परिबद्ध समारोह: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|A mathematical function the set of whose values are bounded}} {{More citations needed|date=September 2021}}Image:Bounded and unbounded functions.svg|righ...")
 
No edit summary
Line 1: Line 1:
{{Short description|A mathematical function the set of whose values are bounded}}
{{Short description|A mathematical function the set of whose values are bounded}}[[Image:Bounded and unbounded functions.svg|right|thumb|एक बंधे हुए फ़ंक्शन (लाल) और एक असीमित एक (नीला) का एक योजनाबद्ध चित्रण। सहज रूप से, एक बंधे हुए फ़ंक्शन का ग्राफ़ एक क्षैतिज बैंड के भीतर रहता है, जबकि एक अनबाउंड फ़ंक्शन का ग्राफ़ नहीं होता है।]]गणित में, एक फ़ंक्शन (गणित) f को कुछ [[सेट (गणित)]] X पर [[वास्तविक संख्या]] या [[जटिल संख्या]] मानों के साथ परिभाषित किया जाता है, जिसे 'परिबद्ध' कहा जाता है यदि इसके मानों का सेट परिबद्ध सेट है। दूसरे शब्दों में, एक वास्तविक संख्या M का अस्तित्व है जैसे कि
{{More citations needed|date=September 2021}}[[Image:Bounded and unbounded functions.svg|right|thumb|एक बंधे हुए फ़ंक्शन (लाल) और एक असीमित एक (नीला) का एक योजनाबद्ध चित्रण। सहज रूप से, एक बंधे हुए फ़ंक्शन का ग्राफ़ एक क्षैतिज बैंड के भीतर रहता है, जबकि एक अनबाउंड फ़ंक्शन का ग्राफ़ नहीं होता है।]]गणित में, एक फ़ंक्शन (गणित) f को कुछ [[सेट (गणित)]] X पर [[वास्तविक संख्या]] या [[जटिल संख्या]] मानों के साथ परिभाषित किया जाता है, जिसे 'परिबद्ध' कहा जाता है यदि इसके मानों का सेट परिबद्ध सेट है। दूसरे शब्दों में, एक वास्तविक संख्या M का अस्तित्व है जैसे कि
:<math>|f(x)|\le M</math>
:<math>|f(x)|\le M</math>
एक्स में सभी एक्स के लिए।<ref name=":0">{{Cite book|last=Jeffrey|first=Alan|url=https://books.google.com/books?id=jMUbUCUOaeQC&dq=%22Bounded+function%22&pg=PA66|title=Mathematics for Engineers and Scientists, 5th Edition|date=1996-06-13|publisher=CRC Press|isbn=978-0-412-62150-5|language=en}}</ref> एक कार्य जो बाध्य नहीं है, उसे 'असीमित' कहा जाता है।{{Citation needed|date=September 2021}}
एक्स में सभी एक्स के लिए।<ref name=":0">{{Cite book|last=Jeffrey|first=Alan|url=https://books.google.com/books?id=jMUbUCUOaeQC&dq=%22Bounded+function%22&pg=PA66|title=Mathematics for Engineers and Scientists, 5th Edition|date=1996-06-13|publisher=CRC Press|isbn=978-0-412-62150-5|language=en}}</ref> एक कार्य जो बाध्य नहीं है, उसे 'असीमित' कहा जाता है।


यदि f वास्तविक-मूल्यवान है और f(x) ≤ A, X में सभी x के लिए है, तो फ़ंक्शन को A द्वारा 'ऊपर (से)' कहा जाता है। यदि f(x) ≥ B, X में सभी x के लिए, तो फ़ंक्शन को बी द्वारा 'बाउंड (नीचे)' कहा जाता है। एक वास्तविक-मूल्यवान फ़ंक्शन बाध्य होता है यदि और केवल अगर यह ऊपर और नीचे से घिरा हुआ है।<ref name=":0" />{{Additional citation needed|date=September 2021}}
यदि f वास्तविक-मूल्यवान है और f(x) ≤ A, X में सभी x के लिए है, तो फ़ंक्शन को A द्वारा 'ऊपर (से)' कहा जाता है। यदि f(x) ≥ B, X में सभी x के लिए, तो फ़ंक्शन को बी द्वारा 'बाउंड (नीचे)' कहा जाता है। एक वास्तविक-मूल्यवान फ़ंक्शन बाध्य होता है यदि और केवल अगर यह ऊपर और नीचे से घिरा हुआ है।<ref name=":0" />


एक महत्वपूर्ण विशेष मामला एक बंधा हुआ क्रम है, जहां 'X' को [[प्राकृतिक संख्या]]ओं का समुच्चय N माना जाता है। इस प्रकार एक [[अनुक्रम]] ''एफ'' = (''ए''<sub>0</sub>, ए<sub>1</sub>,  ए<sub>2</sub>, ...) बाध्य है अगर वास्तविक संख्या एम मौजूद है जैसे कि
एक महत्वपूर्ण विशेष मामला एक बंधा हुआ क्रम है, जहां 'X' को [[प्राकृतिक संख्या]]ओं का समुच्चय N माना जाता है। इस प्रकार एक [[अनुक्रम]] ''एफ'' = (''ए''<sub>0</sub>, ए<sub>1</sub>,  ए<sub>2</sub>, ...) बाध्य है अगर वास्तविक संख्या एम मौजूद है जैसे कि


:<math>|a_n|\le M</math>
:<math>|a_n|\le M</math>
प्रत्येक प्राकृतिक संख्या n के लिए। सभी बंधे हुए अनुक्रमों का सेट [[अनुक्रम स्थान]] बनाता है <math>l^\infty</math>.{{Citation needed|date=September 2021}}
प्रत्येक प्राकृतिक संख्या n के लिए। सभी बंधे हुए अनुक्रमों का सेट [[अनुक्रम स्थान]] बनाता है <math>l^\infty</math>.


परिबद्धता की परिभाषा को f : X → Y के कार्यों के लिए सामान्यीकृत किया जा सकता है, जो अधिक सामान्य स्थान Y में मान लेता है, यह आवश्यक है कि छवि f(X) Y में एक बंधा हुआ सेट है।{{Citation needed|date= September 2021}}
परिबद्धता की परिभाषा को f : X → Y के कार्यों के लिए सामान्यीकृत किया जा सकता है, जो अधिक सामान्य स्थान Y में मान लेता है, यह आवश्यक है कि छवि f(X) Y में एक बंधा हुआ सेट है।


== संबंधित धारणाएँ ==
== संबंधित धारणाएँ ==
बाउंडनेस से कमजोर स्थानीय बाउंडनेस है। बंधे हुए कार्यों का एक परिवार एक [[समान सीमा]] हो सकता है।
बाउंडनेस से कमजोर स्थानीय बाउंडनेस है। बंधे हुए कार्यों का एक परिवार एक [[समान सीमा]] हो सकता है।


एक [[परिबद्ध संचालिका]] T : X → Y इस पृष्ठ की परिभाषा के अर्थ में एक बाउंडेड फ़ंक्शन नहीं है (जब तक कि T = 0 न हो), लेकिन इसमें 'परिरक्षण बाउंडनेस' का कमज़ोर गुण है: बाउंडेड सेट M ⊆ X को बाउंडेड सेट T( M) ⊆ Y। इस परिभाषा को किसी भी फलन f : X → Y तक बढ़ाया जा सकता है यदि X और Y परिबद्ध समुच्चय की अवधारणा की अनुमति देते हैं। एक ग्राफ को देखकर भी सीमा निर्धारित की जा सकती है।{{Citation needed|date= September 2021}}
एक [[परिबद्ध संचालिका]] T : X → Y इस पृष्ठ की परिभाषा के अर्थ में एक बाउंडेड फ़ंक्शन नहीं है (जब तक कि T = 0 न हो), लेकिन इसमें 'परिरक्षण बाउंडनेस' का कमज़ोर गुण है: बाउंडेड सेट M ⊆ X को बाउंडेड सेट T( M) ⊆ Y। इस परिभाषा को किसी भी फलन f : X → Y तक बढ़ाया जा सकता है यदि X और Y परिबद्ध समुच्चय की अवधारणा की अनुमति देते हैं। एक ग्राफ को देखकर भी सीमा निर्धारित की जा सकती है।


== उदाहरण ==
== उदाहरण ==
* ज्या फलन sin : R → R तब से परिबद्ध है <math>|\sin (x)| \le 1</math> सभी के लिए <math>x \in \mathbf{R}</math>.<ref name=":0" /><ref>{{Cite web|title=साइन और कोसाइन फ़ंक्शंस|url=https://math.dartmouth.edu/opencalc2/cole/lecture10.pdf|url-status=live|archive-url=https://web.archive.org/web/20130202195902/https://math.dartmouth.edu/opencalc2/cole/lecture10.pdf|archive-date=2 February 2013|access-date=1 September 2021|website=math.dartmouth.edu}}</ref>
* ज्या फलन sin : R → R तब से परिबद्ध है <math>|\sin (x)| \le 1</math> सभी के लिए <math>x \in \mathbf{R}</math>.<ref name=":0" /><ref>{{Cite web|title=साइन और कोसाइन फ़ंक्शंस|url=https://math.dartmouth.edu/opencalc2/cole/lecture10.pdf|url-status=live|archive-url=https://web.archive.org/web/20130202195902/https://math.dartmouth.edu/opencalc2/cole/lecture10.pdf|archive-date=2 February 2013|access-date=1 September 2021|website=math.dartmouth.edu}}</ref>
* कार्यक्रम <math>f(x)=(x^2-1)^{-1}</math>, −1 और 1 को छोड़कर सभी वास्तविक x के लिए परिभाषित है, असीमित है। जैसे-जैसे x -1 या 1 की ओर अग्रसर होता है, इस फलन के मान परिमाण में बड़े होते जाते हैं। इस फ़ंक्शन को बाउंड किया जा सकता है यदि कोई इसके डोमेन को प्रतिबंधित करता है, उदाहरण के लिए, [2, ∞) या (−∞, −2]।{{Citation needed|date= September 2021}}
* कार्यक्रम <math>f(x)=(x^2-1)^{-1}</math>, −1 और 1 को छोड़कर सभी वास्तविक x के लिए परिभाषित है, असीमित है। जैसे-जैसे x -1 या 1 की ओर अग्रसर होता है, इस फलन के मान परिमाण में बड़े होते जाते हैं। इस फ़ंक्शन को बाउंड किया जा सकता है यदि कोई इसके डोमेन को प्रतिबंधित करता है, उदाहरण के लिए, [2, ∞) या (−∞, −2]।
* कार्यक्रम <math display="inline">f(x)= (x^2+1)^{-1}</math>, सभी वास्तविक x के लिए परिभाषित, परिबद्ध है, क्योंकि <math display="inline">|f(x)| \le 1</math> सभी एक्स के लिए{{Citation needed|date= September 2021}}
* कार्यक्रम <math display="inline">f(x)= (x^2+1)^{-1}</math>, सभी वास्तविक x के लिए परिभाषित, परिबद्ध है, क्योंकि <math display="inline">|f(x)| \le 1</math> सभी एक्स के लिए
* प्रतिलोम त्रिकोणमितीय फलन चापस्पर्शज्या को इस प्रकार परिभाषित किया गया है: y = {{math|arctan(''x'')}} या एक्स = {{math|[[Tangent (trigonometry)|tan]](''y'')}} सभी वास्तविक संख्याओं x के लिए एकदिष्ट फलन है और - से परिबद्ध है{{sfrac|{{pi}}|2}} <और < {{sfrac|{{pi}}|2}} [[ कांति ]]<ref>{{Cite book|last1=Polyanin|first1=Andrei D.|url=https://books.google.com/books?id=ejzScufwDRUC&dq=arctangent+bounded&pg=PA27|title=गणित, भौतिकी और इंजीनियरिंग विज्ञान की एक संक्षिप्त पुस्तिका|last2=Chernoutsan|first2=Alexei|date=2010-10-18|publisher=CRC Press|isbn=978-1-4398-0640-1|language=en}}</ref>
* प्रतिलोम त्रिकोणमितीय फलन चापस्पर्शज्या को इस प्रकार परिभाषित किया गया है: y = {{math|arctan(''x'')}} या एक्स = {{math|[[Tangent (trigonometry)|tan]](''y'')}} सभी वास्तविक संख्याओं x के लिए एकदिष्ट फलन है और - से परिबद्ध है{{sfrac|{{pi}}|2}} <और < {{sfrac|{{pi}}|2}} [[ कांति ]]<ref>{{Cite book|last1=Polyanin|first1=Andrei D.|url=https://books.google.com/books?id=ejzScufwDRUC&dq=arctangent+bounded&pg=PA27|title=गणित, भौतिकी और इंजीनियरिंग विज्ञान की एक संक्षिप्त पुस्तिका|last2=Chernoutsan|first2=Alexei|date=2010-10-18|publisher=CRC Press|isbn=978-1-4398-0640-1|language=en}}</ref>
* [[परिबद्धता प्रमेय]] द्वारा, एक बंद अंतराल पर हर [[निरंतर कार्य]], जैसे f : [0, 1] → 'R', परिबद्ध है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=चरम मूल्य प्रमेय|url=https://mathworld.wolfram.com/ExtremeValueTheorem.html|access-date=2021-09-01|website=mathworld.wolfram.com|language=en}}</ref> अधिक आम तौर पर, [[ कॉम्पैक्ट जगह ]] से मेट्रिक स्पेस में कोई भी निरंतर कार्य बाध्य होता है।{{Citation needed|date= September 2021}}
* [[परिबद्धता प्रमेय]] द्वारा, एक बंद अंतराल पर हर [[निरंतर कार्य]], जैसे f : [0, 1] → 'R', परिबद्ध है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=चरम मूल्य प्रमेय|url=https://mathworld.wolfram.com/ExtremeValueTheorem.html|access-date=2021-09-01|website=mathworld.wolfram.com|language=en}}</ref> अधिक आम तौर पर, [[ कॉम्पैक्ट जगह ]] से मेट्रिक स्पेस में कोई भी निरंतर कार्य बाध्य होता है।
*सभी जटिल-मूल्यवान फलन f : 'C' → 'C' जो संपूर्ण कार्य हैं, लिउविले के प्रमेय (जटिल विश्लेषण) के परिणामस्वरूप या तो असीमित या स्थिर हैं। लिउविल का प्रमेय।<ref>{{Cite web|title=लिउविल प्रमेय - गणित का विश्वकोश|url=https://encyclopediaofmath.org/wiki/Liouville_theorems|access-date=2021-09-01|website=encyclopediaofmath.org}}</ref> विशेष रूप से, जटिल sin : C → C असीमित होना चाहिए क्योंकि यह संपूर्ण है।{{Citation needed|date= September 2021}}
*सभी जटिल-मूल्यवान फलन f : 'C' → 'C' जो संपूर्ण कार्य हैं, लिउविले के प्रमेय (जटिल विश्लेषण) के परिणामस्वरूप या तो असीमित या स्थिर हैं। लिउविल का प्रमेय।<ref>{{Cite web|title=लिउविल प्रमेय - गणित का विश्वकोश|url=https://encyclopediaofmath.org/wiki/Liouville_theorems|access-date=2021-09-01|website=encyclopediaofmath.org}}</ref> विशेष रूप से, जटिल sin : C → C असीमित होना चाहिए क्योंकि यह संपूर्ण है।
* फ़ंक्शन f जो x परिमेय संख्या के लिए 0 और x [[अपरिमेय संख्या]] के लिए 1 लेता है (cf. कहीं नहीं निरंतर फ़ंक्शन #Dirichlet फ़ंक्शन) परिबद्ध है। इस प्रकार, एक फ़ंक्शन पैथोलॉजिकल (गणित) | बाध्य होने के लिए अच्छा होने की आवश्यकता नहीं है। [0, 1] पर परिभाषित सभी सीमित कार्यों का सेट उस अंतराल पर निरंतर कार्यों के सेट से काफी बड़ा है।{{Citation needed|date= September 2021}} इसके अलावा, निरंतर कार्यों को बाध्य करने की आवश्यकता नहीं है; उदाहरण के लिए, कार्य <math>g:\mathbb{R}^2\to\mathbb{R}</math> और <math>h: (0, 1)^2\to\mathbb{R}</math> द्वारा परिभाषित <math>g(x, y) := x + y</math> और <math>h(x, y) := \frac{1}{x+y}</math> दोनों निरंतर हैं, लेकिन कोई भी बाध्य नहीं है।<ref name=":1">{{Cite book|last1=Ghorpade|first1=Sudhir R.|url=https://books.google.com/books?id=JVFJAAAAQBAJ&q=%22Bounded+function%22|title=बहुभिन्नरूपी पथरी और विश्लेषण में एक कोर्स|last2=Limaye|first2=Balmohan V.|date=2010-03-20|publisher=Springer Science & Business Media|isbn=978-1-4419-1621-1|pages=56|language=en}}</ref> (हालांकि, एक सतत कार्य को बाध्य होना चाहिए यदि इसका डोमेन बंद और बाध्य दोनों है।<ref name=":1" />
* फ़ंक्शन f जो x परिमेय संख्या के लिए 0 और x [[अपरिमेय संख्या]] के लिए 1 लेता है (cf. कहीं नहीं निरंतर फ़ंक्शन #Dirichlet फ़ंक्शन) परिबद्ध है। इस प्रकार, एक फ़ंक्शन पैथोलॉजिकल (गणित) | बाध्य होने के लिए अच्छा होने की आवश्यकता नहीं है। [0, 1] पर परिभाषित सभी सीमित कार्यों का सेट उस अंतराल पर निरंतर कार्यों के सेट से काफी बड़ा है। इसके अलावा, निरंतर कार्यों को बाध्य करने की आवश्यकता नहीं है; उदाहरण के लिए, कार्य <math>g:\mathbb{R}^2\to\mathbb{R}</math> और <math>h: (0, 1)^2\to\mathbb{R}</math> द्वारा परिभाषित <math>g(x, y) := x + y</math> और <math>h(x, y) := \frac{1}{x+y}</math> दोनों निरंतर हैं, लेकिन कोई भी बाध्य नहीं है।<ref name=":1">{{Cite book|last1=Ghorpade|first1=Sudhir R.|url=https://books.google.com/books?id=JVFJAAAAQBAJ&q=%22Bounded+function%22|title=बहुभिन्नरूपी पथरी और विश्लेषण में एक कोर्स|last2=Limaye|first2=Balmohan V.|date=2010-03-20|publisher=Springer Science & Business Media|isbn=978-1-4419-1621-1|pages=56|language=en}}</ref> (हालांकि, एक सतत कार्य को बाध्य होना चाहिए यदि इसका डोमेन बंद और बाध्य दोनों है।<ref name=":1" />





Revision as of 20:49, 23 March 2023

एक बंधे हुए फ़ंक्शन (लाल) और एक असीमित एक (नीला) का एक योजनाबद्ध चित्रण। सहज रूप से, एक बंधे हुए फ़ंक्शन का ग्राफ़ एक क्षैतिज बैंड के भीतर रहता है, जबकि एक अनबाउंड फ़ंक्शन का ग्राफ़ नहीं होता है।

गणित में, एक फ़ंक्शन (गणित) f को कुछ सेट (गणित) X पर वास्तविक संख्या या जटिल संख्या मानों के साथ परिभाषित किया जाता है, जिसे 'परिबद्ध' कहा जाता है यदि इसके मानों का सेट परिबद्ध सेट है। दूसरे शब्दों में, एक वास्तविक संख्या M का अस्तित्व है जैसे कि

एक्स में सभी एक्स के लिए।[1] एक कार्य जो बाध्य नहीं है, उसे 'असीमित' कहा जाता है।

यदि f वास्तविक-मूल्यवान है और f(x) ≤ A, X में सभी x के लिए है, तो फ़ंक्शन को A द्वारा 'ऊपर (से)' कहा जाता है। यदि f(x) ≥ B, X में सभी x के लिए, तो फ़ंक्शन को बी द्वारा 'बाउंड (नीचे)' कहा जाता है। एक वास्तविक-मूल्यवान फ़ंक्शन बाध्य होता है यदि और केवल अगर यह ऊपर और नीचे से घिरा हुआ है।[1]

एक महत्वपूर्ण विशेष मामला एक बंधा हुआ क्रम है, जहां 'X' को प्राकृतिक संख्याओं का समुच्चय N माना जाता है। इस प्रकार एक अनुक्रम एफ = (0, ए1, ए2, ...) बाध्य है अगर वास्तविक संख्या एम मौजूद है जैसे कि

प्रत्येक प्राकृतिक संख्या n के लिए। सभी बंधे हुए अनुक्रमों का सेट अनुक्रम स्थान बनाता है .

परिबद्धता की परिभाषा को f : X → Y के कार्यों के लिए सामान्यीकृत किया जा सकता है, जो अधिक सामान्य स्थान Y में मान लेता है, यह आवश्यक है कि छवि f(X) Y में एक बंधा हुआ सेट है।

संबंधित धारणाएँ

बाउंडनेस से कमजोर स्थानीय बाउंडनेस है। बंधे हुए कार्यों का एक परिवार एक समान सीमा हो सकता है।

एक परिबद्ध संचालिका T : X → Y इस पृष्ठ की परिभाषा के अर्थ में एक बाउंडेड फ़ंक्शन नहीं है (जब तक कि T = 0 न हो), लेकिन इसमें 'परिरक्षण बाउंडनेस' का कमज़ोर गुण है: बाउंडेड सेट M ⊆ X को बाउंडेड सेट T( M) ⊆ Y। इस परिभाषा को किसी भी फलन f : X → Y तक बढ़ाया जा सकता है यदि X और Y परिबद्ध समुच्चय की अवधारणा की अनुमति देते हैं। एक ग्राफ को देखकर भी सीमा निर्धारित की जा सकती है।

उदाहरण

  • ज्या फलन sin : R → R तब से परिबद्ध है सभी के लिए .[1][2]
  • कार्यक्रम , −1 और 1 को छोड़कर सभी वास्तविक x के लिए परिभाषित है, असीमित है। जैसे-जैसे x -1 या 1 की ओर अग्रसर होता है, इस फलन के मान परिमाण में बड़े होते जाते हैं। इस फ़ंक्शन को बाउंड किया जा सकता है यदि कोई इसके डोमेन को प्रतिबंधित करता है, उदाहरण के लिए, [2, ∞) या (−∞, −2]।
  • कार्यक्रम , सभी वास्तविक x के लिए परिभाषित, परिबद्ध है, क्योंकि सभी एक्स के लिए
  • प्रतिलोम त्रिकोणमितीय फलन चापस्पर्शज्या को इस प्रकार परिभाषित किया गया है: y = arctan(x) या एक्स = tan(y) सभी वास्तविक संख्याओं x के लिए एकदिष्ट फलन है और - से परिबद्ध हैπ/2 <और < π/2 कांति [3]
  • परिबद्धता प्रमेय द्वारा, एक बंद अंतराल पर हर निरंतर कार्य, जैसे f : [0, 1] → 'R', परिबद्ध है।[4] अधिक आम तौर पर, कॉम्पैक्ट जगह से मेट्रिक स्पेस में कोई भी निरंतर कार्य बाध्य होता है।
  • सभी जटिल-मूल्यवान फलन f : 'C' → 'C' जो संपूर्ण कार्य हैं, लिउविले के प्रमेय (जटिल विश्लेषण) के परिणामस्वरूप या तो असीमित या स्थिर हैं। लिउविल का प्रमेय।[5] विशेष रूप से, जटिल sin : C → C असीमित होना चाहिए क्योंकि यह संपूर्ण है।
  • फ़ंक्शन f जो x परिमेय संख्या के लिए 0 और x अपरिमेय संख्या के लिए 1 लेता है (cf. कहीं नहीं निरंतर फ़ंक्शन #Dirichlet फ़ंक्शन) परिबद्ध है। इस प्रकार, एक फ़ंक्शन पैथोलॉजिकल (गणित) | बाध्य होने के लिए अच्छा होने की आवश्यकता नहीं है। [0, 1] पर परिभाषित सभी सीमित कार्यों का सेट उस अंतराल पर निरंतर कार्यों के सेट से काफी बड़ा है। इसके अलावा, निरंतर कार्यों को बाध्य करने की आवश्यकता नहीं है; उदाहरण के लिए, कार्य और द्वारा परिभाषित और दोनों निरंतर हैं, लेकिन कोई भी बाध्य नहीं है।[6] (हालांकि, एक सतत कार्य को बाध्य होना चाहिए यदि इसका डोमेन बंद और बाध्य दोनों है।[6]


यह भी देखें

  • परिबद्ध सेट
  • समर्थन (गणित)#कॉम्पैक्ट समर्थन
  • स्थानीय सीमा
  • समान सीमा

संदर्भ

  1. 1.0 1.1 1.2 Jeffrey, Alan (1996-06-13). Mathematics for Engineers and Scientists, 5th Edition (in English). CRC Press. ISBN 978-0-412-62150-5.
  2. "साइन और कोसाइन फ़ंक्शंस" (PDF). math.dartmouth.edu. Archived (PDF) from the original on 2 February 2013. Retrieved 1 September 2021.
  3. Polyanin, Andrei D.; Chernoutsan, Alexei (2010-10-18). गणित, भौतिकी और इंजीनियरिंग विज्ञान की एक संक्षिप्त पुस्तिका (in English). CRC Press. ISBN 978-1-4398-0640-1.
  4. Weisstein, Eric W. "चरम मूल्य प्रमेय". mathworld.wolfram.com (in English). Retrieved 2021-09-01.
  5. "लिउविल प्रमेय - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 2021-09-01.
  6. 6.0 6.1 Ghorpade, Sudhir R.; Limaye, Balmohan V. (2010-03-20). बहुभिन्नरूपी पथरी और विश्लेषण में एक कोर्स (in English). Springer Science & Business Media. p. 56. ISBN 978-1-4419-1621-1.