ाइल होती है जो गहराई x के साथ बदलती है, लेकिन अचानक जंक्शन के एक साधारण मामले के लिए, जंक्शन के p पक्ष पर स्थिर और n पक्ष पर शून्य माना जा सकता है, और जंक्शन के एन पक्ष पर स्थिर और पी पक्ष पर शून्य माना जा सकता है। होने देना पी-साइड पर कमी क्षेत्र की चौड़ाई हो और एन-साइड पर कमी क्षेत्र की चौड़ाई। तब से कमी क्षेत्र के भीतर, यह होना चाहिए

क्योंकि अवक्षय क्षेत्र के p और n पार्श्व पर कुल आवेश का योग शून्य होता है। इसलिए दे रहे हैं और संपूर्ण अवक्षय क्षेत्र और इसके आर-पार संभावित अंतर का प्रतिनिधित्व करते हैं,
और इस प्रकार, दे कमी क्षेत्र की कुल चौड़ाई हो, हमें मिलता है

रूप में लिखा जा सकता है , जहां हमने वोल्टेज अंतर को संतुलन और बाहरी घटकों में विभाजित किया है। संतुलन क्षमता प्रसार बलों से उत्पन्न होती है, और इस प्रकार हम गणना कर सकते हैं आइंस्टीन संबंध (काइनेटिक थ्योरी) को लागू करके और अर्धचालक को नॉनडिजेनरेट (यानी, उत्पाद) मानकर फर्मी ऊर्जा से स्वतंत्र है):

जहाँ T अर्धचालक का तापमान है और k बोल्ट्जमैन स्थिरांक है।[2]


रिक्तीकरण क्षेत्र में वर्तमान

शॉकली आदर्श डायोड समीकरण बाहरी वोल्टेज और परिवेश स्थितियों (तापमान, अर्धचालक की पसंद, आदि) के एक समारोह के रूप में पी-एन जंक्शन में वर्तमान को दर्शाता है। यह देखने के लिए कि इसे कैसे प्राप्त किया जा सकता है, हमें करंट के विभिन्न कारणों की जांच करनी चाहिए। सम्मेलन यह है कि आगे (+) दिशा डायोड के अंतर्निर्मित संभावित ढाल के संतुलन के विरुद्ध इंगित की जानी चाहिए।

  • अग्र धारा ()
    • डिफ्यूजन करंट: कैरियर कंसंट्रेशन में स्थानीय असंतुलन के कारण करंट , समीकरण के माध्यम से
  • उलटा प्रवाह ()
    • फील्ड करंट
    • पीढ़ी वर्तमान

गैर-सुधारात्मक जंक्शन

उपरोक्त आरेखों में, धातु के तारों और अर्धचालक सामग्री के मध्य संपर्क भी धातु-अर्धचालक जंक्शन बनाता है जिसे स्कॉटकी डायोड कहा जाता है। एक सरलीकृत आदर्श स्थिति में एक अर्धचालक डायोड कभी काम नहीं करेगा, क्योंकि यह श्रृंखला में आगे-पीछे जुड़े कई डायोड से बना होगा। लेकिन, व्यवहार में, धातु टर्मिनलों को छूने वाले अर्धचालक के हिस्से के भीतर सतह की अशुद्धियाँ उन कमी परतों की चौड़ाई को बहुत कम कर देती हैं, इस हद तक कि धातु-अर्धचालक जंक्शन डायोड के रूप में कार्य नहीं करते हैं। ये गैर-संशोधक जंक्शन लागू वोल्टेज ध्रुवीयता के बावजूद ओमिक संपर्कों के रूप में व्यवहार करते हैं।

निर्माण

पी-एन जंक्शन डोपिंग द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा (क्रिस्टल की सतह को डोपेंट के साथ अन्य प्रकार के डोपेंट के साथ क्रिस्टल की सतह के ऊपर बढ़ाना है) I यदि सामग्री के दो भिन्न-भिन्न टुकड़ों का प्रयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छेद को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।[citation needed]

इतिहास

पी-एन जंक्शन के आविष्कार का श्रेय सामान्यतः 1939 में बेल लैब्स के अमेरिकी भौतिक विज्ञानी रसेल ओहल को दिया जाता है।[3] दो साल पच्छात 1941, वादिम लश्कर्योव ने Cu2O और सिल्वर सल्फाइड फोटोकल्स और सेलेनियम रेक्टीफायर्स क्यू में पी-एन जंक्शनों की के परिक्षण की सूचना दी।[4]

यह भी देखें

  • मिश्र धातु जंक्शन ट्रांजिस्टर
  • समाई-वोल्टेज प्रोफाइलिंग
  • गहन स्तर की क्षणिक स्पेक्ट्रोस्कोपी
  • डेलोकलाइज्ड इलेक्ट्रॉन
  • डायोड मॉडलिंग
  • फील्ड इफ़ेक्ट ट्रांजिस्टर
  • एन-पी-एन ट्रांजिस्टर
  • पी-एन-पी ट्रांजिस्टर
  • सेमीकंडक्टर डिटेक्टर
  • सेमीकंडक्टर डिवाइस
  • ट्रांजिस्टर-ट्रांजिस्टर तर्क


संदर्भ

  1. Hook, J. R.; H. E. Hall (2001). भौतिक विज्ञान की ठोस अवस्था. John Wiley & Sons. ISBN 978-0-471-92805-8.
  2. Luque, Antonio; Steven Hegedus (29 March 2011). फोटोवोल्टिक विज्ञान और इंजीनियरिंग की पुस्तिका. John Wiley & Sons. ISBN 978-0-470-97612-8.
  3. Riordan, Michael; Hoddeson, Lillian (1988). क्रिस्टल फायर: ट्रांजिस्टर का आविष्कार और सूचना युग का जन्म. USA: W. W. Norton & Company. pp. 88–97. ISBN 978-0-393-31851-7.
  4. Lashkaryov, V. E. (2008) [1941]. "थर्मोप्रोब विधि द्वारा बाधा परत की जांच" (PDF). Ukr. J. Phys. (in English). 53 (special edition): 53–56. ISSN 2071-0194. Archived from the original (PDF) on 2015-09-28.


आगे की पढाई

  • Shockley, William (1949). "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors". Bell System Technical Journal. 28 (3): 435–489. doi:10.1002/j.1538-7305.1949.tb03645.x.


इस पेज में लापता आंतरिक लिंक की सूची

बाहरी कड़ियाँ

श्रेणी: अर्धचालक संरचनाएं