श्वार्ट्ज स्थान: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 16: Line 16:
* [[ कॉम्पैक्ट समर्थन | कॉम्पैक्ट समर्थन]] वाला कोई भी स्मूथ फंक्शन f S('R''<sup>n</sup>''<nowiki/>') में हैI
* [[ कॉम्पैक्ट समर्थन | कॉम्पैक्ट समर्थन]] वाला कोई भी स्मूथ फंक्शन f S('R''<sup>n</sup>''<nowiki/>') में हैI
*यह स्पष्ट है क्योंकि f का कोई भी व्युत्पन्न निरंतर फलन है और f के समर्थन में समर्थित है, इसलिए (''x<sup>α</sup>D''<sup>β</sup>) ''f'' का शिखर मान प्रमेय द्वारा '''R'''''<sup>n</sup>'' में अधिकतम है।
*यह स्पष्ट है क्योंकि f का कोई भी व्युत्पन्न निरंतर फलन है और f के समर्थन में समर्थित है, इसलिए (''x<sup>α</sup>D''<sup>β</sup>) ''f'' का शिखर मान प्रमेय द्वारा '''R'''''<sup>n</sup>'' में अधिकतम है।
* क्योंकि श्वार्ट्ज स्थान  सदिश स्थान है, कोई भी बहुपद <math>\phi(x^\alpha)</math> कारक से गुणा कर सकते हैं <math> e^{-ax^2}</math> के लिए <math>a > 0</math> Schwartz अंतरिक्ष का तत्व देने के लिए वास्तविक स्थिरांक। विशेष रूप से, श्वार्ट्ज अंतरिक्ष के अंदर बहुपदों का एम्बेडिंग होता है।
* क्योंकि श्वार्ट्ज सदिश स्थान है, कोई भी बहुपद <math>\phi(x^\alpha)</math> को कारक से गुणा करके  <math> e^{-ax^2}</math> के लिए <math>a > 0</math> श्वार्ट्ज अंतरिक्ष का तत्व देने के लिए वास्तविक स्थिरांक होता है। विशेष रूप से, श्वार्ट्ज अंतरिक्ष के अंदर बहुपदों का एम्बेडिंग होता है।


== गुण ==
== गुण ==
Line 22: Line 22:
=== विश्लेषणात्मक गुण ===
=== विश्लेषणात्मक गुण ===


* जनरल लीबनिज नियम से | लाइबनिज का नियम, यह उसी का अनुसरण करता है {{math|𝒮('''R'''{{sup|''n''}})}} [[बिंदुवार उत्पाद]] के अंतर्गत भी बंद है:
* जनरल लीबनिज नियम से, इस प्रकार है कि {{math|𝒮('''R'''{{sup|''n''}})}} [[बिंदुवार उत्पाद]] के अंतर्गत भी बंद है:
*: अगर {{math|''f'', ''g'' ∈ 𝒮('''R'''{{sup|''n''}})}} फिर उत्पाद {{math|''fg'' ∈ 𝒮('''R'''{{sup|''n''}})}}.
*: यदि {{math|''f'', ''g'' ∈ 𝒮('''R'''{{sup|''n''}})}} फिर उत्पाद {{math|''fg'' ∈ 𝒮('''R'''{{sup|''n''}})}} है।
* फूरियर रूपांतरण रेखीय समरूपता है {{math|F:𝒮('''R'''{{sup|''n''}}) → 𝒮('''R'''{{sup|''n''}})}}.
* फूरियर रूपांतरण रेखीय समरूपता {{math|F:𝒮('''R'''{{sup|''n''}}) → 𝒮('''R'''{{sup|''n''}})}} है।
* अगर {{math|''f'' ∈ 𝒮('''R''')}} तब {{mvar|f}} [[समान रूप से निरंतर]] है {{math|'''R'''}}.
* यदि {{math|''f'' ∈ 𝒮('''R''')}} तब {{mvar|f}}, {{math|'''R'''}} [[समान रूप से निरंतर]] है।
*{{math|𝒮('''R'''{{sup|''n''}})}} विशिष्ट स्थान है [[स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस]] फ्रीचेट स्पेस | फ्रीचेट [[श्वार्ट्ज टोपोलॉजिकल वेक्टर स्पेस]] [[ जटिल संख्या ]]ों पर।
*{{math|𝒮('''R'''{{sup|''n''}})}} विशिष्ट स्थान है [[स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस]] फ्रीचेट स्पेस | फ्रीचेट [[श्वार्ट्ज टोपोलॉजिकल वेक्टर स्पेस]] [[ जटिल संख्या ]]ों पर।
* दोनों {{math|𝒮('''R'''{{sup|''n''}})}} ''और'' इसकी [[मजबूत दोहरी जगह]] भी हैं:
* दोनों {{math|𝒮('''R'''{{sup|''n''}})}} ''और'' इसकी [[मजबूत दोहरी जगह]] भी हैं:
#पूरा टोपोलॉजिकल वेक्टर स्पेस [[हॉसडॉर्फ स्पेस]] स्थानीय रूप से [[पूर्ण टोपोलॉजिकल वेक्टर स्पेस]] स्पेस,
#पूरा टोपोलॉजिकल वेक्टर स्पेस [[हॉसडॉर्फ स्पेस]] स्थानीय रूप से [[पूर्ण टोपोलॉजिकल वेक्टर स्पेस]] स्पेस,

Revision as of 11:34, 24 March 2023

गणित में, श्वार्ट्ज अंतरिक्ष के सभी कार्यों का स्थान है जिसका यौगिक तीव्रता से घट रहा है। इस स्थान की महत्वपूर्ण संपत्ति है कि फूरियर रूपांतरण इस स्थान पर ऑटोमोर्फिसम है। यह संपत्ति दोहरे स्थान में तत्वों के लिए फूरियर रूपांतरण को परिभाषित करने के लिए, द्वैत द्वारा सक्षम करती है का , जैसे टेम्पर्ड वितरण है। श्वार्ट्ज स्पेस को कभी-कभी श्वार्टज़ फ़ंक्शन कहा जाता है।

द्वि-आयामी गाऊसी फ़ंक्शन तीव्रता से घटते फ़ंक्शन का उदाहरण है।

श्वार्ट्ज अंतरिक्ष का नाम फ्रांसीसी गणितज्ञ लॉरेंट श्वार्ट्ज के नाम पर रखा गया है।

परिभाषा

गैर-नकारात्मक पूर्णांकों का समुच्चय (गणित) हो तो, , के लिए एन-फोल्ड कार्टेशियन उत्पाद बनाते है। जो 'तीव्रता से घटते ' कार्य स्थान है-

जहाँ से सुचारू रूप से कार्यों का स्थान है में , और
जहाँ, अंतिम को दर्शाता है, और हम बहु-सूचकांक संकेतन का उपयोग करते हैं।

इस परिभाषा में सामान्य भाषा का उपयोग करने से, तीव्रता से घटते हुए फ़ंक्शन को अनिवार्य रूप से f(x) कार्य में माना जाता है जैसे कि- f(x), f′(x), f′′(x), है I सभी प्रत्येक स्थान पर सम्मलित हैं R और x. के किसी भी पारस्परिक शक्ति की तुलना में x→ ±∞ के रूप में शून्य पर जाएं I विशेष रूप से, S(Rn, C) फलन स्थान C(Rn, C) का रेखीय उपस्थान है जो Rn से C. तक सुचारू रूप से कार्यों का स्थान है I

श्वार्ट्ज अंतरिक्ष में कार्यों के उदाहरण

  • यदि α बहु-सूचकांक और सकारात्मक वास्तविक संख्या है, तो
  • कॉम्पैक्ट समर्थन वाला कोई भी स्मूथ फंक्शन f S('Rn') में हैI
  • यह स्पष्ट है क्योंकि f का कोई भी व्युत्पन्न निरंतर फलन है और f के समर्थन में समर्थित है, इसलिए (xαDβ) f का शिखर मान प्रमेय द्वारा Rn में अधिकतम है।
  • क्योंकि श्वार्ट्ज सदिश स्थान है, कोई भी बहुपद को कारक से गुणा करके के लिए श्वार्ट्ज अंतरिक्ष का तत्व देने के लिए वास्तविक स्थिरांक होता है। विशेष रूप से, श्वार्ट्ज अंतरिक्ष के अंदर बहुपदों का एम्बेडिंग होता है।

गुण

विश्लेषणात्मक गुण

  1. पूरा टोपोलॉजिकल वेक्टर स्पेस हॉसडॉर्फ स्पेस स्थानीय रूप से पूर्ण टोपोलॉजिकल वेक्टर स्पेस स्पेस,
  2. परमाणु अंतरिक्ष मोंटेल रिक्त स्थान,
यह ज्ञात है कि किसी भी मॉन्टेल अंतरिक्ष के सतत दोहरे स्थान में, अनुक्रम मजबूत दोहरे स्थान में अभिसरण करता है यदि और केवल अगर यह कमजोर * टोपोलॉजी में अभिसरण करता है,[1]
  1. अल्ट्राबोर्नोलॉजिकल स्पेस,
  2. Reflexive अंतरिक्ष Barreled अंतरिक्ष Mackey रिक्त स्थान।

अन्य टोपोलॉजिकल वेक्टर रिक्त स्थान के साथ श्वार्टज़ रिक्त स्थान का संबंध

  • अगर 1 ≤ p ≤ ∞, तब 𝒮(Rn) ⊂ Lp(Rn).
  • अगर 1 ≤ p < ∞, तब 𝒮(Rn) घना सेट है Lp(Rn).
  • सभी टक्कर कार्यों का स्थान, C
    c
    (Rn)
    शामिल है 𝒮(Rn).

यह भी देखें

  • टक्कर समारोह
  • श्वार्ट्ज-ब्रुहट समारोह
  • परमाणु स्थान

संदर्भ

  1. Trèves 2006, pp. 351–359.



स्रोत

  • Hörmander, L. (1990). रैखिक आंशिक विभेदक ऑपरेटरों I का विश्लेषण, (वितरण सिद्धांत और फूरियर विश्लेषण) (2nd ed.). Berlin: Springer-Verlag. ISBN 3-540-52343-X.
  • Reed, M.; Simon, B. (1980). आधुनिक गणितीय भौतिकी के तरीके: कार्यात्मक विश्लेषण I (Revised and enlarged ed.). San Diego: Academic Press. ISBN 0-12-585050-6.
  • Stein, Elias M.; Shakarchi, Rami (2003). फूरियर विश्लेषण: एक परिचय (विश्लेषण I में प्रिंसटन व्याख्यान). Princeton: Princeton University Press. ISBN 0-691-11384-X.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.

This article incorporates material from Space of rapidly decreasing functions on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


श्रेणी:टोपोलॉजिकल वेक्टर स्पेस केटेगरी: स्मूद फंक्शन श्रेणी:फूरियर विश्लेषण श्रेणी:फ़ंक्शन स्पेस श्रेणी:श्वार्ट्ज वितरण