एडी-धारा परीक्षण: Difference between revisions
(Created page with "{{Short description|Electromagnetic method of non-destructive testing of conductive materials}} {{Cleanup bare URLs|date=August 2022}} {{more citations needed|date=February 20...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Electromagnetic method of non-destructive testing of conductive materials}} | {{Short description|Electromagnetic method of non-destructive testing of conductive materials}} | ||
{{Cleanup bare URLs|date= | {{Cleanup bare URLs|date=अगस्त 2022}} | ||
{{more citations needed|date= | {{more citations needed|date=फ़रवरी 2012}} | ||
भंवर धारा परीक्षण (सामान्यतः भंवर धारा परीक्षण और ईसीटी के रूप में भी देखा जाता है) गैर-विनाशकारी परीक्षण (NDT) में उपयोग किए जाने वाले कई [[विद्युत चुम्बकीय परीक्षण]] विधियों में से एक है, जो [[प्रवाहकीय]] सामग्रियों में सतह और उप-सतह की त्रुटियों को ज्ञात करने और उनकी पहचान करने के लिए विद्युत चुम्बकीय प्रेरण का उपयोग करता है। | |||
== इतिहास == | == इतिहास == | ||
भंवर धारा परीक्षण (ECT) परीक्षण के लिए एक प्रविधि के रूप में इसकी जड़ें [[विद्युत]] चुंबकत्व में पाई जाती हैं। भंवर धाराओं को प्रथम बार 1824 में फ्रांकोइस अरागो द्वारा प्रेक्षित किया गया था, परन्तु फ्रांसीसी भौतिक विज्ञानी लियोन फौकॉल्ट को 1855 में उनकी खोज करने का श्रेय दिया जाता है। ईसीटी बड़े पैमाने पर अंग्रेजी वैज्ञानिक [[माइकल फैराडे]] की 1831 में विद्युत चुम्बकीय प्रेरण की खोज के परिणामस्वरूप परन्तु हुई। फैराडे ने पाया कि जब एक बंद पथ जिसके माध्यम से धारा प्रसारित हो सकता है और एक समय-भिन्न चुंबकीय क्षेत्र एक कंडक्टर (या इसके विपरीत) से गुजरता है, इस कंडक्टर के माध्यम से एक [[विद्युत प्रवाह]] प्रवाहित होता है। | |||
1879 में, एक अन्य अंग्रेजी में जन्मे वैज्ञानिक, [[डेविड एडवर्ड ह्यूजेस]] ने प्रदर्शित किया कि कैसे विभिन्न चालकता और पारगम्यता की धातुओं के संपर्क में रखे जाने पर [[विद्युत चुम्बकीय कुंडल]] के गुण | 1879 में, एक अन्य अंग्रेजी में जन्मे वैज्ञानिक, [[डेविड एडवर्ड ह्यूजेस]] ने प्रदर्शित किया कि कैसे विभिन्न चालकता और पारगम्यता की धातुओं के संपर्क में रखे जाने पर [[विद्युत चुम्बकीय कुंडल]] के गुण परिवर्तित हो जाते हैं, जिसे धातुकर्म सॉर्टिंग परीक्षणों पर अनुप्रयुक्त किया गया था।<ref>Ivor Hughes. [http://davidedwardhughes.com/David_Edward_Hughes.pdf "[[The AWA Review]]: Professor David Edward Hughes"], 2009, retrieved July 1, 2015</ref> | ||
[[जर्मनी]] में [[द्वितीय विश्व युद्ध]] के | |||
[[जर्मनी]] में [[द्वितीय विश्व युद्ध]] के पर्यन्त औद्योगिक अनुप्रयोगों के लिए एक गैर-विनाशकारी परीक्षण प्रविधि के रूप में ईसीटी का अधिकांश विकास किया गया था। कैसर-विल्हेम संस्थान (अब [[कैसर विल्हेम सोसायटी]]) के लिए कार्य करते हुए प्राध्यापक फ्रेडरिक फॉर्स्टर ने औद्योगिक उपयोग के लिए भंवरधारा प्रविधि को अपनाया, चालकता को मापने वाले उपकरणों को विकसित किया और मिश्रित लौह घटकों को छांटा। युद्ध के बाद, 1948 में, फॉर्स्टर ने एक उद्योग की स्थापना की, जिसे अब [[फ़ॉस्टर समूह]] कहा जाता है, जहाँ उन्होंने व्यावहारिक ईसीटी उपकरणों के विकास और उनके विपणन में काफी प्रगति की।<ref name="qualitymag.com">Nikhil Jahain. [http://www.qualitymag.com/articles/92056-the-rebirth-of-eddy-current-nondestructive-testing "The Rebirth of Eddy Current Testing"], 2014, retrieved July 1, 2015</ref> | |||
भंवर धारा परीक्षण अब दोष का पता लगाने के साथ-साथ मोटाई और चालकता माप के लिए व्यापक रूप से उपयोग की जाने वाली और अच्छी तरह से समझी जाने वाली निरीक्षण प्रविधि है। | |||
2012 में वैश्विक एनडीटी उपकरण बाजार में फ्रॉस्ट एंड सुलिवन विश्लेषण ने $ 220 मिलियन में चुंबकीय और विद्युत चुम्बकीय एनडीटी उपकरण बाजार का अनुमान लगाया, जिसमें पारंपरिक भंवर धारा, चुंबकीय कण निरीक्षण, भंवर धारा परीक्षण # भंवर धारा सरणी, और [[दूरस्थ क्षेत्र परीक्षण]] सम्मिलित हैं। फील्ड परीक्षण। यह बाजार 2016 तक 7.5% चक्रवृद्धि वार्षिक वृद्धि दर से लगभग $315 मिलियन तक बढ़ने का अनुमान है।<ref name="qualitymag.com" /> | |||
== ईसीटी सिद्धांत == | == ईसीटी सिद्धांत == | ||
[[File:Technology scheme eddy current eng.png|alt=Visualization of Eddy Currens Induction|thumb| | [[File:Technology scheme eddy current eng.png|alt=Visualization of Eddy Currens Induction|thumb|भंवर धाराओं प्रेरण का दृश्य<ref>{{Cite web|url=https://www.suragus.com/en/technology/eddy-current/|title=SURAGUS Technology of Eddy Current Testing}}</ref>]]अपने सबसे मूलभूत रूप में - एकल-तत्व ईसीटी जांच - प्रवाहकीय तार का एक तार एक वैकल्पिक विद्युत प्रवाह से उत्साहित होता है। यह तार का तार अपने चारों ओर एक वैकल्पिक [[चुंबकीय क्षेत्र]] उत्पन्न करता है। चुंबकीय क्षेत्र उसी आवृत्ति पर दोलन करता है जिस आवृत्ति पर कुंडली में प्रवाहित धारा प्रवाहित होती है। जब कुंडली एक प्रवाहकीय सामग्री के पास पहुंचता है, तो कुंडली में विपरीत धाराएं सामग्री - भंवर धाराओं में प्रेरित होती हैं। | ||
परीक्षण वस्तु की विद्युत चालकता और चुंबकीय पारगम्यता में भिन्नता, और दोषों की उपस्थिति भंवर के वर्तमान में परिवर्तन और चरण और आयाम में एक समान परिवर्तन का कारण बनती है जिसे कुंडल में प्रतिबाधा परिवर्तन को मापकर ज्ञात किया जा सकता है, जो एक गप्पी संकेत है दोषों की उपस्थिति से।<ref>Joseph M. Buckley. [http://www.joe.buckley.net/papers/eddyc.pdf "An Introduction to Eddy Current Testing Theory and Technology"], retrieved July 1, 2015</ref> यह मानक (पैनकेक कुंडली) ईसीटी का आधार है। भंवरधारा परीक्षण प्रक्रिया में एनडीटी किट का उपयोग किया जा सकता है।<ref>https://customers.phtool.com/custom-reference-standards/eddy-current-bolt-hole-standards/</ref> | |||
ईसीटी में अनुप्रयोगों की एक विस्तृत श्रृंखला है। चूंकि ईसीटी प्रकृति में विद्युत है, यह प्रवाहकीय सामग्री तक सीमित है। भंवर धाराएं और प्रवेश की गहराई ([[त्वचा की गहराई]]) उत्पन्न करने की भौतिक सीमाएं भी हैं।<ref>Terry Hennigar and Mike Wright. "Eddy Current Testing Technology", 1st edition, 2012</ref> | ईसीटी में अनुप्रयोगों की एक विस्तृत श्रृंखला है। चूंकि ईसीटी प्रकृति में विद्युत है, यह प्रवाहकीय सामग्री तक सीमित है। भंवर धाराएं और प्रवेश की गहराई ([[त्वचा की गहराई]]) उत्पन्न करने की भौतिक सीमाएं भी हैं।<ref>Terry Hennigar and Mike Wright. "Eddy Current Testing Technology", 1st edition, 2012</ref> | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
भंवर धारा परीक्षण के दो प्रमुख अनुप्रयोग सतह निरीक्षण और नलिका निरीक्षण हैं। एयरोस्पेस उद्योग में भूतल निरीक्षण का व्यापक रूप से उपयोग किया जाता है, परन्तु [[पेट्रोकेमिकल उद्योग]] में भी। प्रविधि बहुत संवेदनशील है और तंग दरारों का पता लगा सकती है। भूतल निरीक्षण लोह चुंबकीय और गैर-लोह चुंबकीय सामग्री दोनों पर किया जा सकता है।<ref>{{Cite journal|title = हीट एक्सचेंजर टयूबिंग के लिए एनडीटी तकनीकों का चयन|last = Birring|first = Anmol|date = March 2001|journal = Materials Evaluation}}</ref><ref>{{Cite journal|title = पेट्रोकेमिकल उद्योग में एड़ी वर्तमान परीक्षण|last = Birring|first = Anmol|date = November 2003|journal = Materials Evaluation}}</ref> | |||
नलिका निरीक्षण सामान्यतः गैर-लोह चुंबकीय नलिका तक सीमित होता है और इसे पारंपरिक भंवर धारा परीक्षण के रूप में जाना जाता है। पारंपरिक ईसीटी का उपयोग परमाणु संयंत्रों में भाप जनरेटर ट्यूबिंग और बिजली और पेट्रोकेमिकल उद्योगों में हीट एक्सचेंजर्स ट्यूबिंग के निरीक्षण के लिए किया जाता है। प्रविधि गड्ढों का पता लगाने और आकार देने के लिए बहुत संवेदनशील है। दीवार के नुकसान या क्षरण का पता लगाया जा सकता है परन्तु आकार सही नहीं है। | |||
आंशिक रूप से चुंबकीय सामग्री के लिए पारंपरिक ईसीटी की भिन्नता पूर्ण संतृप्ति ईसीटी है। इस | आंशिक रूप से चुंबकीय सामग्री के लिए पारंपरिक ईसीटी की भिन्नता पूर्ण संतृप्ति ईसीटी है। इस प्रविधि में, चुंबकीय क्षेत्र को अनुप्रयुक्त करके पारगम्यता भिन्नताओं को दबा दिया जाता है। संतृप्ति जांच में पारंपरिक भंवर धारा कुंडली और चुंबकीय होते हैं। इस निरीक्षण का उपयोग आंशिक रूप से लोह चुंबकीय सामग्री जैसे निकल मिश्र धातु, डुप्लेक्स मिश्र धातु और पतली-लोह चुंबकीय सामग्री जैसे फेरिटिक क्रोमियम मोलिब्डेनम स्टेनलेस स्टील पर किया जाता है। एक संतृप्ति भंवर धारा प्रविधि का अनुप्रयोग सामग्री, ट्यूब की मोटाई और व्यास की पारगम्यता पर निर्भर करता है।<ref>H M Sadek. [http://www.ndt.net/article/insight/papers/insi_48_3_181.pdf "NDE technologies for the examination of heat exchangers and boiler tubes – principles, advantages and limitations"], Insight vol. 48 no. 3, March 2006, retrieved July 1, 2015</ref> | ||
कार्बन स्टील | कार्बन स्टील नलिका के लिए इस्तेमाल की जाने वाली विधि रिमोट फील्ड भंवर धारा परीक्षण है। यह विधि सामान्य दीवार के नुकसान के प्रति संवेदनशील है और छोटे गड्ढों और दरारों के प्रति संवेदनशील नहीं है। | ||
=== सतहों पर ईसीटी === | === सतहों पर ईसीटी === | ||
जब सतह के अनुप्रयोगों की बात आती है, तो किसी भी निरीक्षण | जब सतह के अनुप्रयोगों की बात आती है, तो किसी भी निरीक्षण प्रविधि का प्रदर्शन विशिष्ट स्थितियों पर निर्भर करता है - ज्यादातर प्रकार की सामग्री और दोष, परन्तु सतह की स्थिति आदि। हालांकि, ज्यादातर स्थितियों में, निम्नलिखित सत्य हैं: | ||
* | * विलेपन/प्रलेप पर प्रभावी: हाँ | ||
* | * कंप्यूटरीकृत अभिलेख रखना: आंशिक | ||
* 3डी/ | * 3डी/अग्रिम प्रतिबिंबन: कोई नहीं | ||
* उपयोगकर्ता निर्भरता: उच्च | * उपयोगकर्ता निर्भरता: उच्च | ||
* गति: कम | * गति: कम | ||
* निरीक्षण के | * निरीक्षण के पश्चात का विश्लेषण: कोई नहीं | ||
* रसायनों/उपभोग्य सामग्रियों की आवश्यकता है: नहीं | * रसायनों/उपभोग्य सामग्रियों की आवश्यकता है: नहीं | ||
=== अन्य अनुप्रयोग === | === अन्य अनुप्रयोग === | ||
ईसीटी | ईसीटी भी उपयोगी है। | ||
== अन्य | == अन्य भंवर धारा परीक्षण प्रविधिें == | ||
पारंपरिक ईसीटी की कुछ कमियों को दूर करने के लिए, विभिन्न सफलताओं के साथ अन्य | पारंपरिक ईसीटी की कुछ कमियों को दूर करने के लिए, विभिन्न सफलताओं के साथ अन्य भंवर धारा परीक्षण प्रविधिों का विकास किया गया। | ||
=== | === भंवर धारा सरणी === | ||
भंवर धारा सरणी (ईसीए) और पारंपरिक ईसीटी समान मूलभूत कार्य सिद्धांतों को साझा करते हैं। ECA प्रविधि विशिष्ट पैटर्न में व्यवस्थित कुंडली्स (मल्टीपल कुंडली्स) की एक सरणी को इलेक्ट्रॉनिक रूप से ड्राइव करने की क्षमता प्रदान करती है जिसे टोपोलॉजी कहा जाता है जो लक्ष्य दोषों के अनुकूल संवेदनशीलता प्रोफ़ाइल उत्पन्न करता है। अलग-अलग कुंडली के मध्य पारस्परिक [[अधिष्ठापन]] से बचने के लिए एक विशेष पैटर्न में कुंडली्स को [[बहुसंकेतन]] करके डेटा अधिग्रहण प्राप्त किया जाता है। ईसीए के लाभ हैं:<ref>[http://www.eddyfi.com/technologies/eddy-current-arrays/ Eddy Current Array], retrieved July 2, 2015</ref> | |||
* तेज निरीक्षण | * तेज निरीक्षण | ||
* व्यापक कवरेज | * व्यापक कवरेज | ||
Line 56: | Line 61: | ||
* ऐरे प्रोब को आसानी से लचीले या विशिष्टताओं के आकार के लिए डिज़ाइन किया जा सकता है, जिससे मुश्किल-से-पहुंच वाले क्षेत्रों का निरीक्षण करना आसान हो जाता है | * ऐरे प्रोब को आसानी से लचीले या विशिष्टताओं के आकार के लिए डिज़ाइन किया जा सकता है, जिससे मुश्किल-से-पहुंच वाले क्षेत्रों का निरीक्षण करना आसान हो जाता है | ||
ईसीए | ईसीए प्रविधि उल्लेखनीय रूप से शक्तिशाली उपकरण प्रदान करती है और निरीक्षण के पर्यन्त महत्वपूर्ण समय बचाती है।<ref>[http://www.azom.com/article.aspx?ArticleID=8016 Eddy Current Array (ECA) Theory, Practice and Application], retrieved July 2, 2015</ref> कार्बन स्टील वेल्ड में ECA निरीक्षण [http://www.astm.org/Standards/E3052.htm ASTM मानक E3052] द्वारा नियंत्रित किया जाता है। | ||
=== | === लोरेन्ट्स बल भंवर धारा परीक्षण === | ||
एक अलग, यद्यपि शारीरिक रूप से निकट से संबंधित चुनौती विद्युत रूप से ठोस सामग्री का संचालन करने में गहरी खामियों और असमानताओं का पता लगाना है। | एक अलग, यद्यपि शारीरिक रूप से निकट से संबंधित चुनौती विद्युत रूप से ठोस सामग्री का संचालन करने में गहरी खामियों और असमानताओं का पता लगाना है। | ||
[[File:LET.png|right|thumb|चित्र 1: एलईटी कार्य सिद्धांत। से अनुकूलित <ref name="Zec2013">M. Zec et al., Fast Technique for Lorentz Force Calculations in Nondestructive Testing Applications, COMPUMAG 2013, Budapest, Hungary</ref>]] | [[File:LET.png|right|thumb|चित्र 1: एलईटी कार्य सिद्धांत। से अनुकूलित <ref name="Zec2013">M. Zec et al., Fast Technique for Lorentz Force Calculations in Nondestructive Testing Applications, COMPUMAG 2013, Budapest, Hungary</ref>]]भंवर धारा परीक्षण के पारंपरिक संस्करण में एक वैकल्पिक (एसी) चुंबकीय क्षेत्र का उपयोग जांच की जाने वाली सामग्री के अंदर भंवर धाराओं को प्रेरित करने के लिए किया जाता है। यदि सामग्री में एक दरार या दोष होता है जो विद्युत चालकता के गैर-समान वितरण का स्थानिक वितरण करता है, तो भंवर धाराओं का मार्ग परेशान होता है और एसी चुंबकीय क्षेत्र उत्पन्न करने वाली कुंडली का प्रतिबाधा संशोधित होता है। इस कुंडली की प्रतिबाधा को मापकर, एक दरार का पता लगाया जा सकता है। चूंकि भंवर धाराएं एक एसी चुंबकीय क्षेत्र द्वारा उत्पन्न होती हैं, सामग्री के उपसतह क्षेत्र में उनका प्रवेश त्वचा के प्रभाव से सीमित होता है। भंवर धारा परीक्षण के पारंपरिक संस्करण की प्रयोज्यता इसलिए सामग्री की सतह के तत्काल आसपास के विश्लेषण तक सीमित है, सामान्यतः एक मिलीमीटर के क्रम में। कम आवृत्ति वाले कुंडली और अतिचालक चुंबकीय क्षेत्र सेंसर का उपयोग करके इस मूलभूत सीमा को पार करने के प्रयासों के कारण व्यापक अनुप्रयोग नहीं हुए हैं। | ||
एक हालिया | एक हालिया प्रविधि, जिसे लोरेन्ट्स बल भंवरधारा परीक्षण (एलईटी) कहा जाता है,<ref name="Zec2013"/><ref>Uhlig, R. P., Zec, M., Brauer, H. and Thess, A. 2012 "Lorentz Force Eddy Current Testing:a Prototype Model". Journal of Nondestructive Evaluation, 31, 357–372</ref> डीसी चुंबकीय क्षेत्र और सापेक्ष गति को अनुप्रयुक्त करने के फायदों का शोषण करता है जो विद्युत प्रवाहकीय सामग्री का गहरा और अपेक्षाकृत तेज़ परीक्षण प्रदान करता है। सिद्धांत रूप में, एलईटी पारंपरिक भंवर धारा परीक्षण के एक संशोधन का प्रतिनिधित्व करता है जिससे यह दो पहलुओं में भिन्न होता है, अर्थात् (i) कैसे भंवर धाराओं को प्रेरित किया जाता है और (ii) उनके गड़बड़ी का पता कैसे लगाया जाता है। एलईटी में परीक्षण के तहत कंडक्टर और एक स्थायी चुंबक के मध्य सापेक्ष गति प्रदान करके भंवर धाराएं उत्पन्न होती हैं (चित्र देखें)। यदि चुंबक किसी दोष से गुजर रहा है, तो उस पर कार्य करने वाला लोरेन्ट्स बल एक विकृति दिखाता है जिसका पता लगाना LET कार्य सिद्धांत की कुंजी है। यदि वस्तु दोषों से मुक्त है, तो परिणामी लोरेन्ट्स बल स्थिर रहता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
*[[एड़ी प्रवाह]] | *[[एड़ी प्रवाह|भंवर प्रवाह]] | ||
*गैर विनाशकारी परीक्षण | *गैर विनाशकारी परीक्षण | ||
* [[वैकल्पिक वर्तमान क्षेत्र माप]] | * [[वैकल्पिक वर्तमान क्षेत्र माप]] |
Revision as of 06:33, 6 April 2023
This article uses bare URLs, which are uninformative and vulnerable to link rot. (अगस्त 2022) (Learn how and when to remove this template message) |
This article needs additional citations for verification. (फ़रवरी 2012) (Learn how and when to remove this template message) |
भंवर धारा परीक्षण (सामान्यतः भंवर धारा परीक्षण और ईसीटी के रूप में भी देखा जाता है) गैर-विनाशकारी परीक्षण (NDT) में उपयोग किए जाने वाले कई विद्युत चुम्बकीय परीक्षण विधियों में से एक है, जो प्रवाहकीय सामग्रियों में सतह और उप-सतह की त्रुटियों को ज्ञात करने और उनकी पहचान करने के लिए विद्युत चुम्बकीय प्रेरण का उपयोग करता है।
इतिहास
भंवर धारा परीक्षण (ECT) परीक्षण के लिए एक प्रविधि के रूप में इसकी जड़ें विद्युत चुंबकत्व में पाई जाती हैं। भंवर धाराओं को प्रथम बार 1824 में फ्रांकोइस अरागो द्वारा प्रेक्षित किया गया था, परन्तु फ्रांसीसी भौतिक विज्ञानी लियोन फौकॉल्ट को 1855 में उनकी खोज करने का श्रेय दिया जाता है। ईसीटी बड़े पैमाने पर अंग्रेजी वैज्ञानिक माइकल फैराडे की 1831 में विद्युत चुम्बकीय प्रेरण की खोज के परिणामस्वरूप परन्तु हुई। फैराडे ने पाया कि जब एक बंद पथ जिसके माध्यम से धारा प्रसारित हो सकता है और एक समय-भिन्न चुंबकीय क्षेत्र एक कंडक्टर (या इसके विपरीत) से गुजरता है, इस कंडक्टर के माध्यम से एक विद्युत प्रवाह प्रवाहित होता है।
1879 में, एक अन्य अंग्रेजी में जन्मे वैज्ञानिक, डेविड एडवर्ड ह्यूजेस ने प्रदर्शित किया कि कैसे विभिन्न चालकता और पारगम्यता की धातुओं के संपर्क में रखे जाने पर विद्युत चुम्बकीय कुंडल के गुण परिवर्तित हो जाते हैं, जिसे धातुकर्म सॉर्टिंग परीक्षणों पर अनुप्रयुक्त किया गया था।[1]
जर्मनी में द्वितीय विश्व युद्ध के पर्यन्त औद्योगिक अनुप्रयोगों के लिए एक गैर-विनाशकारी परीक्षण प्रविधि के रूप में ईसीटी का अधिकांश विकास किया गया था। कैसर-विल्हेम संस्थान (अब कैसर विल्हेम सोसायटी) के लिए कार्य करते हुए प्राध्यापक फ्रेडरिक फॉर्स्टर ने औद्योगिक उपयोग के लिए भंवरधारा प्रविधि को अपनाया, चालकता को मापने वाले उपकरणों को विकसित किया और मिश्रित लौह घटकों को छांटा। युद्ध के बाद, 1948 में, फॉर्स्टर ने एक उद्योग की स्थापना की, जिसे अब फ़ॉस्टर समूह कहा जाता है, जहाँ उन्होंने व्यावहारिक ईसीटी उपकरणों के विकास और उनके विपणन में काफी प्रगति की।[2] भंवर धारा परीक्षण अब दोष का पता लगाने के साथ-साथ मोटाई और चालकता माप के लिए व्यापक रूप से उपयोग की जाने वाली और अच्छी तरह से समझी जाने वाली निरीक्षण प्रविधि है।
2012 में वैश्विक एनडीटी उपकरण बाजार में फ्रॉस्ट एंड सुलिवन विश्लेषण ने $ 220 मिलियन में चुंबकीय और विद्युत चुम्बकीय एनडीटी उपकरण बाजार का अनुमान लगाया, जिसमें पारंपरिक भंवर धारा, चुंबकीय कण निरीक्षण, भंवर धारा परीक्षण # भंवर धारा सरणी, और दूरस्थ क्षेत्र परीक्षण सम्मिलित हैं। फील्ड परीक्षण। यह बाजार 2016 तक 7.5% चक्रवृद्धि वार्षिक वृद्धि दर से लगभग $315 मिलियन तक बढ़ने का अनुमान है।[2]
ईसीटी सिद्धांत
अपने सबसे मूलभूत रूप में - एकल-तत्व ईसीटी जांच - प्रवाहकीय तार का एक तार एक वैकल्पिक विद्युत प्रवाह से उत्साहित होता है। यह तार का तार अपने चारों ओर एक वैकल्पिक चुंबकीय क्षेत्र उत्पन्न करता है। चुंबकीय क्षेत्र उसी आवृत्ति पर दोलन करता है जिस आवृत्ति पर कुंडली में प्रवाहित धारा प्रवाहित होती है। जब कुंडली एक प्रवाहकीय सामग्री के पास पहुंचता है, तो कुंडली में विपरीत धाराएं सामग्री - भंवर धाराओं में प्रेरित होती हैं।
परीक्षण वस्तु की विद्युत चालकता और चुंबकीय पारगम्यता में भिन्नता, और दोषों की उपस्थिति भंवर के वर्तमान में परिवर्तन और चरण और आयाम में एक समान परिवर्तन का कारण बनती है जिसे कुंडल में प्रतिबाधा परिवर्तन को मापकर ज्ञात किया जा सकता है, जो एक गप्पी संकेत है दोषों की उपस्थिति से।[4] यह मानक (पैनकेक कुंडली) ईसीटी का आधार है। भंवरधारा परीक्षण प्रक्रिया में एनडीटी किट का उपयोग किया जा सकता है।[5]
ईसीटी में अनुप्रयोगों की एक विस्तृत श्रृंखला है। चूंकि ईसीटी प्रकृति में विद्युत है, यह प्रवाहकीय सामग्री तक सीमित है। भंवर धाराएं और प्रवेश की गहराई (त्वचा की गहराई) उत्पन्न करने की भौतिक सीमाएं भी हैं।[6]
अनुप्रयोग
भंवर धारा परीक्षण के दो प्रमुख अनुप्रयोग सतह निरीक्षण और नलिका निरीक्षण हैं। एयरोस्पेस उद्योग में भूतल निरीक्षण का व्यापक रूप से उपयोग किया जाता है, परन्तु पेट्रोकेमिकल उद्योग में भी। प्रविधि बहुत संवेदनशील है और तंग दरारों का पता लगा सकती है। भूतल निरीक्षण लोह चुंबकीय और गैर-लोह चुंबकीय सामग्री दोनों पर किया जा सकता है।[7][8]
नलिका निरीक्षण सामान्यतः गैर-लोह चुंबकीय नलिका तक सीमित होता है और इसे पारंपरिक भंवर धारा परीक्षण के रूप में जाना जाता है। पारंपरिक ईसीटी का उपयोग परमाणु संयंत्रों में भाप जनरेटर ट्यूबिंग और बिजली और पेट्रोकेमिकल उद्योगों में हीट एक्सचेंजर्स ट्यूबिंग के निरीक्षण के लिए किया जाता है। प्रविधि गड्ढों का पता लगाने और आकार देने के लिए बहुत संवेदनशील है। दीवार के नुकसान या क्षरण का पता लगाया जा सकता है परन्तु आकार सही नहीं है।
आंशिक रूप से चुंबकीय सामग्री के लिए पारंपरिक ईसीटी की भिन्नता पूर्ण संतृप्ति ईसीटी है। इस प्रविधि में, चुंबकीय क्षेत्र को अनुप्रयुक्त करके पारगम्यता भिन्नताओं को दबा दिया जाता है। संतृप्ति जांच में पारंपरिक भंवर धारा कुंडली और चुंबकीय होते हैं। इस निरीक्षण का उपयोग आंशिक रूप से लोह चुंबकीय सामग्री जैसे निकल मिश्र धातु, डुप्लेक्स मिश्र धातु और पतली-लोह चुंबकीय सामग्री जैसे फेरिटिक क्रोमियम मोलिब्डेनम स्टेनलेस स्टील पर किया जाता है। एक संतृप्ति भंवर धारा प्रविधि का अनुप्रयोग सामग्री, ट्यूब की मोटाई और व्यास की पारगम्यता पर निर्भर करता है।[9] कार्बन स्टील नलिका के लिए इस्तेमाल की जाने वाली विधि रिमोट फील्ड भंवर धारा परीक्षण है। यह विधि सामान्य दीवार के नुकसान के प्रति संवेदनशील है और छोटे गड्ढों और दरारों के प्रति संवेदनशील नहीं है।
सतहों पर ईसीटी
जब सतह के अनुप्रयोगों की बात आती है, तो किसी भी निरीक्षण प्रविधि का प्रदर्शन विशिष्ट स्थितियों पर निर्भर करता है - ज्यादातर प्रकार की सामग्री और दोष, परन्तु सतह की स्थिति आदि। हालांकि, ज्यादातर स्थितियों में, निम्नलिखित सत्य हैं:
- विलेपन/प्रलेप पर प्रभावी: हाँ
- कंप्यूटरीकृत अभिलेख रखना: आंशिक
- 3डी/अग्रिम प्रतिबिंबन: कोई नहीं
- उपयोगकर्ता निर्भरता: उच्च
- गति: कम
- निरीक्षण के पश्चात का विश्लेषण: कोई नहीं
- रसायनों/उपभोग्य सामग्रियों की आवश्यकता है: नहीं
अन्य अनुप्रयोग
ईसीटी भी उपयोगी है।
अन्य भंवर धारा परीक्षण प्रविधिें
पारंपरिक ईसीटी की कुछ कमियों को दूर करने के लिए, विभिन्न सफलताओं के साथ अन्य भंवर धारा परीक्षण प्रविधिों का विकास किया गया।
भंवर धारा सरणी
भंवर धारा सरणी (ईसीए) और पारंपरिक ईसीटी समान मूलभूत कार्य सिद्धांतों को साझा करते हैं। ECA प्रविधि विशिष्ट पैटर्न में व्यवस्थित कुंडली्स (मल्टीपल कुंडली्स) की एक सरणी को इलेक्ट्रॉनिक रूप से ड्राइव करने की क्षमता प्रदान करती है जिसे टोपोलॉजी कहा जाता है जो लक्ष्य दोषों के अनुकूल संवेदनशीलता प्रोफ़ाइल उत्पन्न करता है। अलग-अलग कुंडली के मध्य पारस्परिक अधिष्ठापन से बचने के लिए एक विशेष पैटर्न में कुंडली्स को बहुसंकेतन करके डेटा अधिग्रहण प्राप्त किया जाता है। ईसीए के लाभ हैं:[10]
- तेज निरीक्षण
- व्यापक कवरेज
- कम ऑपरेटर निर्भरता - सरणी जांच मैन्युअल रास्टर स्कैन की तुलना में अधिक सुसंगत परिणाम देती है
- बेहतर पहचान क्षमता
- सरल स्कैन पैटर्न के कारण आसान विश्लेषण
- एन्कोडेड डेटा के कारण बेहतर स्थिति और आकार
- ऐरे प्रोब को आसानी से लचीले या विशिष्टताओं के आकार के लिए डिज़ाइन किया जा सकता है, जिससे मुश्किल-से-पहुंच वाले क्षेत्रों का निरीक्षण करना आसान हो जाता है
ईसीए प्रविधि उल्लेखनीय रूप से शक्तिशाली उपकरण प्रदान करती है और निरीक्षण के पर्यन्त महत्वपूर्ण समय बचाती है।[11] कार्बन स्टील वेल्ड में ECA निरीक्षण ASTM मानक E3052 द्वारा नियंत्रित किया जाता है।
लोरेन्ट्स बल भंवर धारा परीक्षण
एक अलग, यद्यपि शारीरिक रूप से निकट से संबंधित चुनौती विद्युत रूप से ठोस सामग्री का संचालन करने में गहरी खामियों और असमानताओं का पता लगाना है।
भंवर धारा परीक्षण के पारंपरिक संस्करण में एक वैकल्पिक (एसी) चुंबकीय क्षेत्र का उपयोग जांच की जाने वाली सामग्री के अंदर भंवर धाराओं को प्रेरित करने के लिए किया जाता है। यदि सामग्री में एक दरार या दोष होता है जो विद्युत चालकता के गैर-समान वितरण का स्थानिक वितरण करता है, तो भंवर धाराओं का मार्ग परेशान होता है और एसी चुंबकीय क्षेत्र उत्पन्न करने वाली कुंडली का प्रतिबाधा संशोधित होता है। इस कुंडली की प्रतिबाधा को मापकर, एक दरार का पता लगाया जा सकता है। चूंकि भंवर धाराएं एक एसी चुंबकीय क्षेत्र द्वारा उत्पन्न होती हैं, सामग्री के उपसतह क्षेत्र में उनका प्रवेश त्वचा के प्रभाव से सीमित होता है। भंवर धारा परीक्षण के पारंपरिक संस्करण की प्रयोज्यता इसलिए सामग्री की सतह के तत्काल आसपास के विश्लेषण तक सीमित है, सामान्यतः एक मिलीमीटर के क्रम में। कम आवृत्ति वाले कुंडली और अतिचालक चुंबकीय क्षेत्र सेंसर का उपयोग करके इस मूलभूत सीमा को पार करने के प्रयासों के कारण व्यापक अनुप्रयोग नहीं हुए हैं।
एक हालिया प्रविधि, जिसे लोरेन्ट्स बल भंवरधारा परीक्षण (एलईटी) कहा जाता है,[12][13] डीसी चुंबकीय क्षेत्र और सापेक्ष गति को अनुप्रयुक्त करने के फायदों का शोषण करता है जो विद्युत प्रवाहकीय सामग्री का गहरा और अपेक्षाकृत तेज़ परीक्षण प्रदान करता है। सिद्धांत रूप में, एलईटी पारंपरिक भंवर धारा परीक्षण के एक संशोधन का प्रतिनिधित्व करता है जिससे यह दो पहलुओं में भिन्न होता है, अर्थात् (i) कैसे भंवर धाराओं को प्रेरित किया जाता है और (ii) उनके गड़बड़ी का पता कैसे लगाया जाता है। एलईटी में परीक्षण के तहत कंडक्टर और एक स्थायी चुंबक के मध्य सापेक्ष गति प्रदान करके भंवर धाराएं उत्पन्न होती हैं (चित्र देखें)। यदि चुंबक किसी दोष से गुजर रहा है, तो उस पर कार्य करने वाला लोरेन्ट्स बल एक विकृति दिखाता है जिसका पता लगाना LET कार्य सिद्धांत की कुंजी है। यदि वस्तु दोषों से मुक्त है, तो परिणामी लोरेन्ट्स बल स्थिर रहता है।
यह भी देखें
- भंवर प्रवाह
- गैर विनाशकारी परीक्षण
- वैकल्पिक वर्तमान क्षेत्र माप
- कवर मीटर
- मेटल डिटेक्टर
- त्वचा प्रभाव
संदर्भ
- ↑ Ivor Hughes. "The AWA Review: Professor David Edward Hughes", 2009, retrieved July 1, 2015
- ↑ 2.0 2.1 Nikhil Jahain. "The Rebirth of Eddy Current Testing", 2014, retrieved July 1, 2015
- ↑ "SURAGUS Technology of Eddy Current Testing".
- ↑ Joseph M. Buckley. "An Introduction to Eddy Current Testing Theory and Technology", retrieved July 1, 2015
- ↑ https://customers.phtool.com/custom-reference-standards/eddy-current-bolt-hole-standards/
- ↑ Terry Hennigar and Mike Wright. "Eddy Current Testing Technology", 1st edition, 2012
- ↑ Birring, Anmol (March 2001). "हीट एक्सचेंजर टयूबिंग के लिए एनडीटी तकनीकों का चयन". Materials Evaluation.
- ↑ Birring, Anmol (November 2003). "पेट्रोकेमिकल उद्योग में एड़ी वर्तमान परीक्षण". Materials Evaluation.
- ↑ H M Sadek. "NDE technologies for the examination of heat exchangers and boiler tubes – principles, advantages and limitations", Insight vol. 48 no. 3, March 2006, retrieved July 1, 2015
- ↑ Eddy Current Array, retrieved July 2, 2015
- ↑ Eddy Current Array (ECA) Theory, Practice and Application, retrieved July 2, 2015
- ↑ 12.0 12.1 M. Zec et al., Fast Technique for Lorentz Force Calculations in Nondestructive Testing Applications, COMPUMAG 2013, Budapest, Hungary
- ↑ Uhlig, R. P., Zec, M., Brauer, H. and Thess, A. 2012 "Lorentz Force Eddy Current Testing:a Prototype Model". Journal of Nondestructive Evaluation, 31, 357–372
बाहरी संबंध
- Eddy Current Array Tutorial
- An introduction to eddy current testing from the NDE/NDT resource center
- Intro to Eddy Current Testing by Joseph M. Buckley (pdf, 429 kB)
- Eddy Current Testing at Level 2, International Atomic Energy Agency, Vienna, 2011 (pdf 5.6 MB).
- ASTM E3052 Standard Practice for Examination of Carbon Steel Welds Using Eddy Current Array
- Official web page of Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing Group Archived 2013-11-17 at the Wayback Machine
- Video on eddy current testing, Karlsruhe University of Applied Sciences