अभिसरण की त्रिज्या: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Domain of convergence of power series}} | {{short description|Domain of convergence of power series}} | ||
गणित में, शक्ति श्रृंखला के अभिसरण की त्रिज्या | गणित में, शक्ति श्रृंखला के अभिसरण की त्रिज्या उस श्रृंखला के केंद्र में सबसे बड़ी [[डिस्क (गणित)]] की त्रिज्या होती है जिसमें श्रृंखला [[अभिसरण श्रृंखला]] होती है। यह या तो गैर-ऋणात्मक वास्तविक संख्या या <math>\infty</math> है। जब यह धनात्मक होता है, तो अभिसरण की त्रिज्या के बराबर त्रिज्या की खुली डिस्क के अंदर शक्ति श्रृंखला [[पूर्ण अभिसरण]] और [[कॉम्पैक्ट अभिसरण|सघन अभिसरण]], और यह [[विश्लेषणात्मक कार्य]] की [[टेलर श्रृंखला]] है जिसमें यह अभिसरण होता है। किसी फलन की एकाधिक विलक्षणताओं के स्थिति में (एकवचन तर्क के वे मान हैं जिनके लिए फलन परिभाषित नहीं है), अभिसरण की त्रिज्या सभी संबंधित दूरियों (जो सभी गैर-ऋणात्मक संख्याएं हैं) से सबसे छोटी या न्यूनतम है। जिसकी गणना अभिसरण की डिस्क के केंद्र से फलन की संबंधित विलक्षणताओं तक की जाती है। | ||
== परिभाषा == | == परिभाषा == | ||
शक्ति श्रृंखला के लिए f को इस प्रकार परिभाषित किया गया है: | |||
:<math>f(z) = \sum_{n=0}^\infty c_n (z-a)^n, </math> | :<math>f(z) = \sum_{n=0}^\infty c_n (z-a)^n, </math> | ||
जहाँ | |||
*a एक सम्मिश्र संख्या स्थिरांक है, अभिसरण की डिस्क (गणित) का केंद्र, | *a एक सम्मिश्र संख्या स्थिरांक है, अभिसरण की डिस्क (गणित) का केंद्र, | ||
* | *c<sub>''n''</sub> एन-वें जटिल गुणांक है, और | ||
*z एक जटिल चर है। | *z एक जटिल चर है। | ||
Line 15: | Line 15: | ||
:<math>|z-a| < r</math> | :<math>|z-a| < r</math> | ||
और | और यदि विचलन करता है | ||
:<math>|z-a| > r.</math> | :<math>|z-a| > r.</math> | ||
Line 21: | Line 21: | ||
: <math>r=\sup \left\{ |z-a|\ \left|\ \sum_{n=0}^\infty c_n(z-a)^n\ \text{ converges } \right.\right\} </math> | : <math>r=\sup \left\{ |z-a|\ \left|\ \sum_{n=0}^\infty c_n(z-a)^n\ \text{ converges } \right.\right\} </math> | ||
सीमा पर, अर्थात्, जहाँ |z − a| | सीमा पर, अर्थात्, जहाँ |z − a| = r है, घात श्रृंखला का व्यवहार जटिल हो सकता है, और श्रृंखला z के कुछ मानों के लिए अभिसरण कर सकती है और दूसरों के लिए विचलन कर सकती है। अभिसरण की त्रिज्या अनंत है यदि श्रृंखला सभी सम्मिश्र संख्याओं z के लिए अभिसरण करती है।<ref>{{Cite book|url=https://books.google.com/books?id=nw9eFnCSDNoC&q=radius+of+convergence|title=गणितीय विश्लेषण-द्वितीय|date=16 November 2010|publisher=Krishna Prakashan Media|language=en}}</ref> | ||
== अभिसरण की त्रिज्या का पता लगाना == | == अभिसरण की त्रिज्या का पता लगाना == | ||
दो | दो स्थितियां सामने आती हैं। पहली स्थिति सैद्धांतिक है: जब आप सभी गुणांक <math>c_n</math> जानते हैं तो आप कुछ सीमाएँ लेते हैं और अभिसरण की त्रुटिहीन त्रिज्या पाते हैं। दूसरा स्थिति व्यावहारिक है: जब आप कठिन समस्या के लिए शक्ति श्रृंखला समाधान का निर्माण करते हैं, तो आप सामान्यतः शक्ति श्रृंखला में शब्दों की सीमित संख्या को ही जान पाएंगे, कहीं भी कुछ शब्दों से लेकर सौ शब्दों तक। इस दूसरे स्थिति में, प्लॉट को एक्सट्रपलेशन करने से अभिसरण की त्रिज्या का अनुमान लगाया जाता है। | ||
===सैद्धांतिक दायरा=== | ===सैद्धांतिक दायरा=== | ||
श्रृंखला की शर्तों के मूल परीक्षण को | श्रृंखला की शर्तों के मूल परीक्षण को प्रायुक्त करके अभिसरण की त्रिज्या पाई जा सकती है। [[ जड़ परीक्षण | मूल परीक्षण]] संख्या का उपयोग करता है | ||
:<math>C = \limsup_{n\to\infty}\sqrt[n]{|c_n(z-a)^n|} = \limsup_{n\to\infty} \left(\sqrt[n]{|c_n|}\right) |z-a|</math> | :<math>C = \limsup_{n\to\infty}\sqrt[n]{|c_n(z-a)^n|} = \limsup_{n\to\infty} \left(\sqrt[n]{|c_n|}\right) |z-a|</math> | ||
लिम सुपर [[श्रेष्ठ सीमा]] को दर्शाता है। मूल परीक्षण बताता है कि श्रृंखला अभिसरण करती है यदि C < 1 और विचलन करती है यदि C > 1। | लिम सुपर [[श्रेष्ठ सीमा]] को दर्शाता है। मूल परीक्षण बताता है कि श्रृंखला अभिसरण करती है यदि C < 1 और विचलन करती है यदि C > 1। यह इस प्रकार है कि शक्ति श्रृंखला अभिसरण करती है यदि z से केंद्र की दूरी से कम है | ||
:<math>r = \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|c_n|}}</math> | :<math>r = \frac{1}{\limsup_{n\to\infty}\sqrt[n]{|c_n|}}</math> | ||
और विचलन करता है यदि दूरी उस संख्या से अधिक हो जाती है; यह कथन कॉची-हैडमार्ड प्रमेय है। ध्यान दें कि r = 1/0 को अनंत त्रिज्या के रूप में समझा जाता है, जिसका अर्थ है कि f एक संपूर्ण कार्य है। | और विचलन करता है यदि दूरी उस संख्या से अधिक हो जाती है; यह कथन कॉची-हैडमार्ड प्रमेय है। ध्यान दें कि r = 1/0 को अनंत त्रिज्या के रूप में समझा जाता है, जिसका अर्थ है कि f एक संपूर्ण कार्य है। | ||
अनुपात परीक्षण में | अनुपात परीक्षण में सम्मिलित सीमा सामान्यतः गणना करना आसान होता है, और जब वह सीमा उपस्थित होती है, तो यह दर्शाता है कि अभिसरण की त्रिज्या परिमित है। | ||
:<math>r = \lim_{n\to\infty} \left| \frac{c_{n}}{c_{n+1}} \right|.</math> | :<math>r = \lim_{n\to\infty} \left| \frac{c_{n}}{c_{n+1}} \right|.</math> | ||
Line 49: | Line 49: | ||
: <math> |z - a| < \frac{1}{\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|}} = \lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right|. </math> | : <math> |z - a| < \frac{1}{\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|}} = \lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right|. </math> | ||
'''वास्तविक गुणांक के स्थिति में त्रिज्या का व्यावहारिक अनुमान''' | |||
[[File:Domb Sykes plot Hinch.svg|thumb|right|400px|फलन के भूखंड <math>f(\varepsilon)=\frac{\varepsilon(1+\varepsilon^3)}{\sqrt{1+2\varepsilon}}.</math> <br>ठोस हरी रेखा सीधी रेखा है। डोंब-साइक्स प्लॉट में सीधी-रेखा [[अनंतस्पर्शी]],<ref>See Figure 8.1 in: {{citation| first=E.J. |last=Hinch |year=1991 |title=Perturbation Methods |series=Cambridge Texts in Applied Mathematics |volume=6 |publisher=Cambridge University Press |isbn=0-521-37897-4 |page=146}}</ref> प्लॉट (बी), जो लंबवत धुरी को -2 पर रोकता है और ढलान +1 है। इस प्रकार विलक्षणता है <math>\varepsilon=-1/2</math> और इसलिए अभिसरण की त्रिज्या <math>r=1/2</math> है।]]सामान्यतः, वैज्ञानिक अनुप्रयोगों में, गुणांकों <math>c_n</math> की केवल एक सीमित संख्या होती है। सामान्यतः, जैसे-जैसे <math>n</math> बढ़ता है, ये गुणांक निकटतम त्रिज्या-सीमित विलक्षणता द्वारा निर्धारित नियमित व्यवहार में व्यवस्थित होते हैं। इस स्थिति में, दो मुख्य विधियों को इस तथ्य के आधार पर विकसित किया गया है इस तथ्य के आधार पर कि एक टेलर श्रृंखला के गुणांक सामान्यतः <math>1/r</math> अनुपात के साथ घातीय हैं जहाँ r अभिसरण की त्रिज्या है। | |||
* मूल स्थिति तब होता है जब गुणांक अंततः एक सामान्य चिह्न या वैकल्पिक चिह्न साझा करते हैं। जैसा कि पहले लेख में बताया गया है, कई स्थितियों में सीमा <math display="inline">\lim_{n\to \infty} {c_n / c_{n-1}}</math> उपस्थित है, और इस स्थिति में <math display="inline">1/r = \lim_{n \to \infty} {c_n / c_{n-1}}</math>. ऋणात्मक <math>r</math> का अर्थ है अभिसरण-सीमित विलक्षणता ऋणात्मक अक्ष पर है। प्लॉट करके <math>c_n/c_{n-1}</math> विरुद्ध <math>1/n</math> इस सीमा का अनुमान लगाएं, एक रैखिक फिट के माध्यम से <math>1/n=0</math> (प्रभावी रूप से <math>n=\infty</math>) के लिए ग्राफ़िक रूप से एक्सट्रपलेशन करें। <math>1/n=0</math> के साथ अवरोधन अभिसरण की त्रिज्या के व्युत्क्रम <math>1/r</math> का अनुमान लगाता है। इस प्लॉट को डोम्ब-साइक्स प्लॉट कहा जाता है।<ref>{{citation |first1=C. |last1=Domb |first2=M.F. |last2=Sykes |title=On the susceptibility of a ferromagnetic above the Curie point |journal=Proc. R. Soc. Lond. A |volume=240 |pages=214–228 |year=1957 |issue=1221 |doi=10.1098/rspa.1957.0078 |bibcode=1957RSPSA.240..214D |s2cid=119974403 }}</ref> | |||
* अधिक जटिल स्थिति तब होता है जब गुणांकों के चिह्नों का पैटर्न अधिक जटिल होता है। मर्सर और रॉबर्ट्स ने निम्नलिखित प्रक्रिया का प्रस्ताव दिया।<ref>{{citation |first1=G.N. |last1=Mercer |first2=A.J. |last2=Roberts |title=A centre manifold description of contaminant dispersion in channels with varying flow properties |journal=SIAM J. Appl. Math. |volume=50 |pages=1547–1565 |year=1990 |doi=10.1137/0150091 |issue=6}}</ref> संबद्ध अनुक्रम को परिभाषित कीजिए <math display="block">b_n^2=\frac{c_{n+1}c_{n-1} - c_n^2}{c_n c_{n-2} - c_{n-1}^2} \quad n=3,4,5,\ldots.</math>बहुत से ज्ञात <math>b_n</math> विरुद्ध <math>1/n</math>, को प्लॉट करें, और एक रेखीय फ़िट के माध्यम से <math>1/n=0</math> पर ग्राफ़िक रूप से एक्सट्रपलेशन करें। <math>1/n=0</math> के साथ अवरोधन अभिसरण की त्रिज्या के व्युत्क्रम, <math>1/r</math> का अनुमान लगाता है। यह प्रक्रिया विलक्षणता को सीमित करने वाले अभिसरण की दो अन्य विशेषताओं का भी अनुमान लगाती है। मान लीजिए कि निकटतम विलक्षणता डिग्री <math>p</math> की है और कोण <math>\pm\theta</math> वास्तविक धुरी के लिए है। फिर ऊपर दिए गए लीनियर फिट का स्लोप <math>-(p+1)/r</math> है। आगे, प्लॉट <math display="inline">\frac{1}{2} \left(\frac{c_{n-1}b_n}{c_n} + \frac{c_{n+1}}{c_n b_n}\right)</math> विरुद्ध <math display="inline">1/n^2</math>, फिर एक रेखीय फिट को एक्सट्रपलेशन <math display="inline">1/n^2=0</math> किया गया <math>\cos\theta</math> पर अवरोधन है। | |||
* मूल | |||
* अधिक जटिल | |||
== जटिल विश्लेषण में अभिसरण की त्रिज्या == | == जटिल विश्लेषण में अभिसरण की त्रिज्या == | ||
अभिसरण के | अभिसरण के धनात्मक त्रिज्या के साथ शक्ति श्रृंखला को इसके तर्क को जटिल चर के रूप में ले कर एक [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] में बनाया जा सकता है। अभिसरण की त्रिज्या को निम्नलिखित प्रमेय द्वारा वर्णित किया जा सकता है: | ||
: | : बिंदु a पर केन्द्रित घात श्रृंखला f की अभिसरण की त्रिज्या a से निकटतम बिंदु की दूरी के बराबर होती है जहाँ f को इस तरह से परिभाषित नहीं किया जा सकता है जो इसे होलोमोर्फिक बनाता है। | ||
उन सभी बिंदुओं का समुच्चय जिनकी दूरी अभिसरण की त्रिज्या से सख्ती से कम है, अभिसरण की डिस्क कहलाती है। | उन सभी बिंदुओं का समुच्चय जिनकी दूरी अभिसरण की त्रिज्या से सख्ती से कम है, अभिसरण की डिस्क कहलाती है। | ||
[[File:TaylorComplexConv.png|thumb|300px|पाठ में समझाए गए कार्यों का एक ग्राफ: नीले रंग में सन्निकटन, सफेद में अभिसरण का चक्र]]निकटतम बिंदु का अर्थ है जटिल तल में निकटतम बिंदु, जरूरी नहीं कि वास्तविक रेखा पर, | [[File:TaylorComplexConv.png|thumb|300px|पाठ में समझाए गए कार्यों का एक ग्राफ: नीले रंग में सन्निकटन, सफेद में अभिसरण का चक्र]]निकटतम बिंदु का अर्थ है जटिल तल में निकटतम बिंदु, जरूरी नहीं कि वास्तविक रेखा पर, चाहे केंद्र और सभी गुणांक वास्तविक हों। उदाहरण के लिए, फलन | ||
: <math>f(z)=\frac 1 {1+z^2}</math> | : <math>f(z)=\frac 1 {1+z^2}</math> | ||
वास्तविक रेखा पर कोई विलक्षणता नहीं है, क्योंकि <math>1+z^2</math> कोई वास्तविक | वास्तविक रेखा पर कोई विलक्षणता नहीं है, क्योंकि <math>1+z^2</math> कोई वास्तविक मूल नहीं है। इसकी टेलर श्रंखला लगभग 0 द्वारा दी गई है | ||
:<math>\sum_{n=0}^\infty (-1)^n z^{2n}.</math> | :<math>\sum_{n=0}^\infty (-1)^n z^{2n}.</math> | ||
रूट परीक्षण से पता चलता है कि इसकी अभिसरण की त्रिज्या 1 है। इसके अनुसार, | रूट परीक्षण से पता चलता है कि इसकी अभिसरण की त्रिज्या 1 है। इसके अनुसार, फलन f(z) में विलक्षणताएं ±i पर हैं, जो 0 से 1 की दूरी पर हैं। | ||
इस प्रमेय के प्रमाण के लिए, [[होलोमोर्फिक कार्यों की विश्लेषणात्मकता]] देखें। | इस प्रमेय के प्रमाण के लिए, [[होलोमोर्फिक कार्यों की विश्लेषणात्मकता]] देखें। | ||
=== | === साधारण उदाहरण === | ||
[[त्रिकोणमिति]] के चापस्पर्शी फलन को घात श्रेणी में विस्तारित किया जा सकता है: | [[त्रिकोणमिति]] के चापस्पर्शी फलन को घात श्रेणी में विस्तारित किया जा सकता है: | ||
:<math>\arctan(z)=z-\frac{z^3} 3 + \frac{z^5} 5 -\frac{z^7} 7 +\cdots .</math> | :<math>\arctan(z)=z-\frac{z^3} 3 + \frac{z^5} 5 -\frac{z^7} 7 +\cdots .</math> | ||
इस | इस स्थिति में मूल परीक्षण को प्रायुक्त करना आसान है, यह पता लगाने के लिए कि अभिसरण की त्रिज्या 1 है। | ||
=== एक अधिक जटिल उदाहरण === | === एक अधिक जटिल उदाहरण === | ||
Line 85: | Line 83: | ||
:<math>\frac z {e^z-1}=\sum_{n=0}^\infty \frac{B_n}{n!} z^n </math> | :<math>\frac z {e^z-1}=\sum_{n=0}^\infty \frac{B_n}{n!} z^n </math> | ||
जहाँ परिमेय संख्याएँ B<sub>''n''</sub> बरनौली संख्याएँ हैं। इस श्रृंखला की अभिसरण की त्रिज्या ज्ञात करने के लिए अनुपात परीक्षण को | जहाँ परिमेय संख्याएँ B<sub>''n''</sub> बरनौली संख्याएँ हैं। इस श्रृंखला की अभिसरण की त्रिज्या ज्ञात करने के लिए अनुपात परीक्षण को प्रायुक्त करने का प्रयास करना बोझिल हो सकता है। किन्तु ऊपर बताए गए जटिल विश्लेषण का प्रमेय समस्या को जल्दी हल करता है। Z = 0 पर, [[हटाने योग्य विलक्षणता]] के बाद से कोई विलक्षणता नहीं है। केवल गैर-हटाने योग्य विलक्षणताएं अन्य बिंदुओं पर स्थित हैं जहां भाजक शून्य है। हमने समाधान किया | ||
:<math>e^z - 1 = 0</math> | :<math>e^z - 1 = 0</math> | ||
यह याद करके कि | यह याद करके कि यदि {{math|1=''z'' = ''x'' + ''iy''}} और {{math|1=''e''{{i sup|''iy''}} = cos(''y'') + ''i'' sin(''y'')}} तब | ||
:<math>e^z = e^x e^{iy} = e^x(\cos(y)+i\sin(y)),</math> | :<math>e^z = e^x e^{iy} = e^x(\cos(y)+i\sin(y)),</math> | ||
और फिर x और y को वास्तविक मान लें। चूँकि y वास्तविक है, | : | ||
और फिर x और y को वास्तविक मान लें। चूँकि y वास्तविक है, {{math|cos(''y'') + ''i'' sin(''y'')}} का निरपेक्ष मान आवश्यक रूप से 1 है। इसलिए, e{{i sup|''z''}} का पूर्ण मूल्य केवल 1 हो सकता है यदि e{{i sup|''x''}} 1 है; चूँकि x वास्तविक है, यह केवल तभी होता है जब x = 0। इसलिए z विशुद्ध रूप से काल्पनिक है और {{math|1=cos(''y'') + ''i'' sin(''y'') = 1}}। चूँकि y वास्तविक है, ऐसा तभी होता है जब cos(y) = 1 और sin(y) = 0, ताकि y 2{{pi}} का पूर्णांक गुणक हो। परिणामस्वरूप इस फलन के एकवचन बिंदु पर होते हैं | |||
: z = 2 | : z = 2{{pi}}i का शून्येतर पूर्णांक गुणज। | ||
0 के निकटतम विलक्षणताएं, जो शक्ति श्रृंखला विस्तार का केंद्र | 0 के निकटतम विलक्षणताएं, जो शक्ति श्रृंखला विस्तार का केंद्र, ±2{{pi}}i पर हैं। केंद्र से उन बिंदुओं में से किसी एक की दूरी 2{{pi}} है, इसलिए अभिसरण की त्रिज्या 2{{pi}} है। | ||
== सीमा पर अभिसरण == | == सीमा पर अभिसरण == | ||
यदि बिंदु a के चारों ओर शक्ति श्रृंखला का विस्तार किया जाता है और अभिसरण की त्रिज्या | यदि बिंदु a के चारों ओर शक्ति श्रृंखला का विस्तार किया जाता है और अभिसरण की त्रिज्या {{math|''r''}} है, फिर सभी बिंदुओं का सेट {{math|''z''}} ऐसा है कि {{math|1={{mabs|''z'' − ''a''}} = ''r''}} एक वृत्त है जिसे अभिसरण की डिस्क की सीमा कहा जाता है। शक्ति श्रृंखला सीमा पर प्रत्येक बिंदु पर विचलन कर सकती है, या कुछ बिंदुओं पर विचलन कर सकती है और अन्य बिंदुओं पर अभिसरण कर सकती है, या सीमा पर सभी बिंदुओं पर अभिसरण कर सकती है। इसके अतिरिक्त, चाहे श्रृंखला प्रत्येक स्थान सीमा पर (यहां तक कि समान रूप से) अभिसरण करती है, यह जरूरी नहीं कि पूरी तरह से अभिसरण हो। | ||
उदाहरण 1: फलन की घात श्रेणी {{math|1=''f''(''z'') = 1/(1 − ''z'')}}, चारों ओर फैला हुआ {{math|1=''z'' = 0}}, जो | उदाहरण 1: फलन की घात श्रेणी {{math|1=''f''(''z'') = 1/(1 − ''z'')}}, चारों ओर फैला हुआ {{math|1=''z'' = 0}}, जो सरल है | ||
:<math> \sum_{n=0}^\infty z^n,</math> अभिसरण की त्रिज्या 1 है और सीमा पर प्रत्येक बिंदु पर विचलन करती है। | :<math> \sum_{n=0}^\infty z^n,</math> अभिसरण की त्रिज्या 1 है और सीमा पर प्रत्येक बिंदु पर विचलन करती है। | ||
उदाहरण 2: के लिए शक्ति श्रृंखला {{math|1=''g''(''z'') = −ln(1 − ''z'')}}, चारों ओर फैला हुआ {{math|1=''z'' = 0}}, जो है | उदाहरण 2: के लिए शक्ति श्रृंखला {{math|1=''g''(''z'') = −ln(1 − ''z'')}}, चारों ओर फैला हुआ {{math|1=''z'' = 0}}, जो है | ||
:<math> \sum_{n=1}^\infty \frac{1}{n} z^n,</math> अभिसरण की त्रिज्या 1 है, और इसके लिए विचलन करता है {{math|1=''z'' = 1}} | :<math> \sum_{n=1}^\infty \frac{1}{n} z^n,</math> अभिसरण की त्रिज्या 1 है, और इसके लिए विचलन करता है {{math|1=''z'' = 1}} किन्तु सीमा पर अन्य सभी बिंदुओं के लिए अभिसरण करता है। कार्यक्रम ''f''(''z'') उदाहरण 1 का अवकलज है {{math|''g''(''z'')}}. | ||
उदाहरण 3: शक्ति श्रृंखला | उदाहरण 3: शक्ति श्रृंखला | ||
:<math> \sum_{n=1}^\infty \frac 1 {n^2} z^n </math> अभिसरण की त्रिज्या 1 है और पूरी तरह से सीमा पर | :<math> \sum_{n=1}^\infty \frac 1 {n^2} z^n </math> अभिसरण की त्रिज्या 1 है और पूरी तरह से सीमा पर प्रत्येक स्थान अभिसरण करता है। यदि {{math|''h''}} इकाई डिस्क पर इस श्रृंखला द्वारा प्रस्तुत किया गया कार्य है, तो h(z) का व्युत्पन्न उदाहरण 2 के g के साथ g(z)/z के बराबर है। यह पता चला है कि {{math|''h''(''z'')}} [[dilogarithm|द्विलघुगणक]] फलन है। | ||
उदाहरण 4: शक्ति श्रृंखला | उदाहरण 4: शक्ति श्रृंखला | ||
:<math>\sum_{i=1}^\infty a_i z^i \text{ where } a_i = \frac{(-1)^{n-1}}{2^nn}\text{ for } n = \lfloor\log_2(i)\rfloor+1\text{, the unique integer with }2^{n-1}\le i < 2^n,</math> | :<math>\sum_{i=1}^\infty a_i z^i \text{ where } a_i = \frac{(-1)^{n-1}}{2^nn}\text{ for } n = \lfloor\log_2(i)\rfloor+1\text{, the unique integer with }2^{n-1}\le i < 2^n,</math> | ||
अभिसरण की त्रिज्या 1 है और संपूर्ण सीमा | अभिसरण की त्रिज्या 1 है और संपूर्ण सीमा {{math|1={{mabs|''z''}} = 1}} पर [[एकसमान अभिसरण]] को अभिसरित करता है, किन्तु सीमा पर पूर्ण अभिसरण नहीं करता है।<ref>{{cite journal |url=https://eudml.org/doc/215384|title=O szeregu potęgowym, który jest zbieżny na całem swem kole zbieżności jednostajnie, ale nie bezwzględnie|journal=Prace Matematyczno-Fizyczne|year=1918|volume=29|issue=1|pages=263–266|last1=Sierpiński|first1=W.|author-link=Wacław Sierpiński}}</ref> | ||
== अभिसरण की दर == | == अभिसरण की दर == | ||
यदि हम | यदि हम फलन का विस्तार करते हैं | ||
:<math>\sin x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\text{ for all } x</math> | :<math>\sin x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\text{ for all } x</math> | ||
बिंदु x = 0 के आसपास, हम पाते हैं कि इस श्रृंखला की अभिसरण की त्रिज्या है <math>\infty</math> जिसका अर्थ है कि यह श्रृंखला सभी सम्मिश्र संख्याओं के लिए अभिसरण करती है। | बिंदु x = 0 के आसपास, हम पाते हैं कि इस श्रृंखला की अभिसरण की त्रिज्या है <math>\infty</math> जिसका अर्थ है कि यह श्रृंखला सभी सम्मिश्र संख्याओं के लिए अभिसरण करती है। चूंकि, अनुप्रयोगों में, अक्सर एक [[संख्यात्मक विश्लेषण]] की शुद्धता में रुचि होती है। पदों की संख्या और मूल्य दोनों, जिस पर श्रृंखला का मूल्यांकन किया जाना है, उत्तर की शुद्धता को प्रभावित करते हैं। उदाहरण के लिए, यदि हम गणना {{math|sin(0.1)}} करना चाहते हैं पाँच दशमलव स्थानों तक त्रुटिहीन, हमें श्रृंखला के केवल पहले दो पदों की आवश्यकता है। चूँकि, यदि हम {{math|1=''x'' = 1}} समान शुद्धता चाहते हैं हमें श्रृंखला के पहले पांच पदों का मूल्यांकन और योग करना चाहिए। {{math|sin(10)}} के लिए, किसी को श्रृंखला के पहले 18 पदों की आवश्यकता होती है, और {{math|sin(100)}} के लिए हमें पहले 141 शब्दों का मूल्यांकन करने की आवश्यकता है। | ||
तो इन विशेष मूल्यों के लिए एक शक्ति श्रृंखला विस्तार का सबसे तेज़ अभिसरण केंद्र में है, और जैसे ही कोई अभिसरण के केंद्र से दूर जाता है, [[अभिसरण की दर]] तब तक धीमी हो जाती है जब तक आप सीमा तक नहीं पहुँच जाते (यदि यह | तो इन विशेष मूल्यों के लिए एक शक्ति श्रृंखला विस्तार का सबसे तेज़ अभिसरण केंद्र में है, और जैसे ही कोई अभिसरण के केंद्र से दूर जाता है, [[अभिसरण की दर]] तब तक धीमी हो जाती है जब तक आप सीमा तक नहीं पहुँच जाते (यदि यह उपस्थित है) और पार हो जाते हैं, में किस स्थिति में [[श्रृंखला (गणित)]] अलग हो जाएगी। | ||
== | == डिरिचलेट श्रृंखला के [[अभिसरण का भुज]] == | ||
एक समान अवधारणा अभिसरण का भुज है | एक समान अवधारणा अभिसरण का भुज है | ||
:<math>\sum_{n=1}^\infty \frac{a_n}{n^s}.</math> | :<math>\sum_{n=1}^\infty \frac{a_n}{n^s}.</math> | ||
यदि s का वास्तविक भाग गुणांक a | ऐसी श्रृंखला अभिसरण करती है यदि s का वास्तविक भाग अभिसरण के गुणांक a<sub>''n''</sub> के आधार पर किसी विशेष संख्या से अधिक है। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 146: | Line 145: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[http://www.lassp.cornell.edu/sethna/Cracks/What_Is_Radius_of_Convergence.html What is radius of convergence?] | *[http://www.lassp.cornell.edu/sethna/Cracks/What_Is_Radius_of_Convergence.html What is radius of convergence?] | ||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:अभिसरण (गणित)]] | |||
[[Category:गणितीय भौतिकी]] | |||
[[Category:विश्लेषणात्मक कार्य]] | |||
[[Category:सैद्धांतिक भौतिकी]] |
Latest revision as of 11:35, 13 April 2023
गणित में, शक्ति श्रृंखला के अभिसरण की त्रिज्या उस श्रृंखला के केंद्र में सबसे बड़ी डिस्क (गणित) की त्रिज्या होती है जिसमें श्रृंखला अभिसरण श्रृंखला होती है। यह या तो गैर-ऋणात्मक वास्तविक संख्या या है। जब यह धनात्मक होता है, तो अभिसरण की त्रिज्या के बराबर त्रिज्या की खुली डिस्क के अंदर शक्ति श्रृंखला पूर्ण अभिसरण और सघन अभिसरण, और यह विश्लेषणात्मक कार्य की टेलर श्रृंखला है जिसमें यह अभिसरण होता है। किसी फलन की एकाधिक विलक्षणताओं के स्थिति में (एकवचन तर्क के वे मान हैं जिनके लिए फलन परिभाषित नहीं है), अभिसरण की त्रिज्या सभी संबंधित दूरियों (जो सभी गैर-ऋणात्मक संख्याएं हैं) से सबसे छोटी या न्यूनतम है। जिसकी गणना अभिसरण की डिस्क के केंद्र से फलन की संबंधित विलक्षणताओं तक की जाती है।
परिभाषा
शक्ति श्रृंखला के लिए f को इस प्रकार परिभाषित किया गया है:
जहाँ
- a एक सम्मिश्र संख्या स्थिरांक है, अभिसरण की डिस्क (गणित) का केंद्र,
- cn एन-वें जटिल गुणांक है, और
- z एक जटिल चर है।
अभिसरण r की त्रिज्या एक अऋणात्मक वास्तविक संख्या है या जैसे कि यदि श्रृंखला अभिसरित होती है
और यदि विचलन करता है
कुछ वैकल्पिक परिभाषा पसंद कर सकते हैं, क्योंकि अस्तित्व स्पष्ट है:
सीमा पर, अर्थात्, जहाँ |z − a| = r है, घात श्रृंखला का व्यवहार जटिल हो सकता है, और श्रृंखला z के कुछ मानों के लिए अभिसरण कर सकती है और दूसरों के लिए विचलन कर सकती है। अभिसरण की त्रिज्या अनंत है यदि श्रृंखला सभी सम्मिश्र संख्याओं z के लिए अभिसरण करती है।[1]
अभिसरण की त्रिज्या का पता लगाना
दो स्थितियां सामने आती हैं। पहली स्थिति सैद्धांतिक है: जब आप सभी गुणांक जानते हैं तो आप कुछ सीमाएँ लेते हैं और अभिसरण की त्रुटिहीन त्रिज्या पाते हैं। दूसरा स्थिति व्यावहारिक है: जब आप कठिन समस्या के लिए शक्ति श्रृंखला समाधान का निर्माण करते हैं, तो आप सामान्यतः शक्ति श्रृंखला में शब्दों की सीमित संख्या को ही जान पाएंगे, कहीं भी कुछ शब्दों से लेकर सौ शब्दों तक। इस दूसरे स्थिति में, प्लॉट को एक्सट्रपलेशन करने से अभिसरण की त्रिज्या का अनुमान लगाया जाता है।
सैद्धांतिक दायरा
श्रृंखला की शर्तों के मूल परीक्षण को प्रायुक्त करके अभिसरण की त्रिज्या पाई जा सकती है। मूल परीक्षण संख्या का उपयोग करता है
लिम सुपर श्रेष्ठ सीमा को दर्शाता है। मूल परीक्षण बताता है कि श्रृंखला अभिसरण करती है यदि C < 1 और विचलन करती है यदि C > 1। यह इस प्रकार है कि शक्ति श्रृंखला अभिसरण करती है यदि z से केंद्र की दूरी से कम है
और विचलन करता है यदि दूरी उस संख्या से अधिक हो जाती है; यह कथन कॉची-हैडमार्ड प्रमेय है। ध्यान दें कि r = 1/0 को अनंत त्रिज्या के रूप में समझा जाता है, जिसका अर्थ है कि f एक संपूर्ण कार्य है।
अनुपात परीक्षण में सम्मिलित सीमा सामान्यतः गणना करना आसान होता है, और जब वह सीमा उपस्थित होती है, तो यह दर्शाता है कि अभिसरण की त्रिज्या परिमित है।
इसे इस प्रकार दिखाया गया है। अनुपात परीक्षण कहता है कि यदि श्रृंखला अभिसरित होती है
वह बराबर है
वास्तविक गुणांक के स्थिति में त्रिज्या का व्यावहारिक अनुमान
सामान्यतः, वैज्ञानिक अनुप्रयोगों में, गुणांकों की केवल एक सीमित संख्या होती है। सामान्यतः, जैसे-जैसे बढ़ता है, ये गुणांक निकटतम त्रिज्या-सीमित विलक्षणता द्वारा निर्धारित नियमित व्यवहार में व्यवस्थित होते हैं। इस स्थिति में, दो मुख्य विधियों को इस तथ्य के आधार पर विकसित किया गया है इस तथ्य के आधार पर कि एक टेलर श्रृंखला के गुणांक सामान्यतः अनुपात के साथ घातीय हैं जहाँ r अभिसरण की त्रिज्या है।
- मूल स्थिति तब होता है जब गुणांक अंततः एक सामान्य चिह्न या वैकल्पिक चिह्न साझा करते हैं। जैसा कि पहले लेख में बताया गया है, कई स्थितियों में सीमा उपस्थित है, और इस स्थिति में . ऋणात्मक का अर्थ है अभिसरण-सीमित विलक्षणता ऋणात्मक अक्ष पर है। प्लॉट करके विरुद्ध इस सीमा का अनुमान लगाएं, एक रैखिक फिट के माध्यम से (प्रभावी रूप से ) के लिए ग्राफ़िक रूप से एक्सट्रपलेशन करें। के साथ अवरोधन अभिसरण की त्रिज्या के व्युत्क्रम का अनुमान लगाता है। इस प्लॉट को डोम्ब-साइक्स प्लॉट कहा जाता है।[3]
- अधिक जटिल स्थिति तब होता है जब गुणांकों के चिह्नों का पैटर्न अधिक जटिल होता है। मर्सर और रॉबर्ट्स ने निम्नलिखित प्रक्रिया का प्रस्ताव दिया।[4] संबद्ध अनुक्रम को परिभाषित कीजिए बहुत से ज्ञात विरुद्ध , को प्लॉट करें, और एक रेखीय फ़िट के माध्यम से पर ग्राफ़िक रूप से एक्सट्रपलेशन करें। के साथ अवरोधन अभिसरण की त्रिज्या के व्युत्क्रम, का अनुमान लगाता है। यह प्रक्रिया विलक्षणता को सीमित करने वाले अभिसरण की दो अन्य विशेषताओं का भी अनुमान लगाती है। मान लीजिए कि निकटतम विलक्षणता डिग्री की है और कोण वास्तविक धुरी के लिए है। फिर ऊपर दिए गए लीनियर फिट का स्लोप है। आगे, प्लॉट विरुद्ध , फिर एक रेखीय फिट को एक्सट्रपलेशन किया गया पर अवरोधन है।
जटिल विश्लेषण में अभिसरण की त्रिज्या
अभिसरण के धनात्मक त्रिज्या के साथ शक्ति श्रृंखला को इसके तर्क को जटिल चर के रूप में ले कर एक होलोमॉर्फिक फलन में बनाया जा सकता है। अभिसरण की त्रिज्या को निम्नलिखित प्रमेय द्वारा वर्णित किया जा सकता है:
- बिंदु a पर केन्द्रित घात श्रृंखला f की अभिसरण की त्रिज्या a से निकटतम बिंदु की दूरी के बराबर होती है जहाँ f को इस तरह से परिभाषित नहीं किया जा सकता है जो इसे होलोमोर्फिक बनाता है।
उन सभी बिंदुओं का समुच्चय जिनकी दूरी अभिसरण की त्रिज्या से सख्ती से कम है, अभिसरण की डिस्क कहलाती है।
निकटतम बिंदु का अर्थ है जटिल तल में निकटतम बिंदु, जरूरी नहीं कि वास्तविक रेखा पर, चाहे केंद्र और सभी गुणांक वास्तविक हों। उदाहरण के लिए, फलन
वास्तविक रेखा पर कोई विलक्षणता नहीं है, क्योंकि कोई वास्तविक मूल नहीं है। इसकी टेलर श्रंखला लगभग 0 द्वारा दी गई है
रूट परीक्षण से पता चलता है कि इसकी अभिसरण की त्रिज्या 1 है। इसके अनुसार, फलन f(z) में विलक्षणताएं ±i पर हैं, जो 0 से 1 की दूरी पर हैं।
इस प्रमेय के प्रमाण के लिए, होलोमोर्फिक कार्यों की विश्लेषणात्मकता देखें।
साधारण उदाहरण
त्रिकोणमिति के चापस्पर्शी फलन को घात श्रेणी में विस्तारित किया जा सकता है:
इस स्थिति में मूल परीक्षण को प्रायुक्त करना आसान है, यह पता लगाने के लिए कि अभिसरण की त्रिज्या 1 है।
एक अधिक जटिल उदाहरण
इस शक्ति श्रृंखला पर विचार करें:
जहाँ परिमेय संख्याएँ Bn बरनौली संख्याएँ हैं। इस श्रृंखला की अभिसरण की त्रिज्या ज्ञात करने के लिए अनुपात परीक्षण को प्रायुक्त करने का प्रयास करना बोझिल हो सकता है। किन्तु ऊपर बताए गए जटिल विश्लेषण का प्रमेय समस्या को जल्दी हल करता है। Z = 0 पर, हटाने योग्य विलक्षणता के बाद से कोई विलक्षणता नहीं है। केवल गैर-हटाने योग्य विलक्षणताएं अन्य बिंदुओं पर स्थित हैं जहां भाजक शून्य है। हमने समाधान किया
यह याद करके कि यदि z = x + iy और eiy = cos(y) + i sin(y) तब
और फिर x और y को वास्तविक मान लें। चूँकि y वास्तविक है, cos(y) + i sin(y) का निरपेक्ष मान आवश्यक रूप से 1 है। इसलिए, ez का पूर्ण मूल्य केवल 1 हो सकता है यदि ex 1 है; चूँकि x वास्तविक है, यह केवल तभी होता है जब x = 0। इसलिए z विशुद्ध रूप से काल्पनिक है और cos(y) + i sin(y) = 1। चूँकि y वास्तविक है, ऐसा तभी होता है जब cos(y) = 1 और sin(y) = 0, ताकि y 2π का पूर्णांक गुणक हो। परिणामस्वरूप इस फलन के एकवचन बिंदु पर होते हैं
- z = 2πi का शून्येतर पूर्णांक गुणज।
0 के निकटतम विलक्षणताएं, जो शक्ति श्रृंखला विस्तार का केंद्र, ±2πi पर हैं। केंद्र से उन बिंदुओं में से किसी एक की दूरी 2π है, इसलिए अभिसरण की त्रिज्या 2π है।
सीमा पर अभिसरण
यदि बिंदु a के चारों ओर शक्ति श्रृंखला का विस्तार किया जाता है और अभिसरण की त्रिज्या r है, फिर सभी बिंदुओं का सेट z ऐसा है कि |z − a| = r एक वृत्त है जिसे अभिसरण की डिस्क की सीमा कहा जाता है। शक्ति श्रृंखला सीमा पर प्रत्येक बिंदु पर विचलन कर सकती है, या कुछ बिंदुओं पर विचलन कर सकती है और अन्य बिंदुओं पर अभिसरण कर सकती है, या सीमा पर सभी बिंदुओं पर अभिसरण कर सकती है। इसके अतिरिक्त, चाहे श्रृंखला प्रत्येक स्थान सीमा पर (यहां तक कि समान रूप से) अभिसरण करती है, यह जरूरी नहीं कि पूरी तरह से अभिसरण हो।
उदाहरण 1: फलन की घात श्रेणी f(z) = 1/(1 − z), चारों ओर फैला हुआ z = 0, जो सरल है
- अभिसरण की त्रिज्या 1 है और सीमा पर प्रत्येक बिंदु पर विचलन करती है।
उदाहरण 2: के लिए शक्ति श्रृंखला g(z) = −ln(1 − z), चारों ओर फैला हुआ z = 0, जो है
- अभिसरण की त्रिज्या 1 है, और इसके लिए विचलन करता है z = 1 किन्तु सीमा पर अन्य सभी बिंदुओं के लिए अभिसरण करता है। कार्यक्रम f(z) उदाहरण 1 का अवकलज है g(z).
उदाहरण 3: शक्ति श्रृंखला
- अभिसरण की त्रिज्या 1 है और पूरी तरह से सीमा पर प्रत्येक स्थान अभिसरण करता है। यदि h इकाई डिस्क पर इस श्रृंखला द्वारा प्रस्तुत किया गया कार्य है, तो h(z) का व्युत्पन्न उदाहरण 2 के g के साथ g(z)/z के बराबर है। यह पता चला है कि h(z) द्विलघुगणक फलन है।
उदाहरण 4: शक्ति श्रृंखला
अभिसरण की त्रिज्या 1 है और संपूर्ण सीमा |z| = 1 पर एकसमान अभिसरण को अभिसरित करता है, किन्तु सीमा पर पूर्ण अभिसरण नहीं करता है।[5]
अभिसरण की दर
यदि हम फलन का विस्तार करते हैं
बिंदु x = 0 के आसपास, हम पाते हैं कि इस श्रृंखला की अभिसरण की त्रिज्या है जिसका अर्थ है कि यह श्रृंखला सभी सम्मिश्र संख्याओं के लिए अभिसरण करती है। चूंकि, अनुप्रयोगों में, अक्सर एक संख्यात्मक विश्लेषण की शुद्धता में रुचि होती है। पदों की संख्या और मूल्य दोनों, जिस पर श्रृंखला का मूल्यांकन किया जाना है, उत्तर की शुद्धता को प्रभावित करते हैं। उदाहरण के लिए, यदि हम गणना sin(0.1) करना चाहते हैं पाँच दशमलव स्थानों तक त्रुटिहीन, हमें श्रृंखला के केवल पहले दो पदों की आवश्यकता है। चूँकि, यदि हम x = 1 समान शुद्धता चाहते हैं हमें श्रृंखला के पहले पांच पदों का मूल्यांकन और योग करना चाहिए। sin(10) के लिए, किसी को श्रृंखला के पहले 18 पदों की आवश्यकता होती है, और sin(100) के लिए हमें पहले 141 शब्दों का मूल्यांकन करने की आवश्यकता है।
तो इन विशेष मूल्यों के लिए एक शक्ति श्रृंखला विस्तार का सबसे तेज़ अभिसरण केंद्र में है, और जैसे ही कोई अभिसरण के केंद्र से दूर जाता है, अभिसरण की दर तब तक धीमी हो जाती है जब तक आप सीमा तक नहीं पहुँच जाते (यदि यह उपस्थित है) और पार हो जाते हैं, में किस स्थिति में श्रृंखला (गणित) अलग हो जाएगी।
डिरिचलेट श्रृंखला के अभिसरण का भुज
एक समान अवधारणा अभिसरण का भुज है
ऐसी श्रृंखला अभिसरण करती है यदि s का वास्तविक भाग अभिसरण के गुणांक an के आधार पर किसी विशेष संख्या से अधिक है।
टिप्पणियाँ
- ↑ गणितीय विश्लेषण-द्वितीय (in English). Krishna Prakashan Media. 16 November 2010.
- ↑ See Figure 8.1 in: Hinch, E.J. (1991), Perturbation Methods, Cambridge Texts in Applied Mathematics, vol. 6, Cambridge University Press, p. 146, ISBN 0-521-37897-4
- ↑ Domb, C.; Sykes, M.F. (1957), "On the susceptibility of a ferromagnetic above the Curie point", Proc. R. Soc. Lond. A, 240 (1221): 214–228, Bibcode:1957RSPSA.240..214D, doi:10.1098/rspa.1957.0078, S2CID 119974403
- ↑ Mercer, G.N.; Roberts, A.J. (1990), "A centre manifold description of contaminant dispersion in channels with varying flow properties", SIAM J. Appl. Math., 50 (6): 1547–1565, doi:10.1137/0150091
- ↑ Sierpiński, W. (1918). "O szeregu potęgowym, który jest zbieżny na całem swem kole zbieżności jednostajnie, ale nie bezwzględnie". Prace Matematyczno-Fizyczne. 29 (1): 263–266.
संदर्भ
- Brown, James; Churchill, Ruel (1989), Complex variables and applications, New York: McGraw-Hill, ISBN 978-0-07-010905-6
- Stein, Elias; Shakarchi, Rami (2003), Complex Analysis, Princeton, New Jersey: Princeton University Press, ISBN 0-691-11385-8
यह भी देखें
- हाबिल की प्रमेय
- अभिसरण परीक्षण
- रूट टेस्ट