मानक रैखिक ठोस प्रतिमान: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{refimprove|date=April 2017}} | {{refimprove|date=April 2017}} | ||
मानक रैखिक ठोस (एसएलएस), जिसे जेनर मॉडल के रूप में भी जाना जाता है, क्रमशः प्रत्यास्थ और चिपचिपे घटकों का प्रतिनिधित्व करने के लिए स्प्रिंग्स और डैशपॉट के रैखिक संयोजन का उपयोग करके शयन प्रत्यास्थ द्रव्य के व्यवहार को मॉडलिंग करने की विधि है। अधिकांशतः, सरल [[मैक्सवेल सामग्री|मैक्सवेल द्रव्य]] और केल्विन-वोइग द्रव्य है | केल्विन-वोइगट मॉडल का उपयोग किया जाता है। | मानक रैखिक ठोस (एसएलएस), जिसे जेनर मॉडल के रूप में भी जाना जाता है, क्रमशः प्रत्यास्थ और चिपचिपे घटकों का प्रतिनिधित्व करने के लिए स्प्रिंग्स और डैशपॉट के रैखिक संयोजन का उपयोग करके शयन प्रत्यास्थ द्रव्य के व्यवहार को मॉडलिंग करने की विधि है। अधिकांशतः, सरल [[मैक्सवेल सामग्री|मैक्सवेल द्रव्य]] और केल्विन-वोइग द्रव्य है | केल्विन-वोइगट मॉडल का उपयोग किया जाता है। चूँकि, ये मॉडल अधिकांशतः अपर्याप्त प्रमाणित होते हैं; मैक्सवेल मॉडल क्रीप या पुनः सही होने का वर्णन नहीं करता है, और केल्विन-वोइगट मॉडल प्रतिबल विश्रांति का वर्णन नहीं करता है। एसएलएस सबसे सरल मॉडल है जो दोनों घटनाओं के बारे में बताता है। | ||
== परिभाषा == | == परिभाषा == |
Revision as of 00:52, 29 March 2023
This article needs additional citations for verification. (April 2017) (Learn how and when to remove this template message) |
मानक रैखिक ठोस (एसएलएस), जिसे जेनर मॉडल के रूप में भी जाना जाता है, क्रमशः प्रत्यास्थ और चिपचिपे घटकों का प्रतिनिधित्व करने के लिए स्प्रिंग्स और डैशपॉट के रैखिक संयोजन का उपयोग करके शयन प्रत्यास्थ द्रव्य के व्यवहार को मॉडलिंग करने की विधि है। अधिकांशतः, सरल मैक्सवेल द्रव्य और केल्विन-वोइग द्रव्य है | केल्विन-वोइगट मॉडल का उपयोग किया जाता है। चूँकि, ये मॉडल अधिकांशतः अपर्याप्त प्रमाणित होते हैं; मैक्सवेल मॉडल क्रीप या पुनः सही होने का वर्णन नहीं करता है, और केल्विन-वोइगट मॉडल प्रतिबल विश्रांति का वर्णन नहीं करता है। एसएलएस सबसे सरल मॉडल है जो दोनों घटनाओं के बारे में बताता है।
परिभाषा
तनाव से गुजरने वाली सामग्री को अक्सर यांत्रिक घटकों के साथ तैयार किया जाता है, जैसे स्प्रिंग (डिवाइस) #भौतिकी (रिस्टोरेटिव फोर्स कंपोनेंट) और डैशपोट्स (डैम्पिंग कंपोनेंट)।
एक स्प्रिंग और डैम्पर को श्रृंखला में जोड़ने से मैक्सवेल सामग्री का एक मॉडल प्राप्त होता है जबकि एक स्प्रिंग और डैम्पर को समानांतर में जोड़ने से केल्विन-वोइग सामग्री का एक मॉडल प्राप्त होता है।[1] मैक्सवेल और केल्विन-वोइग मॉडल के विपरीत, एसएलएस थोड़ा अधिक जटिल है, जिसमें श्रृंखला और समानांतर दोनों में तत्व शामिल हैं। स्प्रिंग, जो विस्कोलेस्टिक सामग्री के लोचदार घटक का प्रतिनिधित्व करते हैं, हुक के नियम का पालन करते हैं:
जहां σ अनुप्रयुक्त प्रतिबल है, E पदार्थ का यंग गुणांक है, और ε विकृति है। वसंत मॉडल की प्रतिक्रिया के लोचदार घटक का प्रतिनिधित्व करता है।[1]
डैशपॉट विस्कोलेस्टिक सामग्री के चिपचिपे घटक का प्रतिनिधित्व करते हैं। इन तत्वों में, तनाव के परिवर्तन की समय दर के साथ लागू तनाव भिन्न होता है:
जहां η डैशपॉट घटक की चिपचिपाहट है।
मॉडल को हल करना
इस प्रणाली को मॉडल करने के लिए, निम्नलिखित भौतिक संबंधों को महसूस किया जाना चाहिए:
समानांतर घटकों के लिए: , और .[1]
श्रृंखला घटकों के लिए: , और .[1]
मैक्सवेल प्रतिनिधित्व
इस मॉडल में समानांतर में दो सिस्टम होते हैं। पहले, जिसे मैक्सवेल आर्म कहा जाता है, में एक स्प्रिंग () और डैशपॉट (विस्कोसिटी ) शृंखला में।[1]दूसरी प्रणाली में केवल एक वसंत होता है ().
ये रिश्ते समग्र प्रणाली और मैक्सवेल शाखा में विभिन्न तनावों और तनावों को जोड़ने में मदद करते हैं:
जहां सबस्क्रिप्ट , , और क्रमशः मैक्सवेल, डैशपॉट, स्प्रिंग वन और स्प्रिंग टू को देखें।
वसंत और डैशपॉट तत्वों के लिए इन संबंधों, उनके समय के डेरिवेटिव और उपरोक्त तनाव-तनाव संबंधों का उपयोग करके, सिस्टम को निम्नानुसार मॉडल किया जा सकता है:
समीकरण को इस रूप में भी व्यक्त किया जा सकता है:
या, डॉट नोटेशन में:
विश्राम का समय, , प्रत्येक सामग्री के लिए अलग है और के बराबर है
केल्विन-वोइग प्रतिनिधित्व
इस मॉडल में श्रृंखला में दो सिस्टम होते हैं। पहले, जिसे केल्विन आर्म कहा जाता है, में एक स्प्रिंग () और डैशपॉट (विस्कोसिटी ) समानांतर में। दूसरी प्रणाली में केवल एक वसंत होता है ().
ये रिश्ते समग्र प्रणाली और केल्विन भुजा में विभिन्न तनावों और तनावों को जोड़ने में मदद करते हैं:
जहां सबस्क्रिप्ट , , ,और क्रमशः केल्विन, डैशपॉट, स्प्रिंग वन और स्प्रिंग टू को देखें।
वसंत और डैशपॉट तत्वों के लिए इन संबंधों, उनके समय के डेरिवेटिव और उपरोक्त तनाव-तनाव संबंधों का उपयोग करके, सिस्टम को निम्नानुसार मॉडल किया जा सकता है:
या, डॉट नोटेशन में:
मंदता समय, , प्रत्येक सामग्री के लिए अलग है और के बराबर है
मॉडल विशेषताएँ
मानक रैखिक ठोस मॉडल मैक्सवेल और केल्विन-वोइगट मॉडल के पहलुओं को जोड़ता है ताकि लोडिंग स्थितियों के दिए गए सेट के तहत सिस्टम के समग्र व्यवहार का सटीक वर्णन किया जा सके। तात्कालिक तनाव पर लागू सामग्री के व्यवहार को प्रतिक्रिया के तात्कालिक घटक के रूप में दिखाया गया है। तनाव के तात्कालिक विमोचन के परिणामस्वरूप भी तनाव में निरंतर कमी आती है, जैसा कि अपेक्षित है। समय-निर्भर तनाव वक्र का आकार उस प्रकार के समीकरण के लिए सही है जो समय के साथ मॉडल के व्यवहार को दर्शाता है, यह इस बात पर निर्भर करता है कि मॉडल कैसे लोड किया गया है।
हालांकि इस मॉडल का उपयोग तनाव वक्र के सामान्य आकार के साथ-साथ लंबे समय और तात्कालिक भार के लिए व्यवहार की सटीक भविष्यवाणी करने के लिए किया जा सकता है, मॉडल में संख्यात्मक रूप से सटीक रूप से मॉडल सामग्री प्रणालियों की क्षमता का अभाव है।
मानक रैखिक ठोस मॉडल के समतुल्य द्रव मॉडल में केल्विन-वोइगट मॉडल के साथ श्रृंखला में एक डैशपॉट शामिल है और इसे जेफ़रीज़ मॉडल कहा जाता है। [3]
यह भी देखें
- बर्गर सामग्री
- सामान्यीकृत मैक्सवेल मॉडल
- केल्विन–वोइगट सामग्री
- मैक्सवेल सामग्री
- विस्कोलोच
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 David Roylance, "Engineering Viscoelasticity" (October 24, 2001) http://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/MIT3_11F99_visco.pdf
- ↑ Krystyn J. Van Vliet, MIT course 3.032 Lecture, October 23, 2006 http://stellar.mit.edu/S/course/3/fa06/3.032/index.html
- ↑ Joseph, Daniel D. (2013-11-27). Viscoelastic तरल पदार्थ की द्रव गतिशीलता (in English). Springer Science & Business Media. ISBN 9781461244622.