रॉसबाइ संख्या: Difference between revisions
(Created page with "{{Short description|Ratio of inertial force to Coriolis force}} रॉस्बी संख्या (आरओ), कार्ल-गुस्ताव अरविद र...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Ratio of inertial force to Coriolis force}} | {{Short description|Ratio of inertial force to Coriolis force}} | ||
रॉस्बी संख्या | रॉस्बी संख्या, [[कार्ल-गुस्ताव अरविद रॉस्बी]] के नाम पर, एक आयामहीन संख्या का उपयोग द्रव प्रवाह का वर्णन में किया जाता है। रॉस्बी संख्या [[कोरिओलिस बल]], पदों के लिए जड़त्वीय बल का अनुपात है बशर्तें<math>|\mathbf{v} \cdot \nabla \mathbf{v}| \sim U^2 / L</math> और <math>\Omega \times \mathbf{v} \sim U\Omega</math> नेवियर-स्टोक्स समीकरणों में क्रमशः अनुपात होता है।<ref name=Abbot>{{cite book |title=कोस्टल, एस्टुरियल और हार्बर इंजीनियर्स रेफरेंस बुक|author=M. B. Abbott & W. Alan Price |page= 16 |url=https://books.google.com/books?id=vmlqje7hr_4C&dq=centrifugal+Rossby&pg=PA16 | ||
|isbn=0-419-15430-2 |year=1994 |publisher=Taylor & Francis}}</ref><ref name=Banerjee>{{cite book |title=नौसिखियों के लिए समुद्र विज्ञान|year=2004 |page= 98 |author=Pronab K Banerjee |isbn=81-7764-653-2 |publisher=Allied Publishers Pvt. Ltd. |location=Mumbai, India |url=https://books.google.com/books?id=t3pMEnSQlY8C&dq=centrifugal+Rossby&pg=PA98}}</ref> यह | |isbn=0-419-15430-2 |year=1994 |publisher=Taylor & Francis}}</ref><ref name=Banerjee>{{cite book |title=नौसिखियों के लिए समुद्र विज्ञान|year=2004 |page= 98 |author=Pronab K Banerjee |isbn=81-7764-653-2 |publisher=Allied Publishers Pvt. Ltd. |location=Mumbai, India |url=https://books.google.com/books?id=t3pMEnSQlY8C&dq=centrifugal+Rossby&pg=PA98}}</ref> यह सामान्यतः महासागरों और पृथ्वी के वायुमंडल में [[भूभौतिकी]] घटनाओं में उपयोग किया जाता है, जहां यह [[ग्रह]]ों के घूमने से उत्पन्न होने वाले कोरिओलिस प्रभाव के महत्व को दर्शाता है। इसे किबेल संख्या के रूप में भी जाना जाता है।<ref name=Boubnov>{{cite book |title=घूर्णन द्रव में संवहन|author=B. M. Boubnov, G. S. Golitsyn |page=8 |isbn=0-7923-3371-3 |year=1995 |publisher=Springer |url=https://books.google.com/books?id=KOmZVfrnlW0C&dq=Kibel+%22Rossby+number%22&pg=PA8}}</ref> | ||
रॉस्बी नंबर | |||
रॉस्बी नंबर Ro, not R<sub>o</sub> के रूप मै परिभाषित किया गया है | |||
: <math>\text{Ro} = \frac{U}{Lf},</math> | : <math>\text{Ro} = \frac{U}{Lf},</math> | ||
जहां | जहां U और L क्रमशः विशेषता वेग और घटना की लंबाई के पैमाने हैं, और <math>f = 2\Omega \sin \phi</math> [[कोरिओलिस आवृत्ति]] के सापेक्ष <math>\Omega</math> ग्रहों के घूमने की [[कोणीय आवृत्ति]] तथा <math>\phi</math> [[अक्षांश]] हैं। | ||
एक छोटी रॉस्बी संख्या कोरिओलिस बलों द्वारा दृढ़ता से प्रभावित प्रणाली को दर्शाती है, और एक बड़ी रॉस्बी संख्या एक ऐसी प्रणाली को ऐसे दर्शाती है जिसमें जड़त्वीय और केन्द्रापसारक बल वर्चस्व रखते हैं। उदाहरण के लिए, [[बवंडर]] में, रॉस्बी संख्या बड़ी (≈ 10<sup>3</sup>) होती है ,न्यूनतम दबाव प्रणालियों में यह न्यूनतम (≈ 0.1-1) होती है,और महासागरीय प्रणालियों में यह एकता के क्रम का है, परंतु घटना के आधार पर यह सीमा भिन्न-भिन्न परिमाण के कई आदेशों (≈ 10<sup>−2</sup>–10<sup>2</sup>) तक हो सकता है.<ref name="Kantha1">{{cite book |title=महासागरों और महासागरीय प्रक्रियाओं के संख्यात्मक मॉडल|author=Lakshmi H. Kantha & Carol Anne Clayson |publisher=Academic Press |isbn=0-12-434068-7 |year=2000 |page=56 (Table 1.5.1) |url=https://books.google.com/books?id=Gps9JXtd3owC&dq=tornado+rossby&pg=PA56}}</ref> परिणामस्वरूप, बवंडर में कोरिओलिस बल नगण्य होता है, और संतुलन दबाव और केन्द्रापसारक बलों के मध्य संतुलन होता है ,जिसे साइक्लोस्ट्रोफिक संतुलन कहा जाता है।<ref name="Holton">{{cite book |title=गतिशील मौसम विज्ञान का परिचय|year=2004 |author=James R. Holton |url=https://books.google.com/books?id=fhW5oDv3EPsC&dq=tornado+rossby&pg=PA64 | |||
|page= 64 |isbn=0-12-354015-1 |publisher=Academic Press}}</ref><ref name="Kantha2" />साइक्लोस्ट्रोफिक संतुलन सामान्यतः एक [[उष्णकटिबंधीय चक्रवात]] के आंतरिक कोर में भी होता है।<ref name="Adam">{{cite book |title=Mathematics in Nature: Modeling Patterns in the Natural World |author=John A. Adam |isbn=0-691-11429-3 |publisher=Princeton University Press |url=https://books.google.com/books?id=2gO2sBp4ipQC&dq=Coriolis+cyclostrophic+%22low+pressure+%22&pg=PA134 |page=135 |year=2003}}</ref> न्यूनतम दबाव वाली प्रणालियों में, केन्द्रापसारक बल नगण्य होता है, और कोरिओलिस और दबाव बलों के मध्य संतुलन होता है, जिसे जिओस्ट्रोफिक संतुलन कहा जाता हैं। महासागरों में तीनों बल तुलनीय होते हैं जिन्हें [[साइक्लोजियोस्ट्रोफिक संतुलन]] कहा जाता है।<ref name="Kantha2">{{cite book |title=महासागरों और महासागरीय प्रक्रियाओं के संख्यात्मक मॉडल|page=103 |author=Lakshmi H. Kantha & Carol Anne Clayson |isbn=0-12-434068-7 |year=2000 |url=https://books.google.com/books?id=Gps9JXtd3owC&dq=Coriolis+cyclostrophic+%22low+pressure+%22&pg=PA103}}</ref> वायुमंडल और महासागरों में गति के स्थानिक और लौकिक पैमानों को दर्शाने वाले चित्र के लिए, कांथा और क्लेसन देखें।<ref name="Kantha3">{{cite book |author=Lakshmi H. Kantha & Carol Anne Clayson |isbn=0-12-434068-7 |year=2000 |title=महासागरों और महासागरीय प्रक्रियाओं के संख्यात्मक मॉडल|page=55 (Figure 1.5.1) |url=https://books.google.com/books?id=Gps9JXtd3owC&dq=tornado+rossby&pg=PA56}}</ref> | |||
जब रॉस्बी संख्या बड़ी होती है, ग्रहों के घूमने के प्रभाव महत्वहीन हैं और इन्हें उपेक्षित किया जा सकता है। जब रॉस्बी संख्या छोटी होती है, तो ग्रहों के घूमने का प्रभाव बड़ा होता है, और शुद्ध त्वरण तुलनात्मक रूप से छोटा होता है, जिससे [[भूस्थैतिक हवा]] का उपयोग किया जा सकता है।<ref name="Barry">{{cite book |title=वातावरण, मौसम और जलवायु|author=Roger Graham Barry & Richard J. Chorley |url=https://books.google.com/books?id=MUQOAAAAQAAJ&dq=Coriolis++%22low+pressure%22&pg=PA115 |page=115 |isbn=0-415-27171-1 |year=2003 |publisher=Routledge}}</ref> | |||
== यह भी देखें == | == यह भी देखें == | ||
* | * कोरिओलिस बल :- एक संदर्भ फ्रेम के भीतर गतिमान वस्तुओं पर बल जो एक जड़त्वीय फ्रेम के संबंध में घूमता है | ||
* {{annotated link| | * {{annotated link|केन्द्रापसारक बल}} :-जड़त्वीय बल के प्रकार | ||
== संदर्भ और नोट्स == | == संदर्भ और नोट्स == |
Revision as of 01:25, 22 March 2023
रॉस्बी संख्या, कार्ल-गुस्ताव अरविद रॉस्बी के नाम पर, एक आयामहीन संख्या का उपयोग द्रव प्रवाह का वर्णन में किया जाता है। रॉस्बी संख्या कोरिओलिस बल, पदों के लिए जड़त्वीय बल का अनुपात है बशर्तें और नेवियर-स्टोक्स समीकरणों में क्रमशः अनुपात होता है।[1][2] यह सामान्यतः महासागरों और पृथ्वी के वायुमंडल में भूभौतिकी घटनाओं में उपयोग किया जाता है, जहां यह ग्रहों के घूमने से उत्पन्न होने वाले कोरिओलिस प्रभाव के महत्व को दर्शाता है। इसे किबेल संख्या के रूप में भी जाना जाता है।[3]
रॉस्बी नंबर Ro, not Ro के रूप मै परिभाषित किया गया है
जहां U और L क्रमशः विशेषता वेग और घटना की लंबाई के पैमाने हैं, और कोरिओलिस आवृत्ति के सापेक्ष ग्रहों के घूमने की कोणीय आवृत्ति तथा अक्षांश हैं।
एक छोटी रॉस्बी संख्या कोरिओलिस बलों द्वारा दृढ़ता से प्रभावित प्रणाली को दर्शाती है, और एक बड़ी रॉस्बी संख्या एक ऐसी प्रणाली को ऐसे दर्शाती है जिसमें जड़त्वीय और केन्द्रापसारक बल वर्चस्व रखते हैं। उदाहरण के लिए, बवंडर में, रॉस्बी संख्या बड़ी (≈ 103) होती है ,न्यूनतम दबाव प्रणालियों में यह न्यूनतम (≈ 0.1-1) होती है,और महासागरीय प्रणालियों में यह एकता के क्रम का है, परंतु घटना के आधार पर यह सीमा भिन्न-भिन्न परिमाण के कई आदेशों (≈ 10−2–102) तक हो सकता है.[4] परिणामस्वरूप, बवंडर में कोरिओलिस बल नगण्य होता है, और संतुलन दबाव और केन्द्रापसारक बलों के मध्य संतुलन होता है ,जिसे साइक्लोस्ट्रोफिक संतुलन कहा जाता है।[5][6]साइक्लोस्ट्रोफिक संतुलन सामान्यतः एक उष्णकटिबंधीय चक्रवात के आंतरिक कोर में भी होता है।[7] न्यूनतम दबाव वाली प्रणालियों में, केन्द्रापसारक बल नगण्य होता है, और कोरिओलिस और दबाव बलों के मध्य संतुलन होता है, जिसे जिओस्ट्रोफिक संतुलन कहा जाता हैं। महासागरों में तीनों बल तुलनीय होते हैं जिन्हें साइक्लोजियोस्ट्रोफिक संतुलन कहा जाता है।[6] वायुमंडल और महासागरों में गति के स्थानिक और लौकिक पैमानों को दर्शाने वाले चित्र के लिए, कांथा और क्लेसन देखें।[8]
जब रॉस्बी संख्या बड़ी होती है, ग्रहों के घूमने के प्रभाव महत्वहीन हैं और इन्हें उपेक्षित किया जा सकता है। जब रॉस्बी संख्या छोटी होती है, तो ग्रहों के घूमने का प्रभाव बड़ा होता है, और शुद्ध त्वरण तुलनात्मक रूप से छोटा होता है, जिससे भूस्थैतिक हवा का उपयोग किया जा सकता है।[9]
यह भी देखें
- कोरिओलिस बल :- एक संदर्भ फ्रेम के भीतर गतिमान वस्तुओं पर बल जो एक जड़त्वीय फ्रेम के संबंध में घूमता है
- केन्द्रापसारक बल :-जड़त्वीय बल के प्रकार
संदर्भ और नोट्स
- ↑ M. B. Abbott & W. Alan Price (1994). कोस्टल, एस्टुरियल और हार्बर इंजीनियर्स रेफरेंस बुक. Taylor & Francis. p. 16. ISBN 0-419-15430-2.
- ↑ Pronab K Banerjee (2004). नौसिखियों के लिए समुद्र विज्ञान. Mumbai, India: Allied Publishers Pvt. Ltd. p. 98. ISBN 81-7764-653-2.
- ↑ B. M. Boubnov, G. S. Golitsyn (1995). घूर्णन द्रव में संवहन. Springer. p. 8. ISBN 0-7923-3371-3.
- ↑ Lakshmi H. Kantha & Carol Anne Clayson (2000). महासागरों और महासागरीय प्रक्रियाओं के संख्यात्मक मॉडल. Academic Press. p. 56 (Table 1.5.1). ISBN 0-12-434068-7.
- ↑ James R. Holton (2004). गतिशील मौसम विज्ञान का परिचय. Academic Press. p. 64. ISBN 0-12-354015-1.
- ↑ 6.0 6.1 Lakshmi H. Kantha & Carol Anne Clayson (2000). महासागरों और महासागरीय प्रक्रियाओं के संख्यात्मक मॉडल. p. 103. ISBN 0-12-434068-7.
- ↑ John A. Adam (2003). Mathematics in Nature: Modeling Patterns in the Natural World. Princeton University Press. p. 135. ISBN 0-691-11429-3.
- ↑ Lakshmi H. Kantha & Carol Anne Clayson (2000). महासागरों और महासागरीय प्रक्रियाओं के संख्यात्मक मॉडल. p. 55 (Figure 1.5.1). ISBN 0-12-434068-7.
- ↑ Roger Graham Barry & Richard J. Chorley (2003). वातावरण, मौसम और जलवायु. Routledge. p. 115. ISBN 0-415-27171-1.
अग्रिम पठन
For more on numerical analysis and the role of the Rossby number, see:
- Dale B. Haidvogel & Aike Beckmann (1998). Numerical Ocean Circulation Modeling. Imperial College Press. p. 27. ISBN 1-86094-114-1.
- Zygmunt Kowalik & T. S. Murty (1993). Numerical Modeling of Ocean Dynamics: Ocean Models. World Scientific. p. 326. ISBN 981-02-1334-4.
For an historical account of Rossby's reception in the United States, see
- Jeffery Rosenfeld (2003). Eye of the Storm: Inside the World's Deadliest Hurricanes, Tornadoes, and Blizzards. Basic Books. p. 108. ISBN 0-7382-0891-4.