फाइबर-ऑप्टिक जाइरोस्कोप: Difference between revisions

From Vigyanwiki
Line 2: Line 2:
[[File:fibre-optic-interferometer.svg|thumb|right|Sagnac व्यतिकरणमापी पर व्यतिकरण संलग्न क्षेत्र के समानुपाती होता है। एक लूप्ड फाइबर-ऑप्टिक कॉइल लूप की संख्या से प्रभावी क्षेत्र को गुणा करता है।]]फाइबर-प्रकाशिकी घूर्णदर्शी (एफओजी) सग्नक [[सग्नाक प्रभाव|प्रभाव]] का उपयोग करके अभिविन्यास में परिवर्तन को  समझता करता है, इस प्रकार यांत्रिक घूर्णदर्शी का कार्य करता है। चूँकि इसके संचालन का सिद्धांत इसके बदले प्रकाश के हस्तक्षेप (तरंग प्रसार) पर आधारित है जो [[प्रकाशित तंतु]] के एक तार से होकर गुजरा है, जो कि 5 किलोमीटर (3 मी.) जितना लंबा हो सकता है।  
[[File:fibre-optic-interferometer.svg|thumb|right|Sagnac व्यतिकरणमापी पर व्यतिकरण संलग्न क्षेत्र के समानुपाती होता है। एक लूप्ड फाइबर-ऑप्टिक कॉइल लूप की संख्या से प्रभावी क्षेत्र को गुणा करता है।]]फाइबर-प्रकाशिकी घूर्णदर्शी (एफओजी) सग्नक [[सग्नाक प्रभाव|प्रभाव]] का उपयोग करके अभिविन्यास में परिवर्तन को  समझता करता है, इस प्रकार यांत्रिक घूर्णदर्शी का कार्य करता है। चूँकि इसके संचालन का सिद्धांत इसके बदले प्रकाश के हस्तक्षेप (तरंग प्रसार) पर आधारित है जो [[प्रकाशित तंतु]] के एक तार से होकर गुजरा है, जो कि 5 किलोमीटर (3 मी.) जितना लंबा हो सकता है।  


== ऑपरेशन ==
== संचालन ==
एक लेज़र से दो बीम एक ही फाइबर में परन्तु विपरीत दिशाओं में भरे जाते हैं। सग्नक प्रभाव के कारण, घूर्णन के विरूद्ध चलने वाली बीम अन्य बीम की तुलना में थोड़ी कम पथ विलंब का अनुभव करती है। परिणामी अंतर चरण (तरंगों) को व्यतिकरणमिति (ऐसी तकनीक है जो सुचना निकलने के लिए आरोपित तरंगों के हस्तक्षेप का उपयोग करती है) के माध्यम से मापा जाता है, इस प्रकार [[कोणीय वेग]] के घटक को अवरोधी रूप में प्रतिस्थापित किया जाता है। फोटोमेट्रिक रूप से मापा जाता है।
एक लेज़र से दो बीम एक ही फाइबर में परन्तु विपरीत दिशाओं में भरे जाते हैं। सग्नक प्रभाव के कारण, घूर्णन के विरूद्ध चलने वाली बीम अन्य बीम की तुलना में थोड़ी कम पथ विलंब का अनुभव करती है। परिणामी अंतर चरण (तरंगों) को व्यतिकरणमिति (ऐसी तकनीक है जो सुचना निकलने के लिए आरोपित तरंगों के हस्तक्षेप का उपयोग करती है) के माध्यम से मापा जाता है, इस प्रकार [[कोणीय वेग]] के घटक को अवरोधी रूप में प्रतिस्थापित किया जाता है। फोटोमेट्रिक रूप से मापा जाता है।


Line 9: Line 9:


== लाभ ==
== लाभ ==
कंपन, त्वरण और झटके के लिए तिर्यक-अक्ष संवेदनशीलता की कमी के कारण, एफओजी अत्यंत सही घूर्णी दर की जानकारी प्रदान करता है। क्लासिक कताई-द्रव्यमान जाइरोस्कोप या गुंजयमान / यांत्रिक जाइरोस्कोप के विपरीत, FOG में कोई हिलता हुआ भाग नहीं होता है और यह गति के लिए जड़त्वीय प्रतिरोध पर निर्भर नहीं करता है। इसलिए, एफओजी मैकेनिकल जाइरोस्कोप का एक उत्कृष्ट विकल्प है। उनकी आंतरिक विश्वसनीयता और लंबे जीवनकाल के कारण, एफओजी का उपयोग उच्च प्रदर्शन वाले अंतरिक्ष अनुप्रयोगों के लिए किया जाता है <ref>{{Cite web | url=https://spaceequipment.airbusdefenceandspace.com/avionics/fiber-optic-gyroscopes/astrix-1000/ | title=Astrix® 1000}}</ref> और सैन्य जड़त्वीय नेविगेशन प्रणाली।
कंपन, त्वरण और झटके के लिए तिर्यक-अक्ष संवेदनशीलता की कमी के कारण, एफओजी अत्यंत सही घूर्णी दर की जानकारी प्रदान करता है। क्लासिक परचक्रण-द्रव्यमान जाइरोस्कोप (घूर्णदर्शी) या प्रतिध्वनि / यांत्रिक जाइरोस्कोप (घूर्णदर्शी) के विपरीत, एफओजी में कोई हिलता हुआ भाग नहीं होता है और यह गति के लिए जड़त्वीय प्रतिरोध पर निर्भर नहीं करता है। इसलिए, एफओजी यांत्रिक घूर्णदर्शी का उत्कृष्ट विकल्प है। उनकी आंतरिक विश्वसनीयता और लंबे जीवनकाल के कारण, एफओजी का उपयोग उच्च प्रदर्शन वाले अंतरिक्ष अनुप्रयोगों के लिए किया जाता है <ref>{{Cite web | url=https://spaceequipment.airbusdefenceandspace.com/avionics/fiber-optic-gyroscopes/astrix-1000/ | title=Astrix® 1000}}</ref> और सैन्य जड़त्वीय मार्गदर्शन प्रणाली के लिए किया जाता है।


एफओजी आमतौर पर [[रिंग लेजर जाइरोस्कोप]] की तुलना में उच्च रिज़ॉल्यूशन दिखाता है।{{cn|date=October 2020}}
एफओजी सामान्यतौर पर [[रिंग लेजर जाइरोस्कोप|रिंग लेजर घूर्णदर्शी]] की तुलना में उच्च स्थिरता दिखाता है।


एफओजी को खुला[[ ओपन-लूप नियंत्रक |-लूप]] बंद-लूप विन्यास दोनों में कार्यान्वित किया जाता है।
एफओजी को खुला[[ ओपन-लूप नियंत्रक |-लूप]] बंद-लूप विन्यास दोनों में कार्यान्वित किया जाता है।
Line 18: Line 18:
अन्य सभी घूर्णदर्शी प्रौद्योगिकियों की तरह और विस्तृत एफओजी डिजाइन के आधार पर, एफओजी को प्रारंभिक अंशांकन की आवश्यकता हो सकती है (यह निर्धारित करना कि कौन सा संकेत शून्य कोणीय वेग से मिलता है)।
अन्य सभी घूर्णदर्शी प्रौद्योगिकियों की तरह और विस्तृत एफओजी डिजाइन के आधार पर, एफओजी को प्रारंभिक अंशांकन की आवश्यकता हो सकती है (यह निर्धारित करना कि कौन सा संकेत शून्य कोणीय वेग से मिलता है)।


कुछ एफओजी डिजाइन कुछ सिमा तक कंपन के प्रति संवेदनशील होते हैं।<ref>{{Cite journal | doi=10.1364/AO.56.003848| title=मास्किंग सिग्नल के साथ बेहतर अनुभवजन्य मोड अपघटन के आधार पर एफओजी कंपन त्रुटि के लिए निकालना और क्षतिपूर्ति करना| journal=Applied Optics| volume=56| issue=13| pages=3848–3856| year=2017| last1=Chen| first1=Xiyuan| last2=Wang| first2=Wei| pmid=28463278| bibcode=2017ApOpt..56.3848C}}</ref> चूँकि, जब बहु-अक्ष एफओजी और त्वरणमापी के साथ युग्मित और वैश्विक मार्गदर्शन उपग्रह प्रणाली (जीएनएसएस) डेटा के साथ संकरणित किया जाता है, तो प्रभाव कम हो जाता है, जिससे एफओजी प्रणाली उच्च झटके वाले वातावरण के लिए उपयुक्त हो जाता है, जिसमें 105mm और 155mm हॉवित्जर के लिए गन बिंदु पद्धति हैं।
कुछ एफओजी डिजाइन कुछ सिमा तक कंपन के प्रति संवेदनशील होते हैं।<ref>{{Cite journal | doi=10.1364/AO.56.003848| title=मास्किंग सिग्नल के साथ बेहतर अनुभवजन्य मोड अपघटन के आधार पर एफओजी कंपन त्रुटि के लिए निकालना और क्षतिपूर्ति करना| journal=Applied Optics| volume=56| issue=13| pages=3848–3856| year=2017| last1=Chen| first1=Xiyuan| last2=Wang| first2=Wei| pmid=28463278| bibcode=2017ApOpt..56.3848C}}</ref> चूँकि, जब बहु-अक्ष एफओजी और त्वरणमापी के साथ युग्मित और वैश्विक मार्गदर्शन उपग्रह प्रणाली (जीएनएसएस) डेटा के साथ संकरणित किया जाता है, तो प्रभाव कम हो जाता है, जिससे एफओजी प्रणाली उच्च झटके वाले वातावरण के लिए उपयुक्त हो जाता है, जिसमें 105mm और 155mm हॉवित्जर के लिए गन बिंदु पद्धति सम्मिलित हैं।


== यह भी देखें ==
== यह भी देखें ==
* [[रवैया और शीर्षक संदर्भ प्रणाली]]
* [[रवैया और शीर्षक संदर्भ प्रणाली]]
* [[गोलार्ध गुंजयमान यंत्र जाइरोस्कोप]]
* [[गोलार्ध गुंजयमान यंत्र जाइरोस्कोप|गोलार्ध प्रतिध्वनि यंत्र जाइरोस्कोप (घूर्णदर्शी)]]  
* [[जड़त्वीय माप की इकाई]]
* [[जड़त्वीय माप की इकाई]]
* [[जड़त्वीय नेविगेशन]]
* [[जड़त्वीय नेविगेशन|जड़त्वीय मार्गदर्शन]]  
* [[कंपन संरचना जाइरोस्कोप]]
* [[कंपन संरचना जाइरोस्कोप]] [[गोलार्ध गुंजयमान यंत्र जाइरोस्कोप|(घूर्णदर्शी)]]
* [[क्वांटम जाइरोस्कोप]]
* [[क्वांटम जाइरोस्कोप]] [[गोलार्ध गुंजयमान यंत्र जाइरोस्कोप|(घूर्णदर्शी)]]


==संदर्भ==
==संदर्भ==

Revision as of 21:23, 2 April 2023

Template:Unclear citation style

Sagnac व्यतिकरणमापी पर व्यतिकरण संलग्न क्षेत्र के समानुपाती होता है। एक लूप्ड फाइबर-ऑप्टिक कॉइल लूप की संख्या से प्रभावी क्षेत्र को गुणा करता है।

फाइबर-प्रकाशिकी घूर्णदर्शी (एफओजी) सग्नक प्रभाव का उपयोग करके अभिविन्यास में परिवर्तन को समझता करता है, इस प्रकार यांत्रिक घूर्णदर्शी का कार्य करता है। चूँकि इसके संचालन का सिद्धांत इसके बदले प्रकाश के हस्तक्षेप (तरंग प्रसार) पर आधारित है जो प्रकाशित तंतु के एक तार से होकर गुजरा है, जो कि 5 किलोमीटर (3 मी.) जितना लंबा हो सकता है।

संचालन

एक लेज़र से दो बीम एक ही फाइबर में परन्तु विपरीत दिशाओं में भरे जाते हैं। सग्नक प्रभाव के कारण, घूर्णन के विरूद्ध चलने वाली बीम अन्य बीम की तुलना में थोड़ी कम पथ विलंब का अनुभव करती है। परिणामी अंतर चरण (तरंगों) को व्यतिकरणमिति (ऐसी तकनीक है जो सुचना निकलने के लिए आरोपित तरंगों के हस्तक्षेप का उपयोग करती है) के माध्यम से मापा जाता है, इस प्रकार कोणीय वेग के घटक को अवरोधी रूप में प्रतिस्थापित किया जाता है। फोटोमेट्रिक रूप से मापा जाता है।

बीम विभाजन प्रकाशिकी लेजर डायोड (या अन्य लेजर प्रकाश स्रोत) से प्रकाश को दो तरंगों में विभाजित करता है जो प्रकाशिकी फाइबर के कई घुमावों से युक्त दक्षिणावर्त और वामावर्त दोनों दिशाओं में फैलता है। सग्नक प्रभाव की ताकत बंद प्रकाशिकी पथ के प्रभावी क्षेत्र पर निर्भर है: यह केवल लूप का ज्यामितीय क्षेत्र नहीं है, बल्कि कुण्डली में घुमावों की संख्या से भी बढ़ जाता है। एफओजी को 1976 में सबसे पहले वेली और शोरथिल ने प्रस्तावित किया था[1]। एफओजी या आईएफओजी और नई अवधारणा, निष्क्रिय रिंग प्रतिध्वनित यंत्र एफओजी, या आरएफओजी, दोनों निष्क्रिय व्यतिकरणमिति प्रकार का विकास दुनिया भर में कई कंपनियों और प्रतिष्ठानों में आगे बढ़ रहा है।[2]


लाभ

कंपन, त्वरण और झटके के लिए तिर्यक-अक्ष संवेदनशीलता की कमी के कारण, एफओजी अत्यंत सही घूर्णी दर की जानकारी प्रदान करता है। क्लासिक परचक्रण-द्रव्यमान जाइरोस्कोप (घूर्णदर्शी) या प्रतिध्वनि / यांत्रिक जाइरोस्कोप (घूर्णदर्शी) के विपरीत, एफओजी में कोई हिलता हुआ भाग नहीं होता है और यह गति के लिए जड़त्वीय प्रतिरोध पर निर्भर नहीं करता है। इसलिए, एफओजी यांत्रिक घूर्णदर्शी का उत्कृष्ट विकल्प है। उनकी आंतरिक विश्वसनीयता और लंबे जीवनकाल के कारण, एफओजी का उपयोग उच्च प्रदर्शन वाले अंतरिक्ष अनुप्रयोगों के लिए किया जाता है [3] और सैन्य जड़त्वीय मार्गदर्शन प्रणाली के लिए किया जाता है।

एफओजी सामान्यतौर पर रिंग लेजर घूर्णदर्शी की तुलना में उच्च स्थिरता दिखाता है।

एफओजी को खुला-लूप बंद-लूप विन्यास दोनों में कार्यान्वित किया जाता है।

नुकसान

अन्य सभी घूर्णदर्शी प्रौद्योगिकियों की तरह और विस्तृत एफओजी डिजाइन के आधार पर, एफओजी को प्रारंभिक अंशांकन की आवश्यकता हो सकती है (यह निर्धारित करना कि कौन सा संकेत शून्य कोणीय वेग से मिलता है)।

कुछ एफओजी डिजाइन कुछ सिमा तक कंपन के प्रति संवेदनशील होते हैं।[4] चूँकि, जब बहु-अक्ष एफओजी और त्वरणमापी के साथ युग्मित और वैश्विक मार्गदर्शन उपग्रह प्रणाली (जीएनएसएस) डेटा के साथ संकरणित किया जाता है, तो प्रभाव कम हो जाता है, जिससे एफओजी प्रणाली उच्च झटके वाले वातावरण के लिए उपयुक्त हो जाता है, जिसमें 105mm और 155mm हॉवित्जर के लिए गन बिंदु पद्धति सम्मिलित हैं।

यह भी देखें

संदर्भ

  1. Vali, V.; Shorthill, R. W. (1976). "फाइबर रिंग इंटरफेरोमीटर". Applied Optics. 15 (5): 1099–100. Bibcode:1976ApOpt..15.1099V. doi:10.1364/AO.15.001099. PMID 20165128.
  2. Lefèvre, Hervé (1993). फाइबर-ऑप्टिक जाइरोस्कोप. ARTECH HOUSE, INC. ISBN 0-89006-537-3.
  3. "Astrix® 1000".
  4. Chen, Xiyuan; Wang, Wei (2017). "मास्किंग सिग्नल के साथ बेहतर अनुभवजन्य मोड अपघटन के आधार पर एफओजी कंपन त्रुटि के लिए निकालना और क्षतिपूर्ति करना". Applied Optics. 56 (13): 3848–3856. Bibcode:2017ApOpt..56.3848C. doi:10.1364/AO.56.003848. PMID 28463278.


स्रोत

  • एंथनी लॉरेंस, आधुनिक जड़त्वीय प्रौद्योगिकी: नेविगेशन, मार्गदर्शन और नियंत्रण, स्प्रिंगर, अध्याय 11 और 12 (पृष्ठ 169-207), 1998। ISBN 0-387-98507-7.
  • Pavlath, G.A. (1994). "Fiber-optic gyroscopes". लियोस'94 की कार्यवाही. Vol. 2. pp. 237–238. doi:10.1109/LEOS.1994.586467. ISBN 0-7803-1470-0. S2CID 117215647.
  • आर.पी.जी. कोलिन्सन, इंट्रोडक्शन टू एवियोनिक्स सिस्टम्स, 2003 क्लूवर एकेडमिक पब्लिशर्स, बोस्टन। ISBN 1-4020-7278-3.
  • जोस मिगुएल लोपेज़-हिगुएर, फाइबर ऑप्टिक सेंसिंग टेक्नोलॉजी की हैंडबुक, 2000, जॉन विले एंड संस लिमिटेड।
  • हर्वे लेफ़ेवरे, द फ़ाइबर-ऑप्टिक गायरोस्कोप, 1993, आर्टेक हाउस। ISBN 0-89006-537-3.

श्रेणी:जाइरोस्कोप श्रेणी:फाइबर ऑप्टिक्स