प्रक्रिया अभियंता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Study of making products from raw materials}} | {{Short description|Study of making products from raw materials}} | ||
प्रक्रिया इंजीनियरिंगअभियंता मूलभूत सिद्धांतों और [[वैज्ञानिक कानून]] की समझ और अनुप्रयोग है जो मानव को कच्चे माल और [[ऊर्जा]] को [[[[उत्पादन]] (अर्थशास्त्र)]] में बदलने की अनुमति देता है जो समाज के लिए विनिर्माण में उपयोगी है।<ref name=":1" />दबाव प्रवणता, [[तापमान प्रवणता]] और सांद्रता प्रवणता, साथ ही द्रव्यमान के संरक्षण के नियम जैसे प्रकृति के प्रेरक बलों का लाभ उठाकर, प्रक्रिया इंजीनियर बड़ी मात्रा में वांछित रासायनिक उत्पादों को संश्लेषित और शुद्ध करने के तरीके विकसित कर सकते हैं।<ref name=":1" /> प्रक्रिया इंजीनियरिंगअभियंता रासायनिक, भौतिक और जैविक प्रक्रियाओं के डिजाइन, संचालन, नियंत्रण, अनुकूलन और गहनता पर केंद्रित है। प्रक्रिया इंजीनियरिंगअभियंता में [[कृषि इंजीनियरिंग|कृषि इंजीनियरिंगअभियंता]], [[ऑटोमोटिव इंजीनियरिंग|ऑटोमोटिव इंजीनियरिंगअभियंता]], [[ जैव प्रौद्योगिकी |जैव प्रौद्योगिकी]] , [[केमिकल इंजीनियरिंग|केमिकल इंजीनियरिंगअभियंता]], [[ खाद्य अभियांत्रिकी |खाद्य अभियांत्रिकी]] , [[पदार्थ विज्ञान]], [[ खनन अभियांत्रिकी |खनन अभियांत्रिकी]] , [[ नाभिकीय अभियांत्रिकी |नाभिकीय अभियांत्रिकी]] , [[ पैट्रोलियम उद्योग |पैट्रोलियम उद्योग]] , [[ प्रक्रिया रसायन |प्रक्रिया रसायन]] और [[कंप्यूटर प्रोग्रामिंग]] जैसे उद्योगों की विस्तृत श्रृंखला शामिल है। प्रक्रिया इंजीनियरिंगअभियंता के लिए व्यवस्थित कंप्यूटर-आधारित विधियों का अनुप्रयोग प्रक्रिया सिस्टम इंजीनियरिंगअभियंता है। | |||
== सिंहावलोकन == | == सिंहावलोकन == | ||
प्रक्रिया इंजीनियरिंगअभियंता में कई उपकरणों और विधियों का उपयोग शामिल है। सिस्टम की सटीक प्रकृति के आधार पर, गणित और कंप्यूटर विज्ञान का उपयोग करके प्रक्रियाओं को अनुकरण और मॉडलिंग करने की आवश्यकता होती है। प्रक्रियाएं जहां चरण परिवर्तन और चरण संतुलन प्रासंगिक हैं, ऊर्जा और दक्षता में परिवर्तनों को मापने के लिए थर्मोडायनामिक्स के सिद्धांतों और कानूनों का उपयोग करके विश्लेषण की आवश्यकता होती है। इसके विपरीत, ऐसी प्रक्रियाएँ जो सामग्री और ऊर्जा के प्रवाह पर ध्यान केंद्रित करती हैं, क्योंकि वे संतुलन तक पहुँचती हैं, द्रव यांत्रिकी और परिवहन घटना के विषयों का उपयोग करके सबसे अच्छा विश्लेषण किया जाता है। यांत्रिकी के क्षेत्र में अनुशासन को तरल पदार्थ या झरझरा और छितरी हुई मीडिया की उपस्थिति में लागू करने की आवश्यकता है। प्रासंगिक होने पर सामग्री इंजीनियरिंगअभियंता सिद्धांतों को भी लागू करने की आवश्यकता है।<ref name=":1" /> | |||
प्रक्रिया इंजीनियरिंगअभियंता के क्षेत्र में मैन्युफैक्चरिंग में प्रक्रिया सिंथेसिस स्टेप्स का कार्यान्वयन शामिल है।<ref>{{Cite journal|title=रासायनिक प्रक्रिया डिजाइन इंजीनियरिंग का अवलोकन|last=Mody|first=David|journal=Proceedings of the Canadian Engineering Education Association |year=2011|s2cid=109260579|doi=10.24908/pceea.v0i0.3824|doi-access=free}}</ref> सटीक उपकरण की आवश्यकता के बावजूद, प्रक्रिया इंजीनियरिंगअभियंता को प्रक्रिया प्रवाह आरेख (पीएफडी) के उपयोग के माध्यम से स्वरूपित किया जाता है जहां सामग्री प्रवाह पथ, भंडारण उपकरण (जैसे टैंक और साइलो), परिवर्तन (जैसे आसवन कॉलम, रिसीवर / हेड टैंक, मिश्रण, पृथक्करण, पम्पिंग, आदि) और प्रवाह माप निर्दिष्ट हैं, साथ ही साथ सभी पाइपों और कन्वेयर और उनकी सामग्री, भौतिक गुण जैसे [[घनत्व]], चिपचिपाहट, कण-आकार वितरण, प्रवाह, दबाव, तापमान और सामग्री की सूची पाइपिंग और यूनिट संचालन के लिए निर्माण की।<ref name=":1" /> | |||
प्रक्रिया प्रवाह आरेख का उपयोग तब [[गरमा और इंस्ट्रूमेंटेशन आरेख]] (पी एंड आईडी) विकसित करने के लिए किया जाता है जो ग्राफिक रूप से होने वाली वास्तविक प्रक्रिया को प्रदर्शित करता है। P&ID को PFD की तुलना में अधिक जटिल और विशिष्ट होना चाहिए।<ref>{{Cite web|url=https://hardhatengineer.com/how-to-read-pid-pefs-drawings/|title=पी एंड आईडी आरेखण पढ़ना सीखें - एक पूर्ण मार्गदर्शिका|website=hardhatengineer.com|language=en-GB|access-date=2018-09-11}}</ref> वे डिजाइन के लिए कम गड़बड़ दृष्टिकोण का प्रतिनिधित्व करते हैं। P&ID का उपयोग तब सिस्टम ऑपरेशन गाइड या [[कार्यात्मक विनिर्देश]] विकसित करने के लिए डिजाइन के आधार के रूप में किया जाता है जो प्रक्रिया के संचालन की रूपरेखा तैयार करता है।<ref>{{Cite news|url=https://scottmanning.com/content/functional-design-specification/|title=कार्यात्मक डिजाइन विशिष्टता|date=2 April 2006|work=Historian on the Warpath|access-date=2018-09-11|language=en-US}}</ref> यह मशीनरी के संचालन, डिजाइन में सुरक्षा, प्रोग्रामिंग और इंजीनियरों के बीच प्रभावी संचार के माध्यम से प्रक्रिया का मार्गदर्शन करता है।<ref>{{Cite web|url=https://www.aiche.org/sites/default/files/docs/webinars/BarkelB-PIDs.pdf|title=पाइपिंग और इंस्ट्रूमेंट डायग्राम|last=Barkel|first=Barry M|website=AICHE|access-date=11 September 2019}}</ref> | प्रक्रिया प्रवाह आरेख का उपयोग तब [[गरमा और इंस्ट्रूमेंटेशन आरेख]] (पी एंड आईडी) विकसित करने के लिए किया जाता है जो ग्राफिक रूप से होने वाली वास्तविक प्रक्रिया को प्रदर्शित करता है। P&ID को PFD की तुलना में अधिक जटिल और विशिष्ट होना चाहिए।<ref>{{Cite web|url=https://hardhatengineer.com/how-to-read-pid-pefs-drawings/|title=पी एंड आईडी आरेखण पढ़ना सीखें - एक पूर्ण मार्गदर्शिका|website=hardhatengineer.com|language=en-GB|access-date=2018-09-11}}</ref> वे डिजाइन के लिए कम गड़बड़ दृष्टिकोण का प्रतिनिधित्व करते हैं। P&ID का उपयोग तब सिस्टम ऑपरेशन गाइड या [[कार्यात्मक विनिर्देश]] विकसित करने के लिए डिजाइन के आधार के रूप में किया जाता है जो प्रक्रिया के संचालन की रूपरेखा तैयार करता है।<ref>{{Cite news|url=https://scottmanning.com/content/functional-design-specification/|title=कार्यात्मक डिजाइन विशिष्टता|date=2 April 2006|work=Historian on the Warpath|access-date=2018-09-11|language=en-US}}</ref> यह मशीनरी के संचालन, डिजाइन में सुरक्षा, प्रोग्रामिंग और इंजीनियरों के बीच प्रभावी संचार के माध्यम से प्रक्रिया का मार्गदर्शन करता है।<ref>{{Cite web|url=https://www.aiche.org/sites/default/files/docs/webinars/BarkelB-PIDs.pdf|title=पाइपिंग और इंस्ट्रूमेंट डायग्राम|last=Barkel|first=Barry M|website=AICHE|access-date=11 September 2019}}</ref> | ||
पी एंड आईडी से, प्रक्रिया का प्रस्तावित लेआउट (सामान्य व्यवस्था) ओवरहेड व्यू ([[ भूखंड योजना ]]) और साइड व्यू (ऊंचाई) से दिखाया जा सकता है, और अन्य | पी एंड आईडी से, प्रक्रिया का प्रस्तावित लेआउट (सामान्य व्यवस्था) ओवरहेड व्यू ([[ भूखंड योजना ]]) और साइड व्यू (ऊंचाई) से दिखाया जा सकता है, और अन्य इंजीनियरिंगअभियंता विषयों जैसे कि साइट वर्क (धरती पर चलने) के लिए [[सिविल इंजीनियर]] शामिल हैं। , नींव डिजाइन, कंक्रीट स्लैब डिजाइन कार्य, उपकरण का समर्थन करने के लिए संरचनात्मक स्टील, आदि। पिछले सभी कार्य परियोजना के दायरे को परिभाषित करने के लिए निर्देशित हैं, फिर डिजाइन स्थापित करने के लिए लागत अनुमान विकसित करना, और समय की जरूरतों को संप्रेषित करने के लिए कार्यक्रम इंजीनियरिंगअभियंता, खरीद, निर्माण, स्थापना, कमीशनिंग, स्टार्टअप और प्रक्रिया के चल रहे उत्पादन के लिए। | ||
आवश्यक लागत अनुमान और शेड्यूल की आवश्यक सटीकता के आधार पर, डिज़ाइन के कई पुनरावृत्तियों को आम तौर पर ग्राहकों या हितधारकों को प्रदान किया जाता है जो उनकी आवश्यकताओं को पूरा करते हैं। | आवश्यक लागत अनुमान और शेड्यूल की आवश्यक सटीकता के आधार पर, डिज़ाइन के कई पुनरावृत्तियों को आम तौर पर ग्राहकों या हितधारकों को प्रदान किया जाता है जो उनकी आवश्यकताओं को पूरा करते हैं। प्रक्रिया इंजीनियर इन अतिरिक्त निर्देशों (दायरे में संशोधन) को समग्र डिजाइन और अतिरिक्त लागत अनुमानों में शामिल करता है, और फंडिंग अनुमोदन के लिए कार्यक्रम विकसित किए जाते हैं। वित्त पोषण अनुमोदन के बाद, परियोजना को [[परियोजना प्रबंधन]] के माध्यम से निष्पादित किया जाता है।<ref>{{Cite book|title=इंजीनियरिंग प्रक्रियाओं की मॉडलिंग और प्रबंधन|date=2010|publisher=Springer|others=Heisig, Peter, 1962-, Clarkson, John, 1961-, Vajna, S. (Sándor), 1952-|isbn=9781849961998|location=London|oclc=637120594}}</ref> | ||
== | == प्रक्रिया इंजीनियरिंगअभियंता में फोकस के प्रमुख क्षेत्र == | ||
प्रक्रिया | प्रक्रिया इंजीनियरिंगअभियंता गतिविधियों को निम्नलिखित विषयों में विभाजित किया जा सकता है:<ref name="cmu">[http://egon.cheme.cmu.edu/Papers/GrossmannWestChall.pdf Research Challenges in Process Systems Engineering] by Ignacio E. Grossmann and Arthur W. Westerberg, Department of Chemical Engineering at Carnegie Mellon University in Pittsburgh, PA</ref> | ||
*[[प्रक्रिया डिजाइन]]: [[ऊर्जा पुनःप्राप्ति]] नेटवर्क का संश्लेषण, [[ आसवन |आसवन]] सिस्टम का संश्लेषण ([[Azeotrope]]), रिएक्टर नेटवर्क का संश्लेषण, श्रेणीबद्ध अपघटन फ़्लोशीट्स, अधिरचना अनुकूलन, डिज़ाइन मल्टीप्रोडक्ट बैच प्लांट, प्लूटोनियम के उत्पादन के लिए उत्पादन रिएक्टरों का डिज़ाइन, परमाणु पनडुब्बियों का डिज़ाइन . | *[[प्रक्रिया डिजाइन]]: [[ऊर्जा पुनःप्राप्ति]] नेटवर्क का संश्लेषण, [[ आसवन |आसवन]] सिस्टम का संश्लेषण ([[Azeotrope]]), रिएक्टर नेटवर्क का संश्लेषण, श्रेणीबद्ध अपघटन फ़्लोशीट्स, अधिरचना अनुकूलन, डिज़ाइन मल्टीप्रोडक्ट बैच प्लांट, प्लूटोनियम के उत्पादन के लिए उत्पादन रिएक्टरों का डिज़ाइन, परमाणु पनडुब्बियों का डिज़ाइन . | ||
*[[प्रक्रिया नियंत्रण]]: मॉडल भविष्य कहनेवाला नियंत्रण, नियंत्रणीयता के उपाय, मजबूत नियंत्रण, अरैखिक नियंत्रण, सांख्यिकीय प्रक्रिया नियंत्रण, प्रक्रिया की निगरानी, [[ऊष्मप्रवैगिकी]]-आधारित नियंत्रण, तीन आवश्यक वस्तुओं द्वारा निरूपित, माप का संग्रह, माप लेने की विधि और नियंत्रण की प्रणाली वांछित माप।<ref>{{Cite book|chapter-url=http://www.thermopedia.com/content/1060/|chapter=Process Control|last=Kershenbaum|first=L.S.|title=ऊष्मप्रवैगिकी, ऊष्मा और द्रव्यमान स्थानांतरण, और तरल पदार्थ इंजीनियरिंग के लिए ए-टू-जेड गाइड|website=Thermopedia|year=2006|doi=10.1615/AtoZ.p.process_control|isbn=0-8493-9356-6|access-date=15 September 2019}}</ref> | *[[प्रक्रिया नियंत्रण]]: मॉडल भविष्य कहनेवाला नियंत्रण, नियंत्रणीयता के उपाय, मजबूत नियंत्रण, अरैखिक नियंत्रण, सांख्यिकीय प्रक्रिया नियंत्रण, प्रक्रिया की निगरानी, [[ऊष्मप्रवैगिकी]]-आधारित नियंत्रण, तीन आवश्यक वस्तुओं द्वारा निरूपित, माप का संग्रह, माप लेने की विधि और नियंत्रण की प्रणाली वांछित माप।<ref>{{Cite book|chapter-url=http://www.thermopedia.com/content/1060/|chapter=Process Control|last=Kershenbaum|first=L.S.|title=ऊष्मप्रवैगिकी, ऊष्मा और द्रव्यमान स्थानांतरण, और तरल पदार्थ इंजीनियरिंग के लिए ए-टू-जेड गाइड|website=Thermopedia|year=2006|doi=10.1615/AtoZ.p.process_control|isbn=0-8493-9356-6|access-date=15 September 2019}}</ref> | ||
*यूनिट प्रक्रिया: शेड्यूलिंग प्रक्रिया नेटवर्क, मल्टीपीरियोड प्लानिंग और ऑप्टिमाइज़ेशन, डेटा सामंजस्य, रीयल-टाइम ऑप्टिमाइज़ेशन, लचीलेपन के उपाय, दोष निदान। | *यूनिट प्रक्रिया: शेड्यूलिंग प्रक्रिया नेटवर्क, मल्टीपीरियोड प्लानिंग और ऑप्टिमाइज़ेशन, डेटा सामंजस्य, रीयल-टाइम ऑप्टिमाइज़ेशन, लचीलेपन के उपाय, दोष निदान। | ||
* सहायक उपकरण: अनुक्रमिक मॉड्यूलर सिमुलेशन, समीकरण-आधारित प्रक्रिया सिमुलेशन, [[ कृत्रिम होशियारी |कृत्रिम होशियारी]] / विशेषज्ञ सिस्टम, बड़े पैमाने पर गैर-रैखिक प्रोग्रामिंग (एनएलपी), अंतर बीजगणितीय समीकरणों (डीएई) का अनुकूलन, मिश्रित-पूर्णांक गैर-रैखिक प्रोग्रामिंग (एमआईएनएलपी),<ref>{{Cite journal|title=Mixed-integer nonlinear programming 2018|journal=Optimization and Engineering|volume=20|issue=2|pages=301–306|last=Sahinidis|first=N.V|doi=10.1007/s11081-019-09438-1|year=2019|doi-access=free}}</ref> वैश्विक अनुकूलन, अनिश्चितता के तहत अनुकूलन,<ref>{{Cite journal |doi = 10.1016/j.compchemeng.2003.09.017|title = Optimization under uncertainty: State-of-the-art and opportunities|year = 2004|last1 = Sahinidis|first1 = Nikolaos V.|journal = Computers & Chemical Engineering|volume = 28|issue = 6–7|pages = 971–983}}</ref><ref>{{Cite journal |doi = 10.1016/j.compchemeng.2019.03.034|title = Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming|year = 2019|last1 = Ning|first1 = Chao|last2 = You|first2 = Fengqi|author-link2=Fengqi You|journal = Computers & Chemical Engineering|volume = 125|pages = 434–448|arxiv = 1904.01934|s2cid = 96440317}}</ref> और गुणवत्ता कार्य परिनियोजन (QFD)।<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/books/NBK22835/|title=Building a Better Delivery System: A New Engineering/Health Care Partnership|website=National Center for Biotechnology Information|access-date=15 September 2019}}</ref> | * सहायक उपकरण: अनुक्रमिक मॉड्यूलर सिमुलेशन, समीकरण-आधारित प्रक्रिया सिमुलेशन, [[ कृत्रिम होशियारी |कृत्रिम होशियारी]] / विशेषज्ञ सिस्टम, बड़े पैमाने पर गैर-रैखिक प्रोग्रामिंग (एनएलपी), अंतर बीजगणितीय समीकरणों (डीएई) का अनुकूलन, मिश्रित-पूर्णांक गैर-रैखिक प्रोग्रामिंग (एमआईएनएलपी),<ref>{{Cite journal|title=Mixed-integer nonlinear programming 2018|journal=Optimization and Engineering|volume=20|issue=2|pages=301–306|last=Sahinidis|first=N.V|doi=10.1007/s11081-019-09438-1|year=2019|doi-access=free}}</ref> वैश्विक अनुकूलन, अनिश्चितता के तहत अनुकूलन,<ref>{{Cite journal |doi = 10.1016/j.compchemeng.2003.09.017|title = Optimization under uncertainty: State-of-the-art and opportunities|year = 2004|last1 = Sahinidis|first1 = Nikolaos V.|journal = Computers & Chemical Engineering|volume = 28|issue = 6–7|pages = 971–983}}</ref><ref>{{Cite journal |doi = 10.1016/j.compchemeng.2019.03.034|title = Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming|year = 2019|last1 = Ning|first1 = Chao|last2 = You|first2 = Fengqi|author-link2=Fengqi You|journal = Computers & Chemical Engineering|volume = 125|pages = 434–448|arxiv = 1904.01934|s2cid = 96440317}}</ref> और गुणवत्ता कार्य परिनियोजन (QFD)।<ref>{{Cite web|url=https://www.ncbi.nlm.nih.gov/books/NBK22835/|title=Building a Better Delivery System: A New Engineering/Health Care Partnership|website=National Center for Biotechnology Information|access-date=15 September 2019}}</ref> | ||
* प्रक्रिया अर्थशास्त्र:<ref name=":0">{{Cite book|title=प्रक्रिया इंजीनियरिंग अर्थशास्त्र|last=R.|first=Couper, James|date=2003|publisher=Marcel Dekker|isbn=0824756371|location=New York|oclc=53905871}}</ref> इसमें एएसपीईएन, सुपर-प्रो जैसे सिमुलेशन सॉफ़्टवेयर का उपयोग ब्रेक ईवन बिंदु, शुद्ध वर्तमान मूल्य, सीमांत बिक्री, सीमांत लागत, औद्योगिक संयंत्र के निवेश पर वापसी और संयंत्र के बड़े पैमाने पर हस्तांतरण के विश्लेषण के बाद पता लगाने के लिए शामिल है।<ref name=":0" />* | * प्रक्रिया अर्थशास्त्र:<ref name=":0">{{Cite book|title=प्रक्रिया इंजीनियरिंग अर्थशास्त्र|last=R.|first=Couper, James|date=2003|publisher=Marcel Dekker|isbn=0824756371|location=New York|oclc=53905871}}</ref> इसमें एएसपीईएन, सुपर-प्रो जैसे सिमुलेशन सॉफ़्टवेयर का उपयोग ब्रेक ईवन बिंदु, शुद्ध वर्तमान मूल्य, सीमांत बिक्री, सीमांत लागत, औद्योगिक संयंत्र के निवेश पर वापसी और संयंत्र के बड़े पैमाने पर हस्तांतरण के विश्लेषण के बाद पता लगाने के लिए शामिल है।<ref name=":0" />*प्रक्रिया [[डेटा विश्लेषण]]: प्रक्रिया निर्माण समस्याओं के लिए डेटा एनालिटिक्स और [[ यंत्र अधिगम |यंत्र अधिगम]] विधियों को लागू करना।<ref>{{Cite web|url=https://www.mdpi.com/journal/processes/special_issues/data_analytics|title = Processes}}</ref><ref>{{Cite journal |doi = 10.1016/j.eng.2019.01.019|title = Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era|year = 2019|last1 = Shang|first1 = Chao|last2 = You|first2 = Fengqi|author-link2=Fengqi You|journal = Engineering|volume = 5|issue = 6|pages = 1010–1016|doi-access = free}}</ref> | ||
== | == प्रक्रिया इंजीनियरिंगअभियंता का इतिहास == | ||
अनादि काल से औद्योगिक प्रक्रियाओं में विभिन्न रासायनिक तकनीकों का उपयोग किया जाता रहा है। हालांकि, 1780 के दशक में ऊष्मप्रवैगिकी के आगमन और द्रव्यमान के संरक्षण के कानून तक यह नहीं था कि प्रक्रिया | अनादि काल से औद्योगिक प्रक्रियाओं में विभिन्न रासायनिक तकनीकों का उपयोग किया जाता रहा है। हालांकि, 1780 के दशक में ऊष्मप्रवैगिकी के आगमन और द्रव्यमान के संरक्षण के कानून तक यह नहीं था कि प्रक्रिया इंजीनियरिंगअभियंता को अपने स्वयं के अनुशासन के रूप में ठीक से विकसित और कार्यान्वित किया गया था। ज्ञान का वह सेट जिसे अब प्रक्रिया इंजीनियरिंगअभियंता के रूप में जाना जाता है, तब पूरी औद्योगिक क्रांति के दौरान परीक्षण और त्रुटि से बना था।<ref name=":1" /> | ||
शब्द प्रक्रिया, जैसा कि यह उद्योग और उत्पादन से संबंधित है, 18 वीं शताब्दी की है। इस समय अवधि के दौरान, विभिन्न उत्पादों की मांग में भारी वृद्धि होने लगी, और प्रक्रिया इंजीनियरों को उस प्रक्रिया का अनुकूलन करने की आवश्यकता थी जिसमें ये उत्पाद बनाए गए थे। <ref name=":1">{{Cite book|title=प्रक्रिया इंजीनियरिंग और औद्योगिक प्रबंधन|date=2012|publisher=ISTE Ltd.|others=Dal Pont, Jean-Pierre.|isbn=9781118562130|location=London|oclc=830512387}}</ref> | शब्द प्रक्रिया, जैसा कि यह उद्योग और उत्पादन से संबंधित है, 18 वीं शताब्दी की है। इस समय अवधि के दौरान, विभिन्न उत्पादों की मांग में भारी वृद्धि होने लगी, और प्रक्रिया इंजीनियरों को उस प्रक्रिया का अनुकूलन करने की आवश्यकता थी जिसमें ये उत्पाद बनाए गए थे। <ref name=":1">{{Cite book|title=प्रक्रिया इंजीनियरिंग और औद्योगिक प्रबंधन|date=2012|publisher=ISTE Ltd.|others=Dal Pont, Jean-Pierre.|isbn=9781118562130|location=London|oclc=830512387}}</ref> | ||
1980 तक, | 1980 तक, प्रक्रिया इंजीनियरिंगअभियंता की अवधारणा इस तथ्य से उभरी कि विभिन्न प्रकार के उद्योगों में [[केमिकल इंजीनियरिंग|केमिकल इंजीनियरिंगअभियंता]] तकनीकों और प्रथाओं का उपयोग किया जा रहा था। इस समय तक, प्रक्रिया इंजीनियरिंगअभियंता को डिजाइन, विश्लेषण, विकास, निर्माण और संचालन के लिए आवश्यक ज्ञान के सेट के रूप में परिभाषित किया गया था, इष्टतम तरीके से, प्रक्रियाओं में सामग्री बदलती है।<ref name=":1"/>20वीं शताब्दी के अंत तक, [[उत्पाद अभियांत्रिकी]] का विस्तार केमिकल इंजीनियरिंगअभियंता-आधारित तकनीकों से [[धातुकर्म इंजीनियरिंग|धातुकर्म इंजीनियरिंगअभियंता]], [[कृषि इंजीनियरिंग|कृषि इंजीनियरिंगअभियंता]] और उत्पाद इंजीनियरिंगअभियंता सहित अन्य अनुप्रयोगों तक हो गया था। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 18:48, 6 April 2023
प्रक्रिया इंजीनियरिंगअभियंता मूलभूत सिद्धांतों और वैज्ञानिक कानून की समझ और अनुप्रयोग है जो मानव को कच्चे माल और ऊर्जा को [[उत्पादन (अर्थशास्त्र)]] में बदलने की अनुमति देता है जो समाज के लिए विनिर्माण में उपयोगी है।[1]दबाव प्रवणता, तापमान प्रवणता और सांद्रता प्रवणता, साथ ही द्रव्यमान के संरक्षण के नियम जैसे प्रकृति के प्रेरक बलों का लाभ उठाकर, प्रक्रिया इंजीनियर बड़ी मात्रा में वांछित रासायनिक उत्पादों को संश्लेषित और शुद्ध करने के तरीके विकसित कर सकते हैं।[1] प्रक्रिया इंजीनियरिंगअभियंता रासायनिक, भौतिक और जैविक प्रक्रियाओं के डिजाइन, संचालन, नियंत्रण, अनुकूलन और गहनता पर केंद्रित है। प्रक्रिया इंजीनियरिंगअभियंता में कृषि इंजीनियरिंगअभियंता, ऑटोमोटिव इंजीनियरिंगअभियंता, जैव प्रौद्योगिकी , केमिकल इंजीनियरिंगअभियंता, खाद्य अभियांत्रिकी , पदार्थ विज्ञान, खनन अभियांत्रिकी , नाभिकीय अभियांत्रिकी , पैट्रोलियम उद्योग , प्रक्रिया रसायन और कंप्यूटर प्रोग्रामिंग जैसे उद्योगों की विस्तृत श्रृंखला शामिल है। प्रक्रिया इंजीनियरिंगअभियंता के लिए व्यवस्थित कंप्यूटर-आधारित विधियों का अनुप्रयोग प्रक्रिया सिस्टम इंजीनियरिंगअभियंता है।
सिंहावलोकन
प्रक्रिया इंजीनियरिंगअभियंता में कई उपकरणों और विधियों का उपयोग शामिल है। सिस्टम की सटीक प्रकृति के आधार पर, गणित और कंप्यूटर विज्ञान का उपयोग करके प्रक्रियाओं को अनुकरण और मॉडलिंग करने की आवश्यकता होती है। प्रक्रियाएं जहां चरण परिवर्तन और चरण संतुलन प्रासंगिक हैं, ऊर्जा और दक्षता में परिवर्तनों को मापने के लिए थर्मोडायनामिक्स के सिद्धांतों और कानूनों का उपयोग करके विश्लेषण की आवश्यकता होती है। इसके विपरीत, ऐसी प्रक्रियाएँ जो सामग्री और ऊर्जा के प्रवाह पर ध्यान केंद्रित करती हैं, क्योंकि वे संतुलन तक पहुँचती हैं, द्रव यांत्रिकी और परिवहन घटना के विषयों का उपयोग करके सबसे अच्छा विश्लेषण किया जाता है। यांत्रिकी के क्षेत्र में अनुशासन को तरल पदार्थ या झरझरा और छितरी हुई मीडिया की उपस्थिति में लागू करने की आवश्यकता है। प्रासंगिक होने पर सामग्री इंजीनियरिंगअभियंता सिद्धांतों को भी लागू करने की आवश्यकता है।[1]
प्रक्रिया इंजीनियरिंगअभियंता के क्षेत्र में मैन्युफैक्चरिंग में प्रक्रिया सिंथेसिस स्टेप्स का कार्यान्वयन शामिल है।[2] सटीक उपकरण की आवश्यकता के बावजूद, प्रक्रिया इंजीनियरिंगअभियंता को प्रक्रिया प्रवाह आरेख (पीएफडी) के उपयोग के माध्यम से स्वरूपित किया जाता है जहां सामग्री प्रवाह पथ, भंडारण उपकरण (जैसे टैंक और साइलो), परिवर्तन (जैसे आसवन कॉलम, रिसीवर / हेड टैंक, मिश्रण, पृथक्करण, पम्पिंग, आदि) और प्रवाह माप निर्दिष्ट हैं, साथ ही साथ सभी पाइपों और कन्वेयर और उनकी सामग्री, भौतिक गुण जैसे घनत्व, चिपचिपाहट, कण-आकार वितरण, प्रवाह, दबाव, तापमान और सामग्री की सूची पाइपिंग और यूनिट संचालन के लिए निर्माण की।[1]
प्रक्रिया प्रवाह आरेख का उपयोग तब गरमा और इंस्ट्रूमेंटेशन आरेख (पी एंड आईडी) विकसित करने के लिए किया जाता है जो ग्राफिक रूप से होने वाली वास्तविक प्रक्रिया को प्रदर्शित करता है। P&ID को PFD की तुलना में अधिक जटिल और विशिष्ट होना चाहिए।[3] वे डिजाइन के लिए कम गड़बड़ दृष्टिकोण का प्रतिनिधित्व करते हैं। P&ID का उपयोग तब सिस्टम ऑपरेशन गाइड या कार्यात्मक विनिर्देश विकसित करने के लिए डिजाइन के आधार के रूप में किया जाता है जो प्रक्रिया के संचालन की रूपरेखा तैयार करता है।[4] यह मशीनरी के संचालन, डिजाइन में सुरक्षा, प्रोग्रामिंग और इंजीनियरों के बीच प्रभावी संचार के माध्यम से प्रक्रिया का मार्गदर्शन करता है।[5] पी एंड आईडी से, प्रक्रिया का प्रस्तावित लेआउट (सामान्य व्यवस्था) ओवरहेड व्यू (भूखंड योजना ) और साइड व्यू (ऊंचाई) से दिखाया जा सकता है, और अन्य इंजीनियरिंगअभियंता विषयों जैसे कि साइट वर्क (धरती पर चलने) के लिए सिविल इंजीनियर शामिल हैं। , नींव डिजाइन, कंक्रीट स्लैब डिजाइन कार्य, उपकरण का समर्थन करने के लिए संरचनात्मक स्टील, आदि। पिछले सभी कार्य परियोजना के दायरे को परिभाषित करने के लिए निर्देशित हैं, फिर डिजाइन स्थापित करने के लिए लागत अनुमान विकसित करना, और समय की जरूरतों को संप्रेषित करने के लिए कार्यक्रम इंजीनियरिंगअभियंता, खरीद, निर्माण, स्थापना, कमीशनिंग, स्टार्टअप और प्रक्रिया के चल रहे उत्पादन के लिए।
आवश्यक लागत अनुमान और शेड्यूल की आवश्यक सटीकता के आधार पर, डिज़ाइन के कई पुनरावृत्तियों को आम तौर पर ग्राहकों या हितधारकों को प्रदान किया जाता है जो उनकी आवश्यकताओं को पूरा करते हैं। प्रक्रिया इंजीनियर इन अतिरिक्त निर्देशों (दायरे में संशोधन) को समग्र डिजाइन और अतिरिक्त लागत अनुमानों में शामिल करता है, और फंडिंग अनुमोदन के लिए कार्यक्रम विकसित किए जाते हैं। वित्त पोषण अनुमोदन के बाद, परियोजना को परियोजना प्रबंधन के माध्यम से निष्पादित किया जाता है।[6]
प्रक्रिया इंजीनियरिंगअभियंता में फोकस के प्रमुख क्षेत्र
प्रक्रिया इंजीनियरिंगअभियंता गतिविधियों को निम्नलिखित विषयों में विभाजित किया जा सकता है:[7]
- प्रक्रिया डिजाइन: ऊर्जा पुनःप्राप्ति नेटवर्क का संश्लेषण, आसवन सिस्टम का संश्लेषण (Azeotrope), रिएक्टर नेटवर्क का संश्लेषण, श्रेणीबद्ध अपघटन फ़्लोशीट्स, अधिरचना अनुकूलन, डिज़ाइन मल्टीप्रोडक्ट बैच प्लांट, प्लूटोनियम के उत्पादन के लिए उत्पादन रिएक्टरों का डिज़ाइन, परमाणु पनडुब्बियों का डिज़ाइन .
- प्रक्रिया नियंत्रण: मॉडल भविष्य कहनेवाला नियंत्रण, नियंत्रणीयता के उपाय, मजबूत नियंत्रण, अरैखिक नियंत्रण, सांख्यिकीय प्रक्रिया नियंत्रण, प्रक्रिया की निगरानी, ऊष्मप्रवैगिकी-आधारित नियंत्रण, तीन आवश्यक वस्तुओं द्वारा निरूपित, माप का संग्रह, माप लेने की विधि और नियंत्रण की प्रणाली वांछित माप।[8]
- यूनिट प्रक्रिया: शेड्यूलिंग प्रक्रिया नेटवर्क, मल्टीपीरियोड प्लानिंग और ऑप्टिमाइज़ेशन, डेटा सामंजस्य, रीयल-टाइम ऑप्टिमाइज़ेशन, लचीलेपन के उपाय, दोष निदान।
- सहायक उपकरण: अनुक्रमिक मॉड्यूलर सिमुलेशन, समीकरण-आधारित प्रक्रिया सिमुलेशन, कृत्रिम होशियारी / विशेषज्ञ सिस्टम, बड़े पैमाने पर गैर-रैखिक प्रोग्रामिंग (एनएलपी), अंतर बीजगणितीय समीकरणों (डीएई) का अनुकूलन, मिश्रित-पूर्णांक गैर-रैखिक प्रोग्रामिंग (एमआईएनएलपी),[9] वैश्विक अनुकूलन, अनिश्चितता के तहत अनुकूलन,[10][11] और गुणवत्ता कार्य परिनियोजन (QFD)।[12]
- प्रक्रिया अर्थशास्त्र:[13] इसमें एएसपीईएन, सुपर-प्रो जैसे सिमुलेशन सॉफ़्टवेयर का उपयोग ब्रेक ईवन बिंदु, शुद्ध वर्तमान मूल्य, सीमांत बिक्री, सीमांत लागत, औद्योगिक संयंत्र के निवेश पर वापसी और संयंत्र के बड़े पैमाने पर हस्तांतरण के विश्लेषण के बाद पता लगाने के लिए शामिल है।[13]*प्रक्रिया डेटा विश्लेषण: प्रक्रिया निर्माण समस्याओं के लिए डेटा एनालिटिक्स और यंत्र अधिगम विधियों को लागू करना।[14][15]
प्रक्रिया इंजीनियरिंगअभियंता का इतिहास
अनादि काल से औद्योगिक प्रक्रियाओं में विभिन्न रासायनिक तकनीकों का उपयोग किया जाता रहा है। हालांकि, 1780 के दशक में ऊष्मप्रवैगिकी के आगमन और द्रव्यमान के संरक्षण के कानून तक यह नहीं था कि प्रक्रिया इंजीनियरिंगअभियंता को अपने स्वयं के अनुशासन के रूप में ठीक से विकसित और कार्यान्वित किया गया था। ज्ञान का वह सेट जिसे अब प्रक्रिया इंजीनियरिंगअभियंता के रूप में जाना जाता है, तब पूरी औद्योगिक क्रांति के दौरान परीक्षण और त्रुटि से बना था।[1]
शब्द प्रक्रिया, जैसा कि यह उद्योग और उत्पादन से संबंधित है, 18 वीं शताब्दी की है। इस समय अवधि के दौरान, विभिन्न उत्पादों की मांग में भारी वृद्धि होने लगी, और प्रक्रिया इंजीनियरों को उस प्रक्रिया का अनुकूलन करने की आवश्यकता थी जिसमें ये उत्पाद बनाए गए थे। [1] 1980 तक, प्रक्रिया इंजीनियरिंगअभियंता की अवधारणा इस तथ्य से उभरी कि विभिन्न प्रकार के उद्योगों में केमिकल इंजीनियरिंगअभियंता तकनीकों और प्रथाओं का उपयोग किया जा रहा था। इस समय तक, प्रक्रिया इंजीनियरिंगअभियंता को डिजाइन, विश्लेषण, विकास, निर्माण और संचालन के लिए आवश्यक ज्ञान के सेट के रूप में परिभाषित किया गया था, इष्टतम तरीके से, प्रक्रियाओं में सामग्री बदलती है।[1]20वीं शताब्दी के अंत तक, उत्पाद अभियांत्रिकी का विस्तार केमिकल इंजीनियरिंगअभियंता-आधारित तकनीकों से धातुकर्म इंजीनियरिंगअभियंता, कृषि इंजीनियरिंगअभियंता और उत्पाद इंजीनियरिंगअभियंता सहित अन्य अनुप्रयोगों तक हो गया था।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 प्रक्रिया इंजीनियरिंग और औद्योगिक प्रबंधन. Dal Pont, Jean-Pierre. London: ISTE Ltd. 2012. ISBN 9781118562130. OCLC 830512387.
{{cite book}}
: CS1 maint: others (link) - ↑ Mody, David (2011). "रासायनिक प्रक्रिया डिजाइन इंजीनियरिंग का अवलोकन". Proceedings of the Canadian Engineering Education Association. doi:10.24908/pceea.v0i0.3824. S2CID 109260579.
- ↑ "पी एंड आईडी आरेखण पढ़ना सीखें - एक पूर्ण मार्गदर्शिका". hardhatengineer.com (in British English). Retrieved 2018-09-11.
- ↑ "कार्यात्मक डिजाइन विशिष्टता". Historian on the Warpath (in English). 2 April 2006. Retrieved 2018-09-11.
- ↑ Barkel, Barry M. "पाइपिंग और इंस्ट्रूमेंट डायग्राम" (PDF). AICHE. Retrieved 11 September 2019.
- ↑ इंजीनियरिंग प्रक्रियाओं की मॉडलिंग और प्रबंधन. Heisig, Peter, 1962-, Clarkson, John, 1961-, Vajna, S. (Sándor), 1952-. London: Springer. 2010. ISBN 9781849961998. OCLC 637120594.
{{cite book}}
: CS1 maint: others (link) - ↑ Research Challenges in Process Systems Engineering by Ignacio E. Grossmann and Arthur W. Westerberg, Department of Chemical Engineering at Carnegie Mellon University in Pittsburgh, PA
- ↑ Kershenbaum, L.S. (2006). "Process Control". ऊष्मप्रवैगिकी, ऊष्मा और द्रव्यमान स्थानांतरण, और तरल पदार्थ इंजीनियरिंग के लिए ए-टू-जेड गाइड. doi:10.1615/AtoZ.p.process_control. ISBN 0-8493-9356-6. Retrieved 15 September 2019.
{{cite book}}
:|website=
ignored (help) - ↑ Sahinidis, N.V (2019). "Mixed-integer nonlinear programming 2018". Optimization and Engineering. 20 (2): 301–306. doi:10.1007/s11081-019-09438-1.
- ↑ Sahinidis, Nikolaos V. (2004). "Optimization under uncertainty: State-of-the-art and opportunities". Computers & Chemical Engineering. 28 (6–7): 971–983. doi:10.1016/j.compchemeng.2003.09.017.
- ↑ Ning, Chao; You, Fengqi (2019). "Optimization under uncertainty in the era of big data and deep learning: When machine learning meets mathematical programming". Computers & Chemical Engineering. 125: 434–448. arXiv:1904.01934. doi:10.1016/j.compchemeng.2019.03.034. S2CID 96440317.
- ↑ "Building a Better Delivery System: A New Engineering/Health Care Partnership". National Center for Biotechnology Information. Retrieved 15 September 2019.
- ↑ 13.0 13.1 R., Couper, James (2003). प्रक्रिया इंजीनियरिंग अर्थशास्त्र. New York: Marcel Dekker. ISBN 0824756371. OCLC 53905871.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ "Processes".
- ↑ Shang, Chao; You, Fengqi (2019). "Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era". Engineering. 5 (6): 1010–1016. doi:10.1016/j.eng.2019.01.019.
बाहरी संबंध
- Advanced Process Engineering at Cranfield University (Cranfield, UK)
- Centre for Process Systems Engineering (Imperial)
- Process Systems Engineering at Cornell University (Ithaca, New York)
- Department of Process Engineering at Stellenbosch University
- Process Research and Intelligent Systems Modeling (PRISM) group at BYU
- Process Systems Engineering at CMU
- Process Systems Engineering Laboratory at RWTH Aachen
- The Process Systems Engineering Laboratory (MIT)
- Research Challenges in Process Systems Engineering by Ignacio E. Grossmann and Arthur W. Westerberg
- Advanced Process Engineering Consulting at Canada