स्थैतिकतः अनिर्धार्य: Difference between revisions
No edit summary |
|||
Line 31: | Line 31: | ||
\mathbf V_A &= \mathbf F_v - \mathbf V_C | \mathbf V_A &= \mathbf F_v - \mathbf V_C | ||
\end{align}</math> | \end{align}</math> | ||
यदि, इसके अतिरिक्त, पर समर्थन {{mvar|A}} को एक रोलर सपोर्ट में परवर्तित कर दिया जाता है,तो {{math|'''H'''{{sub|''A''}}}} के अतिरिक्त प्रतिक्रियाओं की संख्या घटाकर तीन कर दी जाती है | यदि, इसके अतिरिक्त, पर समर्थन {{mvar|A}} को एक रोलर सपोर्ट में परवर्तित कर दिया जाता है,तो {{math|'''H'''{{sub|''A''}}}} के अतिरिक्त प्रतिक्रियाओं की संख्या को घटाकर तीन कर दी जाती है, परंतु बीम को अब क्षैतिज रूप से स्थानांतरित किया जा सकता है; तथा प्रणाली अस्थिर या आंशिक रूप से बाधित हो जाती है , प्रणाली एक संरचना के अतिरिक्त एक [[तंत्र (इंजीनियरिंग)|तंत्र]] है। इस स्थिति के मध्य अंतर करने के लिए जब संतुलन के तहत एक प्रणाली व्याकुल तथा अस्थिर हो जाती है, तो यहां आंशिक रूप से बाधित वाक्यांश का उपयोग करना बेहतर होता है। इस स्थिति में दोनों {{math|'''V'''{{sub|''A''}}}} और {{math|'''V'''{{sub|''C''}}}} अज्ञात हैं ऊर्ध्वाधर बल समीकरण और क्षण समीकरण को एक साथ हल करके निर्धारित किया जा सकता है। समाधान वही परिणाम देता है जो पहले प्राप्त किए गए थे।। यद्यपि, क्षैतिज बल समीकरण {{math|1='''F'''{{sub|''h''}} = 0}} को संतुष्ट करना संभव नहीं है।<ref name=":0" /> | ||
== स्थैतिक निर्धारण == | == स्थैतिक निर्धारण == | ||
वर्णनात्मक रूप से, एक स्थिर रूप से निर्धारित संरचना को एक संरचना के रूप में परिभाषित किया जा सकता है, जहां बाहरी भार के साथ संतुलन में आंतरिक क्रियाओं को | वर्णनात्मक रूप से, एक स्थिर रूप से निर्धारित संरचना को एक संरचना के रूप में परिभाषित किया जा सकता है, जहां बाहरी भार के साथ संतुलन में आंतरिक क्रियाओं को खोज संभव है, तथा वे आंतरिक क्रियाएं अद्वितीय हैं। संरचना में आत्म-तनाव की कोई संभावित अवस्था नहीं है, अर्थात शून्य बाहरी भार के साथ संतुलन में आंतरिक बल संभव नहीं हैं। यद्यपि स्थैतिक अनिश्चितता, संतुलन समीकरणों के [[रैखिक समीकरणों की सजातीय प्रणाली]] के गैर-तुच्छ समाधान का अस्तित्व है। यह आत्म-तनाव की संभावना को इंगित करता है जो यांत्रिक या तापीय क्रिया से प्रेरित हो सकता है। | ||
गणितीय रूप से, इसे पूर्ण रैंक प्राप्त करने के लिए [[कठोरता मैट्रिक्स]] की आवश्यकता होती है। | गणितीय रूप से, इसे पूर्ण रैंक प्राप्त करने के लिए [[कठोरता मैट्रिक्स]] की आवश्यकता होती है। | ||
Line 41: | Line 40: | ||
भौतिक गुणों और विक्षेपण जैसी अधिक जानकारी को सम्मिलित करके ही एक सांख्यिकीय रूप से अनिश्चित संरचना का विश्लेषण किया जा सकता है। संख्यात्मक रूप से, यह मैट्रिक्स संरचनात्मक विश्लेषण और परिमित तत्व विश्लेषण जैसी विधियों का उपयोग करके प्राप्त किया जा सकता है। | भौतिक गुणों और विक्षेपण जैसी अधिक जानकारी को सम्मिलित करके ही एक सांख्यिकीय रूप से अनिश्चित संरचना का विश्लेषण किया जा सकता है। संख्यात्मक रूप से, यह मैट्रिक्स संरचनात्मक विश्लेषण और परिमित तत्व विश्लेषण जैसी विधियों का उपयोग करके प्राप्त किया जा सकता है। | ||
व्यावहारिक रूप से, एक संरचना को 'सांख्यिकीय रूप से अतिनिर्धारित' कहा जाता है, जब इसमें अधिक यांत्रिक बाधाएं सम्मिलित होती हैं | व्यावहारिक रूप से, एक संरचना को 'सांख्यिकीय रूप से अतिनिर्धारित' कहा जाता है, जब इसमें अधिक यांत्रिक बाधाएं सम्मिलित होती हैं जेसे दीवार, कॉलम या बोल्ट की तरह स्थिरता के लिए नितांत आवश्यक है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 47: | Line 46: | ||
*[[लचीलापन विधि]] | *[[लचीलापन विधि]] | ||
* क्षण वितरण विधि | * क्षण वितरण विधि | ||
*[[अत्यधिक विवश तंत्र| | *[[अत्यधिक विवश तंत्र|अतिबाधित तंत्र]] | ||
*[[संरचनागत वास्तुविद्या]] | * [[संरचनागत वास्तुविद्या|संरचना अभियंता]] | ||
* | * काइनेमैटिक निर्धारण | ||
== संदर्भ == | == संदर्भ == |
Revision as of 23:24, 31 March 2023
स्थिति-विज्ञान और संरचनात्मक यांत्रिकी में, स्थिर संतुलन समीकरणों में एक स्थिर संरचना के रूप से अनिश्चित होती है बल और क्षण संतुलन की स्थिति उस संरचना पर आंतरिक बल और प्रतिक्रिया का निर्धारण करने के प्रति अपर्याप्त हैं।[1][2]
गणित
न्यूटन के गति के नियमों के आधार पर, द्वि-आयामी निकाय के लिए उपलब्ध संतुलन समीकरण हैं:[2]
- शरीर पर कार्य करने वाली शक्तियों का सदिश योग शून्य के समान होता है। यह इसका अनुवाद करता है:
- बलों के क्षैतिज घटकों का योग शून्य के समान होता है;
- बलों के ऊर्ध्वाधर घटकों का योग शून्य के समान होता है;
- सभी बलों के क्षण (भौतिकी) का योग (एक मनमाना बिंदु के बारे में) शून्य के समान होता है।
दाहिनी ओर बीम संरचना के निर्माण में चार अज्ञात अभिक्रियाएँ हैं जो VA, VB, VC, और HA हैं. संतुलन समीकरण हैं:[2]
क्योंकी चार अज्ञात बल हैं (या चर (गणित)) (VA, VB, VC, और HA) परंतु केवल तीन का संतुलन समीकरण हैं, एक साथ समीकरणों की इस प्रणाली का कोई अनूठा समाधान नहीं है। इसलिए संरचना को स्थिर रूप से अनिश्चित रूप में वर्गीकृत किया गया है।
स्थैतिक रूप से अनिश्चित प्रणालियों को हल करने के लिए इसके अंदर विभिन्न क्षण और बल प्रतिक्रियाओं को निर्धारित करें,तथा भौतिक गुणों और विरूपण इंजीनियरिंग में संगतता पर विचार किया जा सकता है।
स्थैतिकतः निर्धार्य
यदि समर्थन पर B हटा दिया जाता है, प्रतिक्रिया VB नहीं हो सकता है, और प्रणाली पर स्थिर रूप से निर्धारित या आइसोस्टैटिक हो जाता है।[3] ध्यान दें कि यहां प्रणाली पूरी तरह से बाधित है।प्रणाली एक सटीक बाधा गतिज युग्मन बन जाती है।समस्या का समाधान है:[2]
यदि, इसके अतिरिक्त, पर समर्थन A को एक रोलर सपोर्ट में परवर्तित कर दिया जाता है,तो HA के अतिरिक्त प्रतिक्रियाओं की संख्या को घटाकर तीन कर दी जाती है, परंतु बीम को अब क्षैतिज रूप से स्थानांतरित किया जा सकता है; तथा प्रणाली अस्थिर या आंशिक रूप से बाधित हो जाती है , प्रणाली एक संरचना के अतिरिक्त एक तंत्र है। इस स्थिति के मध्य अंतर करने के लिए जब संतुलन के तहत एक प्रणाली व्याकुल तथा अस्थिर हो जाती है, तो यहां आंशिक रूप से बाधित वाक्यांश का उपयोग करना बेहतर होता है। इस स्थिति में दोनों VA और VC अज्ञात हैं ऊर्ध्वाधर बल समीकरण और क्षण समीकरण को एक साथ हल करके निर्धारित किया जा सकता है। समाधान वही परिणाम देता है जो पहले प्राप्त किए गए थे।। यद्यपि, क्षैतिज बल समीकरण Fh = 0 को संतुष्ट करना संभव नहीं है।[2]
स्थैतिक निर्धारण
वर्णनात्मक रूप से, एक स्थिर रूप से निर्धारित संरचना को एक संरचना के रूप में परिभाषित किया जा सकता है, जहां बाहरी भार के साथ संतुलन में आंतरिक क्रियाओं को खोज संभव है, तथा वे आंतरिक क्रियाएं अद्वितीय हैं। संरचना में आत्म-तनाव की कोई संभावित अवस्था नहीं है, अर्थात शून्य बाहरी भार के साथ संतुलन में आंतरिक बल संभव नहीं हैं। यद्यपि स्थैतिक अनिश्चितता, संतुलन समीकरणों के रैखिक समीकरणों की सजातीय प्रणाली के गैर-तुच्छ समाधान का अस्तित्व है। यह आत्म-तनाव की संभावना को इंगित करता है जो यांत्रिक या तापीय क्रिया से प्रेरित हो सकता है।
गणितीय रूप से, इसे पूर्ण रैंक प्राप्त करने के लिए कठोरता मैट्रिक्स की आवश्यकता होती है।
भौतिक गुणों और विक्षेपण जैसी अधिक जानकारी को सम्मिलित करके ही एक सांख्यिकीय रूप से अनिश्चित संरचना का विश्लेषण किया जा सकता है। संख्यात्मक रूप से, यह मैट्रिक्स संरचनात्मक विश्लेषण और परिमित तत्व विश्लेषण जैसी विधियों का उपयोग करके प्राप्त किया जा सकता है।
व्यावहारिक रूप से, एक संरचना को 'सांख्यिकीय रूप से अतिनिर्धारित' कहा जाता है, जब इसमें अधिक यांत्रिक बाधाएं सम्मिलित होती हैं जेसे दीवार, कॉलम या बोल्ट की तरह स्थिरता के लिए नितांत आवश्यक है।
यह भी देखें
- क्रिश्चियन ओटो मोहर
- लचीलापन विधि
- क्षण वितरण विधि
- अतिबाधित तंत्र
- संरचना अभियंता
- काइनेमैटिक निर्धारण
संदर्भ
- ↑ Matheson, James Adam Louis (1971). Hyperstatic structures: an introduction to the theory of statically indeterminate structures (2nd ed.). London: Butterworths. ISBN 0408701749. OCLC 257600.
- ↑ 2.0 2.1 2.2 2.3 2.4 Megson, Thomas Henry Gordon (2014). "Analysis of statically indeterminate structures". संरचनात्मक और तनाव विश्लेषण (Third ed.). Amsterdam: Elsevier. pp. 489–570. ISBN 9780080999364. OCLC 873568410.
- ↑ Carpinteri, Alberto (1997). Structural mechanics: a unified approach (1st ed.). London: E & FN Spon. ISBN 0419191607. OCLC 36416368.