परमाणु रूपांतरण: Difference between revisions
No edit summary |
|||
Line 23: | Line 23: | ||
[[फ्रेडरिक सोड्डी]] द्वारा इसे पहली बार सचेतन रूप से आधुनिक भौतिकी पर प्रयुक्त किया गया था, जब उन्होंने 1901 में [[अर्नेस्ट रदरफोर्ड]] के साथ मिलकर यह पाया कि रेडियोधर्मी [[थोरियम]] स्वयं को [[रेडियम]] में परिवर्तित कर रहा था। कार्यान्वयन के क्षण में, सोड्डी ने बाद में याद किया, वह चिल्लाया: <nowiki>''</nowiki>रदरफोर्ड, यह तत्वांतरण है<nowiki>''</nowiki>! रदरफोर्ड ने पलटकर कहा, <nowiki>''</nowiki>ईसा के लिए, सोडी, इसे तत्वांतरण नहीं कहो। वे अपरसायनविद के रूप में हमारे सिर काट देंगे<nowiki>''</nowiki>।<ref>Muriel Howorth, ''Pioneer Research on the Atom: The Life Story of Frederick Soddy'', New World, London 1958, pp 83-84; Lawrence Badash, Radium, ''Radioactivity and the Popularity of Scientific Discovery'', Proceedings of the American Philosophical Society 122,1978: 145-54; Thaddeus J. Trenn, ''The Self-Splitting Atom: The History of the Rutherford-Soddy Collaboration'', Taylor & Francis, London, 1977, pp 42, 58-60, 111-17.</ref> | [[फ्रेडरिक सोड्डी]] द्वारा इसे पहली बार सचेतन रूप से आधुनिक भौतिकी पर प्रयुक्त किया गया था, जब उन्होंने 1901 में [[अर्नेस्ट रदरफोर्ड]] के साथ मिलकर यह पाया कि रेडियोधर्मी [[थोरियम]] स्वयं को [[रेडियम]] में परिवर्तित कर रहा था। कार्यान्वयन के क्षण में, सोड्डी ने बाद में याद किया, वह चिल्लाया: <nowiki>''</nowiki>रदरफोर्ड, यह तत्वांतरण है<nowiki>''</nowiki>! रदरफोर्ड ने पलटकर कहा, <nowiki>''</nowiki>ईसा के लिए, सोडी, इसे तत्वांतरण नहीं कहो। वे अपरसायनविद के रूप में हमारे सिर काट देंगे<nowiki>''</nowiki>।<ref>Muriel Howorth, ''Pioneer Research on the Atom: The Life Story of Frederick Soddy'', New World, London 1958, pp 83-84; Lawrence Badash, Radium, ''Radioactivity and the Popularity of Scientific Discovery'', Proceedings of the American Philosophical Society 122,1978: 145-54; Thaddeus J. Trenn, ''The Self-Splitting Atom: The History of the Rutherford-Soddy Collaboration'', Taylor & Francis, London, 1977, pp 42, 58-60, 111-17.</ref> | ||
रदरफोर्ड और सोड्डी अल्फा क्षय प्रकार के रेडियोधर्मी क्षय के एक भाग के रूप में प्राकृतिक रूपांतरण देख रहे थे। पहला कृत्रिम रूपांतरण 1925 में [[पैट्रिक ब्लैकेट]] द्वारा पूरा किया गया था, जो रदरफोर्ड के अंतर्गत काम कर रहे एक शोध साथी थे,जिसमें नाइट्रोजन का ऑक्सीजन में रूपांतरण, नाइट्रोजन <sup>14</sup>N + α → <sup>17</sup>O + p पर निर्देशित अल्फा कणों का उपयोग करके किया गया था।<ref>{{Cite web|url=http://history.aip.org/history/exhibits/rutherford/sections/atop-physics-wave.html|title = Rutherford's Nuclear World: The Story of the Discovery of the Nucleus | Sections | American Institute of Physics}}</ref> रदरफोर्ड ने 1919 में दिखाया था कि अल्फा बमबारी प्रयोगों से एक प्रोटॉन (उन्होंने इसे हाइड्रोजन परमाणु कहा था) उत्सर्जित किया गया था लेकिन उन्हें अवशिष्ट नाभिक के बारे में कोई जानकारी नहीं थी। ब्लैकेट के 1921-1924 के प्रयोगों ने एक कृत्रिम परमाणु रूपांतरण प्रतिक्रिया का पहला प्रायोगिक साक्ष्य प्रदान किया। ब्लैकेट ने अंतर्निहित एकीकरण प्रक्रिया और अवशिष्ट नाभिक की पहचान की सही पहचान की। 1932 में, रदरफोर्ड के सहयोगियों [[जॉन कॉकक्रॉफ्ट]] और [[अर्नेस्ट वाल्टन]] द्वारा पूरी तरह से कृत्रिम परमाणु प्रतिक्रिया और परमाणु रूपांतरण हासिल किया गया, जिन्होंने न्यूक्लियस को दो अल्फा कणों में विभाजित करने के लिए लिथियम-7 के विपरीत कृत्रिम रूप से त्वरित प्रोटॉन का उपयोग किया। इस कार्य को लोकप्रिय रूप से "परमाणु विभाजन" के रूप में जाना जाता था, हालांकि यह 1938 में ओट्टो हैन, लिसे मीटनर और उनके सहायक फ्रिट्ज स्ट्रैसमैन द्वारा भारी तत्वों में खोजी गई आधुनिक [[परमाणु विखंडन]] प्रतिक्रिया नहीं थी।<ref>[http://www-outreach.phy.cam.ac.uk/camphy/cockcroftwalton/cockcroftwalton9_1.htm Cockcroft and Walton split lithium with high energy protons April 1932. ] {{webarchive|url=https://web.archive.org/web/20120902195556/http://www-outreach.phy.cam.ac.uk/camphy/cockcroftwalton/cockcroftwalton9_1.htm |date=2012-09-02 }}</ref> 1941 में, [[रूबी शेर]], [[केनेथ बैनब्रिज]] और [[हर्बर्ट लॉरेंस एंडरसन]] ने [[पारा (तत्व)]] के सोने में परमाणु रूपांतरण की सूचना दी।<ref>{{cite journal | url =https://journals.aps.org/pr/abstract/10.1103/PhysRev.60.473 |title=फास्ट न्यूट्रॉन द्वारा पारा का रूपांतरण|authors=R. Sherr, K. T. Bainbridge, and H. H. Anderson|journal=Physical Review| date= 1 October 1941|volume=60 |issue=7 |pages=473–479 | accessdate =20 June 2022|doi=10.1103/PhysRev.60.473|bibcode=1941PhRv...60..473S }}</ref> | |||
बाद में बीसवीं शताब्दी में सितारों के अंदर तत्वों के रूपांतरण को विस्तृत किया गया, जो ब्रह्मांड में भारी तत्वों की सापेक्ष आधिक्य के लिए अधीन था। पहले पांच तत्वों को छोड़कर, जो महा विस्फोट और अन्य ब्रह्मांडीय किरण प्रक्रियाओं में उत्पन्न हुए थे, तारकीय नाभिक संश्लेषण बोरॉन से भारी सभी तत्वों की प्रचुरता के लिए अधीन था। उनके 1957 के पेपर [[सितारों में तत्वों का संश्लेषण]] में,<ref>William Alfred Fowler, Margaret Burbidge, Geoffrey Burbidge, and Fred Hoyle, 'Synthesis of the Elements in Stars', ''Reviews of Modern Physics'', vol. 29, Issue 4, pp. 547–650</ref> [[विलियम अल्फ्रेड फाउलर]], [[मार्गरेट बर्बिज]], [[जेफ्री बर्बिज]] और [[फ्रेड हॉयल]] ने समझाया कि कैसे अनिवार्य रूप से सभी लेकिन सबसे हल्के रासायनिक तत्वों की प्रचुरता को सितारों में [[न्यूक्लियोसिंथेसिस|नाभिक संश्लेषण]] की प्रक्रिया द्वारा समझाया जा सकता है। | |||
ग्लेन | सच्चे परमाणु रूपांतरण के अंतर्गत, व्युत्क्रम प्रतिक्रिया की तुलना में सोने को सीसे में बदलना कहीं अधिक आसान है, जो रसायनविदो ने उत्साहपूर्वक किया था। लंबे समय तक परमाणु रिएक्टर में सोना छोड़ कर [[न्यूट्रॉन कैप्चर|न्यूट्रॉन प्रग्रहण]] और बीटा क्षय के माध्यम से सोने को सीसे में बदलना आसान होगा।{{citation needed|date=November 2020}} | ||
ग्लेन सीबॉर्ग ने बिस्मथ से सोने के कई हजार परमाणु तैयार किए, लेकिन शुद्ध हानि हुई।<ref> | |||
{{Cite journal | {{Cite journal | ||
|last1=Aleklett |first1=K. | |last1=Aleklett |first1=K. | ||
Line 42: | Line 43: | ||
|doi=10.1103/PhysRevC.23.1044 | |doi=10.1103/PhysRevC.23.1044 | ||
}}</ref><ref>{{cite news |url=https://www.telegraph.co.uk/science/science-news/4767654/The-Philosophers-Stone.html |archive-url=https://archive.today/20130723120029/http://www.telegraph.co.uk/science/science-news/4767654/The-Philosophers-Stone.html |url-status=dead |archive-date=July 23, 2013 |newspaper=[[The Daily Telegraph]] |first=Robert |last=Matthews |title=पारस पत्थर|date=December 2, 2001 |access-date=July 23, 2013 }}</ref> | }}</ref><ref>{{cite news |url=https://www.telegraph.co.uk/science/science-news/4767654/The-Philosophers-Stone.html |archive-url=https://archive.today/20130723120029/http://www.telegraph.co.uk/science/science-news/4767654/The-Philosophers-Stone.html |url-status=dead |archive-date=July 23, 2013 |newspaper=[[The Daily Telegraph]] |first=Robert |last=Matthews |title=पारस पत्थर|date=December 2, 2001 |access-date=July 23, 2013 }}</ref> | ||
स्वर्ण संश्लेषण के बारे में अधिक जानकारी के लिए [[कीमती धातुओं का संश्लेषण]] देखें। | स्वर्ण संश्लेषण के बारे में अधिक जानकारी के लिए [[कीमती धातुओं का संश्लेषण]] देखें। | ||
197Au + n → 198Au (अर्ध-जीवन 2.7 दिन) → 198Hg + n → 199Hg + n → 200Hg + n → 201Hg + n → 202Hg + n → 203Hg (अर्ध-जीवन 47 दिन) → 203Tl + n → 204Tl (अर्ध-जीवन 3.8 वर्ष) → <sup>204</sup>Pb {{Explain|date=November 2021|reason=What is the significance, if any, of this sequence? Is it a specific experiment that was done, or is it just a worked example of what would happen if you kept adding neutrons to gold-197?}} | |||
== ब्रह्मांड में रूपांतरण == | == ब्रह्मांड में रूपांतरण == | ||
{{Main| | {{Main|नाभिकसंश्लेषण}} | ||
[[महा विस्फोट]] को ब्रह्मांड में हाइड्रोजन (सभी ड्यूटेरियम सहित) और हीलियम की उत्पत्ति माना जाता है। हाइड्रोजन और हीलियम मिलकर ब्रह्मांड में साधारण पदार्थ के द्रव्यमान का 98% हिस्सा बनाते हैं, जबकि अन्य 2% बाकी सब कुछ बनाते हैं। बिग बैंग ने कुछ मात्रा में [[लिथियम]], [[ फीरोज़ा ]] और शायद बोरॉन का भी उत्पादन किया। अधिक लिथियम, बेरिलियम और बोरॉन बाद में, एक प्राकृतिक परमाणु प्रतिक्रिया, [[ ब्रह्मांडीय किरण स्पेलेशन ]] में उत्पादित किए गए थे। | [[महा विस्फोट]] को ब्रह्मांड में हाइड्रोजन (सभी ड्यूटेरियम सहित) और हीलियम की उत्पत्ति माना जाता है। हाइड्रोजन और हीलियम मिलकर ब्रह्मांड में साधारण पदार्थ के द्रव्यमान का 98% हिस्सा बनाते हैं, जबकि अन्य 2% बाकी सब कुछ बनाते हैं। बिग बैंग ने कुछ मात्रा में [[लिथियम]], [[ फीरोज़ा ]] और शायद बोरॉन का भी उत्पादन किया। अधिक लिथियम, बेरिलियम और बोरॉन बाद में, एक प्राकृतिक परमाणु प्रतिक्रिया, [[ ब्रह्मांडीय किरण स्पेलेशन ]] में उत्पादित किए गए थे। | ||
तारकीय नाभिक संश्लेषण कार्बन से [[यूरेनियम]] तक स्थिर समस्थानिक और [[मौलिक न्यूक्लाइड]] के रूप में ब्रह्मांड में स्वाभाविक रूप से होने वाले अन्य सभी तत्वों के लिए | तारकीय नाभिक संश्लेषण कार्बन से [[यूरेनियम]] तक स्थिर समस्थानिक और [[मौलिक न्यूक्लाइड]] के रूप में ब्रह्मांड में स्वाभाविक रूप से होने वाले अन्य सभी तत्वों के लिए अधीन है। ये बिग बैंग के बाद, स्टार बनने के दौरान हुए। कार्बन से लोहे तक के कुछ हल्के तत्वों का निर्माण तारों में हुआ और असिम्प्टोटिक विशाल शाखा (एजीबी) सितारों द्वारा अंतरिक्ष में छोड़ा गया। ये एक प्रकार के लाल विशालकाय हैं जो अपने बाहरी वातावरण को फुलाते हैं, जिसमें कार्बन से लेकर निकेल और आयरन तक कुछ तत्व होते हैं। 64 परमाणु द्रव्यमान इकाइयों से अधिक परमाणु भार वाले सभी तत्व अधिनव तारा सितारों में न्यूट्रॉन प्रग्रहण के माध्यम से उत्पन्न होते हैं, जो दो प्रक्रियाओं में उप-विभाजित होते हैं: आ[[ आर-प्रक्रिया ]] और [[ एस-प्रक्रिया ]]। | ||
ऐसा माना जाता है कि सौर मंडल वर्तमान से लगभग 4.6 अरब वर्ष पहले, ऐसे सितारों की एक बड़ी संख्या द्वारा पहले बनाए गए धूल के कणों में भारी तत्वों वाले हाइड्रोजन और हीलियम के एक बादल से संघनित हुआ था। इन अनाजों में ब्रह्मांड के इतिहास में पहले रूपांतरण द्वारा गठित भारी तत्व सम्मिलित थे। | ऐसा माना जाता है कि सौर मंडल वर्तमान से लगभग 4.6 अरब वर्ष पहले, ऐसे सितारों की एक बड़ी संख्या द्वारा पहले बनाए गए धूल के कणों में भारी तत्वों वाले हाइड्रोजन और हीलियम के एक बादल से संघनित हुआ था। इन अनाजों में ब्रह्मांड के इतिहास में पहले रूपांतरण द्वारा गठित भारी तत्व सम्मिलित थे। | ||
Line 61: | Line 63: | ||
[[ट्रांसयूरेनियम तत्व]]ों का रूपांतरण (यानी [[एक्टिनाइड]]्स माइनस [[जंगी]] टू यूरेनियम) जैसे कि [[प्लूटोनियम]] के समस्थानिक (हल्के पानी के रिएक्टरों में लगभग 1wt% [[परमाणु ईंधन]] या मामूली [[एक्टिनाइड्स]] (MAs, यानी नेप्टुनियम, [[रेडियोऐक्टिव]] और [[ अदालत ]]) का उपयोग करते हैं), लगभग 0.1wt परमाणु ईंधन का उपयोग किए गए हल्के जल रिएक्टरों में % प्रत्येक में लंबे समय तक रहने वाले समस्थानिकों के अनुपात को कम करके रेडियोधर्मी अपशिष्ट के प्रबंधन से उत्पन्न कुछ समस्याओं को हल करने में मदद करने की क्षमता है। (यह उच्च स्तर के अपशिष्ट के लिए एक गहरे भूवैज्ञानिक भंडार की आवश्यकता से इंकार नहीं करता है।) जब परमाणु रिएक्टर में [[तेज न्यूट्रॉन]] के साथ विकिरण किया जाता है, तो ये समस्थानिक परमाणु विखंडन से गुजर सकते हैं, मूल एक्टिनाइड समस्थानिक को नष्ट कर सकते हैं और रेडियोधर्मी और गैर-रेडियोधर्मी स्पेक्ट्रम का उत्पादन कर सकते हैं। [[विखंडन उत्पादों]]। | [[ट्रांसयूरेनियम तत्व]]ों का रूपांतरण (यानी [[एक्टिनाइड]]्स माइनस [[जंगी]] टू यूरेनियम) जैसे कि [[प्लूटोनियम]] के समस्थानिक (हल्के पानी के रिएक्टरों में लगभग 1wt% [[परमाणु ईंधन]] या मामूली [[एक्टिनाइड्स]] (MAs, यानी नेप्टुनियम, [[रेडियोऐक्टिव]] और [[ अदालत ]]) का उपयोग करते हैं), लगभग 0.1wt परमाणु ईंधन का उपयोग किए गए हल्के जल रिएक्टरों में % प्रत्येक में लंबे समय तक रहने वाले समस्थानिकों के अनुपात को कम करके रेडियोधर्मी अपशिष्ट के प्रबंधन से उत्पन्न कुछ समस्याओं को हल करने में मदद करने की क्षमता है। (यह उच्च स्तर के अपशिष्ट के लिए एक गहरे भूवैज्ञानिक भंडार की आवश्यकता से इंकार नहीं करता है।) जब परमाणु रिएक्टर में [[तेज न्यूट्रॉन]] के साथ विकिरण किया जाता है, तो ये समस्थानिक परमाणु विखंडन से गुजर सकते हैं, मूल एक्टिनाइड समस्थानिक को नष्ट कर सकते हैं और रेडियोधर्मी और गैर-रेडियोधर्मी स्पेक्ट्रम का उत्पादन कर सकते हैं। [[विखंडन उत्पादों]]। | ||
सबसे कठिन लंबे समय तक रहने वाली प्रजातियों को हटाने के लिए संचारण प्रतिक्रियाओं को प्रेरित करने के लिए एक्टिनाइड युक्त सिरेमिक लक्ष्यों को न्यूट्रॉन के साथ बमबारी किया जा सकता है। इनमें एक्टिनाइड युक्त ठोस घोल सम्मिलित हो सकते हैं जैसे {{chem2|(Am,Zr)N}}, {{chem2|(Am,Y)N}}, {{chem2|(Zr,Cm)O2}}, {{chem2|(Zr,Cm,Am)O2}}, {{chem2|(Zr,Am,Y)O2}} या सिर्फ एक्टिनाइड चरण जैसे {{chem2|AmO2}}, {{chem2|NpO2}}, {{chem2|NpN}}, {{chem2|AmN}} जैसे कुछ निष्क्रिय चरणों के साथ मिश्रित {{chem2|MgO}},{{chem2|MgAl2O4}}, {{chem2|(Zr,Y)O2}},{{chem2|TiN}} और {{chem2|ZrN}}. गैर-रेडियोधर्मी निष्क्रिय चरणों की भूमिका मुख्य रूप से न्यूट्रॉन विकिरण के | सबसे कठिन लंबे समय तक रहने वाली प्रजातियों को हटाने के लिए संचारण प्रतिक्रियाओं को प्रेरित करने के लिए एक्टिनाइड युक्त सिरेमिक लक्ष्यों को न्यूट्रॉन के साथ बमबारी किया जा सकता है। इनमें एक्टिनाइड युक्त ठोस घोल सम्मिलित हो सकते हैं जैसे {{chem2|(Am,Zr)N}}, {{chem2|(Am,Y)N}}, {{chem2|(Zr,Cm)O2}}, {{chem2|(Zr,Cm,Am)O2}}, {{chem2|(Zr,Am,Y)O2}} या सिर्फ एक्टिनाइड चरण जैसे {{chem2|AmO2}}, {{chem2|NpO2}}, {{chem2|NpN}}, {{chem2|AmN}} जैसे कुछ निष्क्रिय चरणों के साथ मिश्रित {{chem2|MgO}},{{chem2|MgAl2O4}}, {{chem2|(Zr,Y)O2}},{{chem2|TiN}} और {{chem2|ZrN}}. गैर-रेडियोधर्मी निष्क्रिय चरणों की भूमिका मुख्य रूप से न्यूट्रॉन विकिरण के अंतर्गत लक्ष्य को स्थिर यांत्रिक व्यवहार प्रदान करना है।<ref>{{Cite web | ||
|title=Crystalline Materials for Actinide Immobilisation | |title=Crystalline Materials for Actinide Immobilisation | ||
|url=http://www.icpress.co.uk/engineering/p652.html | |url=http://www.icpress.co.uk/engineering/p652.html |
Revision as of 13:27, 6 April 2023
परमाणु संचारण एक रासायनिक तत्व या एक समस्थानिक का दूसरे रासायनिक तत्व में रूपांतरण है।[1] परमाणु संचारण किसी भी प्रक्रिया में होता है जहां परमाणु के नाभिक में प्रोटॉन या न्यूट्रॉन की संख्या परिवर्तित कर दी जाती है।
रूपांतरण या तो परमाणु प्रतिक्रियाओं (जिसमें एक बाहरी कण एक नाभिक के साथ प्रतिक्रिया करता है) या रेडियोधर्मी क्षय द्वारा प्राप्त किया जा सकता है, जहां किसी बाहरी कारण की आवश्यकता नहीं होती है।
विगत में तारकीय नाभिक संश्लेषण द्वारा प्राकृतिक संचारण ने ज्ञात सम्मिलित ब्रह्मांड में अधिकांश भारी रासायनिक तत्वों का निर्माण किया, और आज भी जारी है, जिससे हीलियम, ऑक्सीजन और कार्बन-14 सहित ब्रह्मांड में सबसे सामान्य तत्वों का विशाल पूर्णावस्था बनता है। अधिकांश तारे हाइड्रोजन और हीलियम से जुड़े संलयन प्रतिक्रियाओं के माध्यम से रूपांतरण करते हैं, जबकि बहुत बड़े सितारे भी अपने विकास में अविलंब से लोहे तक भारी तत्वों को संलयी करने में सक्षम होते हैं।
लोहे से भारी तत्व, जैसे सोना या सीसा, तात्विक रूपांतरणों के माध्यम से बनाए जाते हैं जो स्वाभाविक रूप से अधिनव तारा में हो सकते हैं। रसायन विद्या का एक लक्ष्य, मूल पदार्थों का सोने में रूपांतरण, अब रासायनिक तरीकों से असंभव माना जाता है लेकिन भौतिक तरीकों से संभव है। जैसे-जैसे तारे भारी तत्वों को संलयी करना प्रारंभ करते हैं, प्रत्येक संलयन प्रतिक्रिया से अपेक्षाकृत अधिक कम ऊर्जा निकलती है। यह तब तक जारी रहता है जब तक कि यह लोहे तक नहीं पहुंच जाता है, जो ऊर्जा की क्षय करने वाली ऊष्माशोषी प्रतिक्रिया द्वारा निर्मित होता है। ऐसी स्थितियों में कोई भारी तत्व नहीं बनाया जा सकता है।
वर्तमान में देखने योग्य एक प्रकार का प्राकृतिक संक्रामण तब होता है जब प्रकृति में सम्मिलित कुछ रेडियोधर्मी तत्व स्वाभाविक तरीके से एक ऐसी प्रक्रिया से क्षय हो जाते हैं जो संक्रामण का कारण बनती है, जैसे कि अल्फा क्षय या बीटा क्षय है। एक उदाहरण पोटेशियम -40 से आर्गन -40 का प्राकृतिक क्षय है, जो हवा में अधिकांश आर्गन बनाता है। पृथ्वी पर भी, प्राकृतिक परमाणु प्रतिक्रियाओं के विभिन्न तंत्रों से प्राकृतिक रूपांतरण होता है, तत्वों की अंतरिक्ष किरण बमबारी के कारण (उदाहरण के लिए, कार्बन -14 बनाने के लिए), और कभी-कभी प्राकृतिक न्यूट्रॉन बमबारी से भी (उदाहरण के लिए, प्राकृतिक परमाणु विखंडन रिएक्टर देखें) होता है।
ऐसी व्यवस्था में कृत्रिम संचारण हो सकता है जिसमें तत्वों की परमाणु संरचना में परिवर्तन करने के लिए पर्याप्त ऊर्जा हो। ऐसी मशीनों में कण त्वरक और टोकामाक रिएक्टर सम्मिलित हैं। पारंपरिक परमाणु विखंडन रिएक्टर भी कृत्रिम रूपांतरण का कारण बनते हैं, मशीन की शक्ति से नहीं, बल्कि कृत्रिम रूप से उत्पादित परमाणु श्रृंखला प्रतिक्रिया से विखंडन द्वारा उत्पादित न्यूट्रॉन के तत्वों को प्रदर्शित करके कृत्रिम प्रसारण का कारण बनते हैं। उदाहरण के लिए, जब एक यूरेनियम परमाणु पर मंद न्यूट्रॉनों की बमबारी की जाती है, तो विखंडन होता है। यह औसतन 3 न्यूट्रॉन और बड़ी मात्रा में ऊर्जा जारी करता है। जारी किए गए न्यूट्रॉन तब अन्य यूरेनियम परमाणुओं के विखंडन का कारण बनते हैं, जब तक कि सभी उपलब्ध यूरेनियम समाप्त नहीं हो जाते। इसे श्रृंखला अभिक्रिया कहते हैं।
रेडियोधर्मी अपशिष्ट की मात्रा और जोखिम को कम करने के लिए कृत्रिम परमाणु प्रसारण को एक संभावित तंत्र माना गया है।[2]
इतिहास
ऐल्किमी ( रसायन विद्या)
शब्द संक्रामण वापस ऐल्किमी के लिए है। रसायनविद् ने पारसमणि का खोज किया, जो क्राइसोपोइया में अपधातुओं को सोने में बदलने में सक्षम था।[3] जबकि रसायनविद् प्रायः क्राइसोपोइया को एक गुप्त, या धार्मिक प्रक्रिया के अन्योक्ति के रूप में समझते थे, कुछ चिकित्सकों ने शाब्दिक व्याख्या को स्वीकृत किया और भौतिक प्रयोग के माध्यम से सोना बनाने का प्रयास किया। मध्य युग के बाद से रसायनविदो, दार्शनिकों और वैज्ञानिकों के बीच धात्विक रूपांतरण की असंभवता पर चर्चा हुई थी। छद्म-रसायन संचारण विधि-बहिष्कृत घोषित किया गया था[4] और चौदहवीं शताब्दी के प्रारंभ में सार्वजनिक रूप से उनका तिरस्कार किया गया। माइकल मायर और हेनरिक खुनरथ जैसे रसायनविदो ने सोना बनाने के कपटपूर्ण दावों को प्रकट करने वाले प्रकरण लिखे। 1720 के दशक तक, पदार्थों के सोने में भौतिक परिवर्तन का अनुसरण करने वाले कोई सम्मानजनक आंकड़े नहीं रह गए थे।[5] 18 वीं शताब्दी में एंटोनी लेवोइसियर ने रासायनिक तत्वों के आधुनिक सिद्धांत के साथ मध्यकालीन ऐल्किमी में उत्कृष्ट तत्वों को परिवर्तित कर दिया, और जॉन डाल्टन ने विभिन्न रासायनिक प्रक्रियाओं को समझाने के लिए परमाणुओं की धारणा (कणिका के रसविद्या संबंधी सिद्धांत से) विकसित की। परमाणुओं का विघटन एक विशिष्ट प्रक्रिया है जिसमें रसायनविद् द्वारा प्राप्त की जा सकने वाली ऊर्जा से कहीं अधिक ऊर्जा सम्मिलित होती है।
आधुनिक भौतिकी
फ्रेडरिक सोड्डी द्वारा इसे पहली बार सचेतन रूप से आधुनिक भौतिकी पर प्रयुक्त किया गया था, जब उन्होंने 1901 में अर्नेस्ट रदरफोर्ड के साथ मिलकर यह पाया कि रेडियोधर्मी थोरियम स्वयं को रेडियम में परिवर्तित कर रहा था। कार्यान्वयन के क्षण में, सोड्डी ने बाद में याद किया, वह चिल्लाया: ''रदरफोर्ड, यह तत्वांतरण है''! रदरफोर्ड ने पलटकर कहा, ''ईसा के लिए, सोडी, इसे तत्वांतरण नहीं कहो। वे अपरसायनविद के रूप में हमारे सिर काट देंगे''।[6]
रदरफोर्ड और सोड्डी अल्फा क्षय प्रकार के रेडियोधर्मी क्षय के एक भाग के रूप में प्राकृतिक रूपांतरण देख रहे थे। पहला कृत्रिम रूपांतरण 1925 में पैट्रिक ब्लैकेट द्वारा पूरा किया गया था, जो रदरफोर्ड के अंतर्गत काम कर रहे एक शोध साथी थे,जिसमें नाइट्रोजन का ऑक्सीजन में रूपांतरण, नाइट्रोजन 14N + α → 17O + p पर निर्देशित अल्फा कणों का उपयोग करके किया गया था।[7] रदरफोर्ड ने 1919 में दिखाया था कि अल्फा बमबारी प्रयोगों से एक प्रोटॉन (उन्होंने इसे हाइड्रोजन परमाणु कहा था) उत्सर्जित किया गया था लेकिन उन्हें अवशिष्ट नाभिक के बारे में कोई जानकारी नहीं थी। ब्लैकेट के 1921-1924 के प्रयोगों ने एक कृत्रिम परमाणु रूपांतरण प्रतिक्रिया का पहला प्रायोगिक साक्ष्य प्रदान किया। ब्लैकेट ने अंतर्निहित एकीकरण प्रक्रिया और अवशिष्ट नाभिक की पहचान की सही पहचान की। 1932 में, रदरफोर्ड के सहयोगियों जॉन कॉकक्रॉफ्ट और अर्नेस्ट वाल्टन द्वारा पूरी तरह से कृत्रिम परमाणु प्रतिक्रिया और परमाणु रूपांतरण हासिल किया गया, जिन्होंने न्यूक्लियस को दो अल्फा कणों में विभाजित करने के लिए लिथियम-7 के विपरीत कृत्रिम रूप से त्वरित प्रोटॉन का उपयोग किया। इस कार्य को लोकप्रिय रूप से "परमाणु विभाजन" के रूप में जाना जाता था, हालांकि यह 1938 में ओट्टो हैन, लिसे मीटनर और उनके सहायक फ्रिट्ज स्ट्रैसमैन द्वारा भारी तत्वों में खोजी गई आधुनिक परमाणु विखंडन प्रतिक्रिया नहीं थी।[8] 1941 में, रूबी शेर, केनेथ बैनब्रिज और हर्बर्ट लॉरेंस एंडरसन ने पारा (तत्व) के सोने में परमाणु रूपांतरण की सूचना दी।[9]
बाद में बीसवीं शताब्दी में सितारों के अंदर तत्वों के रूपांतरण को विस्तृत किया गया, जो ब्रह्मांड में भारी तत्वों की सापेक्ष आधिक्य के लिए अधीन था। पहले पांच तत्वों को छोड़कर, जो महा विस्फोट और अन्य ब्रह्मांडीय किरण प्रक्रियाओं में उत्पन्न हुए थे, तारकीय नाभिक संश्लेषण बोरॉन से भारी सभी तत्वों की प्रचुरता के लिए अधीन था। उनके 1957 के पेपर सितारों में तत्वों का संश्लेषण में,[10] विलियम अल्फ्रेड फाउलर, मार्गरेट बर्बिज, जेफ्री बर्बिज और फ्रेड हॉयल ने समझाया कि कैसे अनिवार्य रूप से सभी लेकिन सबसे हल्के रासायनिक तत्वों की प्रचुरता को सितारों में नाभिक संश्लेषण की प्रक्रिया द्वारा समझाया जा सकता है।
सच्चे परमाणु रूपांतरण के अंतर्गत, व्युत्क्रम प्रतिक्रिया की तुलना में सोने को सीसे में बदलना कहीं अधिक आसान है, जो रसायनविदो ने उत्साहपूर्वक किया था। लंबे समय तक परमाणु रिएक्टर में सोना छोड़ कर न्यूट्रॉन प्रग्रहण और बीटा क्षय के माध्यम से सोने को सीसे में बदलना आसान होगा।[citation needed]
ग्लेन सीबॉर्ग ने बिस्मथ से सोने के कई हजार परमाणु तैयार किए, लेकिन शुद्ध हानि हुई।[11][12]
स्वर्ण संश्लेषण के बारे में अधिक जानकारी के लिए कीमती धातुओं का संश्लेषण देखें।
197Au + n → 198Au (अर्ध-जीवन 2.7 दिन) → 198Hg + n → 199Hg + n → 200Hg + n → 201Hg + n → 202Hg + n → 203Hg (अर्ध-जीवन 47 दिन) → 203Tl + n → 204Tl (अर्ध-जीवन 3.8 वर्ष) → 204Pb[further explanation needed]
ब्रह्मांड में रूपांतरण
महा विस्फोट को ब्रह्मांड में हाइड्रोजन (सभी ड्यूटेरियम सहित) और हीलियम की उत्पत्ति माना जाता है। हाइड्रोजन और हीलियम मिलकर ब्रह्मांड में साधारण पदार्थ के द्रव्यमान का 98% हिस्सा बनाते हैं, जबकि अन्य 2% बाकी सब कुछ बनाते हैं। बिग बैंग ने कुछ मात्रा में लिथियम, फीरोज़ा और शायद बोरॉन का भी उत्पादन किया। अधिक लिथियम, बेरिलियम और बोरॉन बाद में, एक प्राकृतिक परमाणु प्रतिक्रिया, ब्रह्मांडीय किरण स्पेलेशन में उत्पादित किए गए थे।
तारकीय नाभिक संश्लेषण कार्बन से यूरेनियम तक स्थिर समस्थानिक और मौलिक न्यूक्लाइड के रूप में ब्रह्मांड में स्वाभाविक रूप से होने वाले अन्य सभी तत्वों के लिए अधीन है। ये बिग बैंग के बाद, स्टार बनने के दौरान हुए। कार्बन से लोहे तक के कुछ हल्के तत्वों का निर्माण तारों में हुआ और असिम्प्टोटिक विशाल शाखा (एजीबी) सितारों द्वारा अंतरिक्ष में छोड़ा गया। ये एक प्रकार के लाल विशालकाय हैं जो अपने बाहरी वातावरण को फुलाते हैं, जिसमें कार्बन से लेकर निकेल और आयरन तक कुछ तत्व होते हैं। 64 परमाणु द्रव्यमान इकाइयों से अधिक परमाणु भार वाले सभी तत्व अधिनव तारा सितारों में न्यूट्रॉन प्रग्रहण के माध्यम से उत्पन्न होते हैं, जो दो प्रक्रियाओं में उप-विभाजित होते हैं: आआर-प्रक्रिया और एस-प्रक्रिया ।
ऐसा माना जाता है कि सौर मंडल वर्तमान से लगभग 4.6 अरब वर्ष पहले, ऐसे सितारों की एक बड़ी संख्या द्वारा पहले बनाए गए धूल के कणों में भारी तत्वों वाले हाइड्रोजन और हीलियम के एक बादल से संघनित हुआ था। इन अनाजों में ब्रह्मांड के इतिहास में पहले रूपांतरण द्वारा गठित भारी तत्व सम्मिलित थे।
तारों में रूपांतरण की ये सभी प्राकृतिक प्रक्रियाएँ आज भी हमारी अपनी आकाशगंगा और अन्य आकाशगंगाओं में जारी हैं। ऊर्जा उत्पन्न करने के लिए तारे हाइड्रोजन और हीलियम को भारी और भारी तत्वों में संलयी करते हैं। उदाहरण के लिए, एसएन 1987ए जैसे अधिनव तारा सितारों के देखे गए प्रकाश वक्र उन्हें अंतरिक्ष में रेडियोधर्मी निकल और कोबाल्ट की बड़ी मात्रा (पृथ्वी के द्रव्यमान की तुलना में) को नष्ट करते हुए दिखाते हैं। हालाँकि, इस सामग्री का बहुत कम हिस्सा पृथ्वी तक पहुँचता है। आज पृथ्वी पर अधिकांश प्राकृतिक संचारण ब्रह्मांडीय किरणों (जैसे कार्बन-14 का उत्पादन) और सौर प्रणाली के प्रारंभिक गठन (जैसे पोटेशियम-40, यूरेनियम और थोरियम) से बचे हुए रेडियोधर्मी आदिम न्यूक्लाइड के रेडियोधर्मी क्षय द्वारा मध्यस्थता से होता है। ), साथ ही इन न्यूक्लाइड्स (रेडियम, रेडॉन, पोलोनियम, आदि) के उत्पादों का रेडियोधर्मी क्षय। क्षय श्रृंखला देखें।
परमाणु अपशिष्ट का कृत्रिम रूपांतरण
सिंहावलोकन
ट्रांसयूरेनियम तत्वों का रूपांतरण (यानी एक्टिनाइड्स माइनस जंगी टू यूरेनियम) जैसे कि प्लूटोनियम के समस्थानिक (हल्के पानी के रिएक्टरों में लगभग 1wt% परमाणु ईंधन या मामूली एक्टिनाइड्स (MAs, यानी नेप्टुनियम, रेडियोऐक्टिव और अदालत ) का उपयोग करते हैं), लगभग 0.1wt परमाणु ईंधन का उपयोग किए गए हल्के जल रिएक्टरों में % प्रत्येक में लंबे समय तक रहने वाले समस्थानिकों के अनुपात को कम करके रेडियोधर्मी अपशिष्ट के प्रबंधन से उत्पन्न कुछ समस्याओं को हल करने में मदद करने की क्षमता है। (यह उच्च स्तर के अपशिष्ट के लिए एक गहरे भूवैज्ञानिक भंडार की आवश्यकता से इंकार नहीं करता है।) जब परमाणु रिएक्टर में तेज न्यूट्रॉन के साथ विकिरण किया जाता है, तो ये समस्थानिक परमाणु विखंडन से गुजर सकते हैं, मूल एक्टिनाइड समस्थानिक को नष्ट कर सकते हैं और रेडियोधर्मी और गैर-रेडियोधर्मी स्पेक्ट्रम का उत्पादन कर सकते हैं। विखंडन उत्पादों।
सबसे कठिन लंबे समय तक रहने वाली प्रजातियों को हटाने के लिए संचारण प्रतिक्रियाओं को प्रेरित करने के लिए एक्टिनाइड युक्त सिरेमिक लक्ष्यों को न्यूट्रॉन के साथ बमबारी किया जा सकता है। इनमें एक्टिनाइड युक्त ठोस घोल सम्मिलित हो सकते हैं जैसे (Am,Zr)N, (Am,Y)N, (Zr,Cm)O2, (Zr,Cm,Am)O2, (Zr,Am,Y)O2 या सिर्फ एक्टिनाइड चरण जैसे AmO2, NpO2, NpN, AmN जैसे कुछ निष्क्रिय चरणों के साथ मिश्रित MgO,MgAl2O4, (Zr,Y)O2,TiN और ZrN. गैर-रेडियोधर्मी निष्क्रिय चरणों की भूमिका मुख्य रूप से न्यूट्रॉन विकिरण के अंतर्गत लक्ष्य को स्थिर यांत्रिक व्यवहार प्रदान करना है।[13] हालांकि इस पी एंड टी (विभाजन और प्रसारण) रणनीति के साथ मुद्दे हैं:
- सबसे पहले, यह रूपांतरण से गुजरने से पहले लंबे समय तक रहने वाले विखंडन उत्पाद समस्थानिक को अलग करने की महंगी और बोझिल आवश्यकता से सीमित है।
- भी, कुछ दीर्घजीवी विखण्डन उत्पाद,[which?] उनके छोटे न्यूट्रॉन प्रग्रहण क्रॉस सेक्शन के कारण, प्रभावी रूपांतरण होने के लिए पर्याप्त न्यूट्रॉन को प्रग्रहण करने में असमर्थ हैं।
टोक्यो टेक में सातोशी चिबा के नेतृत्व में नया अध्ययन (फास्ट स्पेक्ट्रम रिएक्टरों के साथ परमाणु प्रसारण द्वारा लंबे समय तक रहने वाले विखंडन उत्पादों को कम करने की विधि कहा जाता है)[14]) दर्शाता है कि समस्थानिक पृथक्करण की आवश्यकता के बिना तीव्र स्पेक्ट्रम रिएक्टरों में लंबे समय तक रहने वाले विखंडन उत्पादों का प्रभावी रूपांतरण प्राप्त किया जा सकता है। यह एक yttrium deuteride मॉडरेटर जोड़कर प्राप्त किया जा सकता है।[15]
रिएक्टर प्रकार
उदाहरण के लिए, प्लूटोनियम को एमओएक्स ईंधन में पुन: संसाधित किया जा सकता है और मानक रिएक्टरों में परिवर्तित किया जा सकता है। हालांकि, यह खर्च किए गए एमओएक्स ईंधन में प्लूटोनियम -240 के संचय द्वारा सीमित है, जो न तो विशेष रूप से उपजाऊ है (फिजाइल प्लूटोनियम 241 में रूपांतरण होता है, लेकिन प्लूटोनियम -239 द्वारा न्यूट्रॉन प्रग्रहण से अधिक प्लूटोनियम-240 के उत्पादन की तुलना में कम दरों पर ) न ही तापीय न्यूट्रॉन के साथ विखंडनीय। यहां तक कि फ्रांस में परमाणु ऊर्जा जैसे देश जो बड़े पैमाने पर परमाणु पुनर्संसाधन का अभ्यास करते हैं, समान्य रूप से उपयोग किए गए एमओएक्स-ईंधन की प्लूटोनियम सामग्री का पुन: उपयोग नहीं करते हैं। भारी तत्वों को तेजी से रिएक्टरों में परिवर्तित किया जा सकता है, लेकिन संभवतः एक उप-राजनीतिक रिएक्टर में अधिक प्रभावी ढंग से जिसे कभी-कभी ऊर्जा प्रवर्धक के रूप में जाना जाता है और जिसे चार्ल्स रुबिया द्वारा तैयार किया गया था। परमाणु संलयन न्यूट्रॉन स्रोत भी उपयुक्त रूप में प्रस्तावित किए गए हैं।[16][17][18]
ईंधन प्रकार
ऐसे कई ईंधन हैं जो चक्र के प्रारंभ में अपनी प्रारंभिक संरचना में प्लूटोनियम को सम्मिलित कर सकते हैं और चक्र के अंत में इस तत्व की थोड़ी मात्रा होती है। चक्र के दौरान, बिजली रिएक्टर में प्लूटोनियम को जलाया जा सकता है, जिससे बिजली पैदा होती है। यह प्रक्रिया न केवल बिजली उत्पादन के दृष्टिकोण से दिलचस्प है, बल्कि हथियार कार्यक्रम से अधिशेष हथियार ग्रेड प्लूटोनियम और परमाणु ईंधन का उपयोग करने वाले परमाणु ईंधन के परिणामस्वरूप प्लूटोनियम की खपत की क्षमता के कारण भी है।
मिश्रित ऑक्साइड ईंधन इनमें से एक है। प्लूटोनियम और यूरेनियम के ऑक्साइड का इसका मिश्रण कम समृद्ध यूरेनियम ईंधन का एक विकल्प है, जो मुख्य रूप से हल्के जल रिएक्टरों में उपयोग किया जाता है। चूंकि यूरेनियम मिश्रित ऑक्साइड में सम्मिलित है, हालांकि प्लूटोनियम को जलाया जाएगा, दूसरी पीढ़ी के प्लूटोनियम का उत्पादन U-238 के रेडिएटिव प्रग्रहण और बाद के दो बीटा माइनस क्षय के माध्यम से किया जाएगा।
प्लूटोनियम और थोरियम वाले ईंधन भी एक विकल्प हैं। इनमें प्लूटोनियम के विखंडन में छोड़े गए न्यूट्रॉन को Th-232 द्वारा प्रग्रहण किया जाता है। इस रेडिएटिव प्रग्रहण के बाद, Th-232 Th-233 बन जाता है, जो दो बीटा माइनस क्षय से गुजरता है जिसके परिणामस्वरूप विखंडनीय समस्थानिक U-233 का उत्पादन होता है। Th-232 के लिए रेडिएटिव प्रग्रहण क्रॉस सेक्शन U-238 की तुलना में तीन गुना से अधिक है, जो U-238 की तुलना में विखंडनीय ईंधन में उच्च रूपांतरण प्रदान करता है। ईंधन में यूरेनियम की अनुपस्थिति के कारण, दूसरी पीढ़ी के प्लूटोनियम का उत्पादन नहीं होता है, और मिश्रित ऑक्साइड ईंधन की तुलना में प्लूटोनियम के जलने की मात्रा अधिक होगी। हालांकि, U-233, जो विखंडनीय है, प्रयुक्त परमाणु ईंधन में सम्मिलित रहेगा। प्लूटोनियम-थोरियम ईंधन में हथियार-ग्रेड और रिएक्टर-ग्रेड प्लूटोनियम का उपयोग किया जा सकता है, हथियार-ग्रेड प्लूटोनियम वह है जो पु-239 की मात्रा में बड़ी कमी दर्शाता है।
लंबे समय तक रहने वाले विखंडन उत्पाद
Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
---|---|---|---|---|
(Ma) | (%)[a 2] | (keV) | ||
99Tc | 0.211 | 6.1385 | 294 | β |
126Sn | 0.230 | 0.1084 | 4050[a 3] | βγ |
79Se | 0.327 | 0.0447 | 151 | β |
93Zr | 1.53 | 5.4575 | 91 | βγ |
135Cs | 2.3 | 6.9110[a 4] | 269 | β |
107Pd | 6.5 | 1.2499 | 33 | β |
129I | 15.7 | 0.8410 | 194 | βγ |
कुछ रेडियोधर्मी विखंडन उत्पादों को रूपांतरण द्वारा कम-जीवित रेडियोआइसोटोप में परिवर्तित किया जा सकता है। ग्रेनोबल में एक वर्ष से अधिक आधे जीवन वाले सभी विखंडन उत्पादों के रूपांतरण का अध्ययन किया गया है।[19] अलग-अलग परिणामों के साथ।
Sr-90 और Cs-137, लगभग 30 वर्षों के आधे जीवन के साथ, उपयोग किए गए परमाणु ईंधन में दशकों से ~305 वर्षों के पैमाने पर सबसे बड़ा विकिरण (गर्मी सहित) उत्सर्जक हैं (Sn-121m कम उपज के कारण नगण्य है ), और आसानी से प्रसारित नहीं होते हैं क्योंकि उनके न्यूट्रॉन अवशोषण न्यूट्रॉन क्रॉस-सेक्शन कम होते हैं। इसके बजाय, उन्हें क्षय होने तक बस संग्रहीत किया जाना चाहिए। यह देखते हुए कि भंडारण की इतनी लंबाई आवश्यक है, छोटे आधे जीवन वाले विखंडन उत्पादों को भी क्षय होने तक संग्रहीत किया जा सकता है।
अगला लंबे समय तक चलने वाला विखंडन उत्पाद SM-151 है, जिसका आधा जीवन 90 वर्ष है, और यह इतना अच्छा न्यूट्रॉन अवशोषक है कि इसका अधिकांश भाग परमाणु ईंधन के उपयोग के दौरान ही परिवर्तित हो जाता है; हालाँकि, प्रभावी रूप से शेष Sm-151 को परमाणु अपशिष्ट में प्रसारित करने के लिए समैरियम के अन्य समस्थानिकों से अलग होने की आवश्यकता होगी। छोटी मात्रा और इसकी कम-ऊर्जा रेडियोधर्मिता को देखते हुए, एसएम-151 सीनियर-90 और सीएस-137 की तुलना में कम खतरनाक है और इसे ~ 970 वर्षों के लिए क्षय के लिए भी छोड़ा जा सकता है।
अंत में, 7 दीर्घजीवी विखंडन उत्पाद हैं। उनके पास 211,000 वर्षों से 15.7 मिलियन वर्षों की सीमा में बहुत लंबा जीवन है। उनमें से दो, Tc-99 और आयोडीन -129|I-129, पर्यावरण में संभावित जोखिम के लिए पर्याप्त मोबाइल हैं, मुक्त हैं (टेक्नेटियम में कोई ज्ञात स्थिर समस्थानिक नहीं है) या ज्यादातर एक ही तत्व के स्थिर समस्थानिकों के मिश्रण से मुक्त हैं, और न्यूट्रॉन क्रॉस सेक्शन हैं जो छोटे हैं लेकिन रूपांतरण का समर्थन करने के लिए पर्याप्त हैं।
इसके अलावा, Tc-99 रिएक्टर स्थिरता के लिए ऋणात्मक प्रतिक्रिया के लिए डॉपलर चौड़ीकरण की आपूर्ति में यूरेनियम-238|U-238 का स्थानापन्न कर सकता है।[20]
प्रस्तावित रूपांतरण योजनाओं के अधिकांश अध्ययनों ने टेक्नेटियम ग्रहण कर लिया है99टीसी, आयोडीन-129|129I, और ट्रांसयूरेनियम तत्वों को रूपांतरण के लक्ष्य के रूप में, अन्य विखंडन उत्पादों, सक्रियण उत्पादों और संभवतः पुनर्संसाधित यूरेनियम के रूप में अपशिष्ट के रूप में शेष।[21] टेक्नटियम-99 को परमाणु चिकित्सा में एक अपशिष्ट उत्पाद के रूप में टेक्नेटियम -99 m से भी उत्पादित किया जाता है, एक परमाणु आइसोमर जो अपनी जमीनी अवस्था में क्षय हो जाता है जिसका आगे कोई उपयोग नहीं होता है। के क्षय उत्पाद के कारण 100
Tc (का परिणाम 99
Tc थर्मल न्यूट्रॉन को प्रग्रहण करना) अपेक्षाकृत कम आधे जीवन के साथ दयाता, एक कीमती धातु के स्थिर समस्थानिक के साथ क्षय हो रहा है, रूपांतरण के लिए कुछ आर्थिक प्रोत्साहन भी हो सकता है, अगर लागत को अपेक्षाकृत अधिक कम लाया जा सकता है।
शेष 5 लंबे समय तक चलने वाले विखंडन उत्पादों में से से-79, Sn-126 और Pd-107 का उत्पादन कम मात्रा में होता है (कम से कम आज के तापीय न्यूट्रॉन में, यूरेनियम-235|U-235-बर्निंग हल्के पानी के रिएक्टर) और अंतिम दो अपेक्षाकृत निष्क्रिय होना चाहिए। अन्य दो, Zr-93 और Cs-135, बड़ी मात्रा में उत्पादित होते हैं, लेकिन पर्यावरण में अत्यधिक मोबाइल भी नहीं होते हैं। उन्हें एक ही तत्व के अन्य समस्थानिकों की बड़ी मात्रा में भी मिलाया जाता है। ज़िरकोनियम न्यूट्रॉन के लिए लगभग पारदर्शी होने के कारण ईंधन की छड़ों में क्लैडिंग के रूप में उपयोग किया जाता है, लेकिन थोड़ी मात्रा में 93
Zr नियमित Zircaloy से न्यूट्रॉन अवशोषण द्वारा बहुत अधिक प्रभाव के बिना उत्पादित किया जाता है। चाहे {{chem|93|Zr}नई क्लैडिंग सामग्री के लिए } का पुन: उपयोग किया जा सकता है, इस प्रकार अभी तक बहुत अधिक अध्ययन का विषय नहीं रहा है।
यह भी देखें
- न्यूट्रॉन सक्रियण
- परमाणु शक्ति
- परमाणु अपशिष्ट उपचार प्रौद्योगिकियों की सूची
- कीमती धातुओं का संश्लेषण
- उपजाऊ सामग्री
संदर्भ
- ↑ Lehmann, W.M. (2000). "परमाणु इंजीनियरिंग में रूपांतरण" [Nuclear Transmutation]. Elektrizitaetswirtschaft (in Deutsch). Frankfurt am Main: VWEW-Energieverlag GmbH. 99 (1–2): 51–52. ISSN 0013-5496. INIS 31018687.
- ↑ http://www.oecd-nea.org/trw/ "Transmutation of Radioactive Waste." Nuclear Energy Agency. Feb 3rd 2012.
- ↑ "Alchemy", Dictionary.com
- ↑ John Hines, II, R. F. Yeager. John Gower, Trilingual Poet: Language, Translation, and Tradition. Boydell & Brewer. 2010. p.170
- ↑ Lawrence Principe. New Narratives in Eighteenth-Century Chemistry. Springer. 2007. p.8
- ↑ Muriel Howorth, Pioneer Research on the Atom: The Life Story of Frederick Soddy, New World, London 1958, pp 83-84; Lawrence Badash, Radium, Radioactivity and the Popularity of Scientific Discovery, Proceedings of the American Philosophical Society 122,1978: 145-54; Thaddeus J. Trenn, The Self-Splitting Atom: The History of the Rutherford-Soddy Collaboration, Taylor & Francis, London, 1977, pp 42, 58-60, 111-17.
- ↑ "Rutherford's Nuclear World: The Story of the Discovery of the Nucleus | Sections | American Institute of Physics".
- ↑ Cockcroft and Walton split lithium with high energy protons April 1932. Archived 2012-09-02 at the Wayback Machine
- ↑ R. Sherr, K. T. Bainbridge, and H. H. Anderson (1 October 1941). "फास्ट न्यूट्रॉन द्वारा पारा का रूपांतरण". Physical Review. 60 (7): 473–479. Bibcode:1941PhRv...60..473S. doi:10.1103/PhysRev.60.473. Retrieved 20 June 2022.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ William Alfred Fowler, Margaret Burbidge, Geoffrey Burbidge, and Fred Hoyle, 'Synthesis of the Elements in Stars', Reviews of Modern Physics, vol. 29, Issue 4, pp. 547–650
- ↑ Aleklett, K.; Morrissey, D.; Loveland, W.; McGaughey, P.; Seaborg, G. (1981). "Energy dependence of 209Bi fragmentation in relativistic nuclear collisions". Physical Review C. 23 (3): 1044. Bibcode:1981PhRvC..23.1044A. doi:10.1103/PhysRevC.23.1044.
- ↑ Matthews, Robert (December 2, 2001). "पारस पत्थर". The Daily Telegraph. Archived from the original on July 23, 2013. Retrieved July 23, 2013.
- ↑ "Crystalline Materials for Actinide Immobilisation". London: Imperial College Press. 2010. p. 198. Archived from the original on 9 March 2012.
- ↑ Chiba, S.; Wakabayashi, T.; Tachi, Y.; Takaki, N.; Terashima, A.; Okumura, S.; Yoshida, T. (2017). "फास्ट स्पेक्ट्रम रिएक्टरों के साथ परमाणु रूपांतरण द्वारा लंबे समय तक रहने वाले विखंडन उत्पादों को कम करने की विधि". Scientific Reports. 7 (1): 13961. Bibcode:2017NatSR...713961C. doi:10.1038/s41598-017-14319-7. PMC 5654822. PMID 29066843.
- ↑ A fast reactor system to shorten the lifetime of long-lived fission products
- ↑ Rita Plukiene, Evolution Of Transuranium Isotopic Composition In Power Reactors And Innovative Nuclear Systems For Transmutation Archived 2007-09-27 at the Wayback Machine, PhD Thesis, Vytautas Magnus University, 2003, retrieved January 2008
- ↑ Takibayev A., Saito M., Artisyuk V., and Sagara H., 'Fusion-driven transmutation of selected long-lived fission products', Progress in nuclear energy, Vol. 47, 2005, retrieved January 2008.
- ↑ Transmutation of Transuranic Elements and Long Lived Fission Products in Fusion Devices, Y. Gohar, Argonne National Laboratory
- ↑ Method for net decrease of hazardous radioactive nuclear waste materials - US Patent 4721596 Description
- ↑ Transmutation of Selected Fission Products in a Fast Reactor
- ↑ The Nuclear Alchemy Gamble – Institute for Energy and Environmental Research
बाहरी संबंध
- "Radioactive change", Rutherford & Soddy article (1903), online and analyzed on Bibnum [click 'à télécharger' for English version].