थर्मल संतुलन: Difference between revisions

From Vigyanwiki
(Created page with "{{Use American English|date=January 2021}} {{Use mdy dates|date=January 2021}} {{Short description|State of no net thermal energy flow between two connected systems}} {{Distin...")
 
No edit summary
Line 1: Line 1:
{{Use American English|date=January 2021}}
 
{{Use mdy dates|date=January 2021}}
{{Short description|State of no net thermal energy flow between two connected systems}}
{{Short description|State of no net thermal energy flow between two connected systems}}
{{Distinguish|Thermodynamic equilibrium}}
{{Distinguish| ऊष्मागतिक संतुलन}}
[[File:Thermal_equilibrium_in_closed_system.png |thumb|ताप प्रवाह के माध्यम से समय के साथ एक बंद प्रणाली में एक तापीय संतुलन का विकास जो तापमान के अंतर को कम करता है]]दो भौतिक प्रणालियाँ तापीय संतुलन में होती हैं यदि उनके बीच तापीय ऊर्जा का कोई शुद्ध प्रवाह नहीं होता है जब वे ऊष्मा के लिए पारगम्य पथ से जुड़े होते हैं। ऊष्मीय संतुलन ऊष्मागतिकी के शून्य नियम का पालन करता है। एक प्रणाली को स्वयं के साथ तापीय संतुलन में कहा जाता है यदि प्रणाली के भीतर का तापमान स्थानिक रूप से समान और अस्थायी रूप से स्थिर है।
[[File:Thermal_equilibrium_in_closed_system.png |thumb|ताप प्रवाह के माध्यम से समय के साथ एक बंद प्रणाली में एक तापीय संतुलन का विकास जो तापमान के अंतर को कम करता है]]दो भौतिक प्रणालियाँ तापीय संतुलन में होती हैं यदि उनके बीच ऊष्मा के लिए पारगम्य पथ से जुड़े होने पर उनके बीच तापीय ऊर्जा का कोई शुद्ध प्रवाह नहीं होता है। ऊष्मीय संतुलन ऊष्मागतिकी के शून्य नियम का पालन करता है। एक प्रणाली को स्वयं के साथ तापीय संतुलन में कहा जाता है यदि प्रणाली के भीतर का तापमान स्थानिक रूप से समान और अस्थायी रूप से स्थिर है।


[[थर्मोडायनामिक संतुलन]] में सिस्टम हमेशा थर्मल संतुलन में होते हैं, लेकिन इसका विलोम हमेशा सत्य नहीं होता है। यदि प्रणालियों के बीच संबंध '[[आंतरिक ऊर्जा]] में परिवर्तन' के रूप में ऊर्जा के हस्तांतरण की अनुमति देता है, लेकिन कार्य (भौतिकी) के रूप में पदार्थ के हस्तांतरण या ऊर्जा के हस्तांतरण की अनुमति नहीं देता है, तो दोनों प्रणालियां थर्मोडायनामिक संतुलन तक पहुंचे बिना थर्मल संतुलन तक पहुंच सकती हैं।
[[थर्मोडायनामिक संतुलन|ऊष्मागतिक संतुलन]] में प्रणाली सदैव ऊष्मीय संतुलन में होते हैं, लेकिन इसका विलोम सदैव सत्य नहीं होता है। यदि प्रणालियों के बीच संबंध '[[आंतरिक ऊर्जा]] में परिवर्तन' के रूप में ऊर्जा के हस्तांतरण की अनुमति देता है, लेकिन कार्य के रूप में पदार्थ या ऊर्जा के हस्तांतरण की अनुमति नहीं देता है, तो दोनों प्रणालियां ऊष्मागतिक संतुलन तक पहुंचे बिना ऊष्मीय संतुलन तक पहुंच सकती हैं।


== तापीय संतुलन की दो किस्में ==
== तापीय संतुलन की दो किस्में ==


===दो ऊष्मीय रूप से जुड़े पिंडों के बीच तापीय संतुलन का संबंध===
===दो ऊष्मीय रूप से जुड़े पिंडों के बीच तापीय संतुलन का संबंध===
थर्मल संतुलन का संबंध दो निकायों के बीच संतुलन का एक उदाहरण है, जिसका अर्थ है कि यह पदार्थ या कार्य के चुनिंदा पारगम्य विभाजन के माध्यम से स्थानांतरण को संदर्भित करता है; इसे डायथर्मल कनेक्शन कहा जाता है। लिब और यंगवासन के अनुसार, तापीय संतुलन के संबंध का आवश्यक अर्थ यह है कि यह स्वतुल्य और सममित है। यह आवश्यक अर्थ में शामिल नहीं है कि यह सकर्मक है या नहीं। परिभाषा के शब्दार्थ पर चर्चा करने के बाद, वे एक पर्याप्त भौतिक स्वयंसिद्ध को मानते हैं, कि वे ऊष्मप्रवैगिकी के शून्य नियम कहते हैं, कि थर्मल संतुलन एक सकर्मक संबंध है। वे टिप्पणी करते हैं कि इस प्रकार स्थापित तंत्रों के तुल्यता वर्ग समतापी कहलाते हैं।<ref>Lieb, E.H., Yngvason, J. (1999). The physics and mathematics of the second law of thermodynamics, ''Physics Reports'', '''314''..a': 1–96, p. 55–56.</ref>
ऊष्मीय संतुलन का संबंध दो निकायों के बीच संतुलन का एक उदाहरण है, जिसका अर्थ है कि यह पदार्थ या कार्य के चुनिंदा पारगम्य विभाजन के माध्यम से स्थानांतरण को संदर्भित करता है; इसे डायथर्मल कनेक्शन कहा जाता है। लिब और यंगवासन के अनुसार, तापीय संतुलन के संबंध का आवश्यक अर्थ यह है कि यह स्वतुल्य और सममित है। यह आवश्यक अर्थ में शामिल नहीं है कि यह सकर्मक है या नहीं। परिभाषा के शब्दार्थ पर चर्चा करने के बाद, वे एक पर्याप्त भौतिक स्वयंसिद्ध को मानते हैं, कि वे ऊष्मप्रवैगिकी के शून्य नियम कहते हैं, कि ऊष्मीय संतुलन एक सकर्मक संबंध है। वे टिप्पणी करते हैं कि इस प्रकार स्थापित तंत्रों के तुल्यता वर्ग समतापी कहलाते हैं।<ref>Lieb, E.H., Yngvason, J. (1999). The physics and mathematics of the second law of thermodynamics, ''Physics Reports'', '''314''..a': 1–96, p. 55–56.</ref>




=== एक पृथक निकाय का आंतरिक तापीय संतुलन ===
=== एक पृथक निकाय का आंतरिक तापीय संतुलन ===
किसी पिंड का ऊष्मीय संतुलन अपने आप में उस पिंड को संदर्भित करता है जब वह पृथक होता है। पृष्ठभूमि यह है कि इसमें कोई भी ऊष्मा प्रवेश या छोड़ती नहीं है, और इसे असीमित समय के लिए अपनी आंतरिक विशेषताओं के तहत व्यवस्थित होने की अनुमति दी जाती है। जब यह पूरी तरह से व्यवस्थित हो जाता है, ताकि स्थूल परिवर्तन का अब पता न चले, यह अपने स्वयं के तापीय संतुलन में होता है। यह निहित नहीं है कि यह आवश्यक रूप से अन्य प्रकार के आंतरिक संतुलन में है। उदाहरण के लिए, यह संभव है कि एक पिंड आंतरिक तापीय संतुलन तक पहुंच जाए लेकिन आंतरिक रासायनिक संतुलन में न हो; कांच एक उदाहरण है।<ref>Adkins, C.J. (1968/1983), pp. 249–251.</ref>
किसी पिंड का ऊष्मीय संतुलन अपने आप में उस पिंड को संदर्भित करता है जब वह पृथक होता है। पृष्ठभूमि यह है कि इसमें कोई भी ऊष्मा प्रवेश या छोड़ती नहीं है, और इसे असीमित समय के लिए अपनी आंतरिक विशेषताओं के तहत व्यवस्थित होने की अनुमति दी जाती है। जब यह पूरी तरह से व्यवस्थित हो जाता है, ताकि स्थूल परिवर्तन का अब पता न चले, यह अपने स्वयं के तापीय संतुलन में होता है। यह निहित नहीं है कि यह आवश्यक रूप से अन्य प्रकार के आंतरिक संतुलन में है। उदाहरण के लिए, यह संभव है कि एक पिंड आंतरिक तापीय संतुलन तक पहुंच जाए लेकिन आंतरिक रासायनिक संतुलन में न हो; कांच एक उदाहरण है।<ref>Adkins, C.J. (1968/1983), pp. 249–251.</ref>
कोई एक पृथक प्रणाली की कल्पना कर सकता है, शुरू में आंतरिक तापीय संतुलन की अपनी स्थिति में नहीं। यह विभाजन के एक कल्पित थर्मोडायनामिक ऑपरेशन के अधीन दो उप-प्रणालियों में विभाजित किया जा सकता है जो कुछ भी नहीं, कोई दीवार नहीं है। तब दो उप-प्रणालियों के बीच ऊर्जा के हस्तांतरण की संभावना को गर्मी के रूप में माना जा सकता है। काल्पनिक विभाजन संचालन के एक लंबे समय के बाद, दो उपप्रणालियाँ व्यावहारिक रूप से स्थिर अवस्था में पहुँच जाएँगी, और इसलिए एक दूसरे के साथ तापीय संतुलन के संबंध में होंगी। इस तरह के एक साहसिक कार्य को अलग-अलग काल्पनिक विभाजनों के साथ अनिश्चित काल तक कई तरीकों से संचालित किया जा सकता है। उन सभी का परिणाम सबसिस्टम होगा जो एक दूसरे के साथ थर्मल संतुलन में दिखाया जा सकता है, विभिन्न विभाजनों से सबसिस्टम का परीक्षण कर रहा है। इस कारण से, एक पृथक प्रणाली, शुरू में आंतरिक थर्मल संतुलन की अपनी स्थिति नहीं थी, लेकिन लंबे समय तक छोड़ दी गई, व्यावहारिक रूप से हमेशा एक अंतिम स्थिति तक पहुंच जाएगी जिसे आंतरिक थर्मल संतुलन में से एक माना जा सकता है। इस तरह की अंतिम अवस्था स्थानिक एकरूपता या तापमान की समरूपता में से एक है।<ref>[[Max Planck|Planck, M.]], (1897/1903), p. 3.</ref> ऐसे राज्यों का अस्तित्व शास्त्रीय ऊष्मप्रवैगिकी का एक बुनियादी सिद्धांत है।<ref>[[László Tisza|Tisza, L.]] (1966), p. 108.</ref><ref>Bailyn, M. (1994), p. 20.</ref> यह अवधारणा कभी-कभी होती है, लेकिन अक्सर नहीं, ऊष्मप्रवैगिकी का ऋण पहला नियम कहा जाता है।<ref>{{Cite journal |doi = 10.1119/1.4914528|bibcode = 2015AmJPh..83..628M|title = स्वयंसिद्ध ऊष्मप्रवैगिकी में समय और अपरिवर्तनीयता|year = 2015|last1 = Marsland|first1 = Robert|last2 = Brown|first2 = Harvey R.|last3 = Valente|first3 = Giovanni|journal = American Journal of Physics|volume = 83|issue = 7|pages = 628–634|hdl = 11311/1043322|hdl-access = free}}</ref> पृथक क्वांटम प्रणालियों के लिए एक उल्लेखनीय अपवाद मौजूद है जो [[कई-निकाय स्थानीयकरण]] हैं। कई-निकाय स्थानीयकृत हैं और जो कभी भी आंतरिक तापीय संतुलन तक नहीं पहुंचते हैं।
कोई एक पृथक प्रणाली की कल्पना कर सकता है, शुरू में आंतरिक तापीय संतुलन की अपनी स्थिति में नहीं। यह विभाजन के एक कल्पित ऊष्मागतिक ऑपरेशन के अधीन दो उप-प्रणालियों में विभाजित किया जा सकता है जो कुछ भी नहीं, कोई दीवार नहीं है। तब दो उप-प्रणालियों के बीच ऊर्जा के हस्तांतरण की संभावना को गर्मी के रूप में माना जा सकता है। काल्पनिक विभाजन संचालन के एक लंबे समय के बाद, दो उपप्रणालियाँ व्यावहारिक रूप से स्थिर अवस्था में पहुँच जाएँगी, और इसलिए एक दूसरे के साथ तापीय संतुलन के संबंध में होंगी। इस तरह के एक साहसिक कार्य को अलग-अलग काल्पनिक विभाजनों के साथ अनिश्चित काल तक कई तरीकों से संचालित किया जा सकता है। उन सभी का परिणाम सबसिस्टम होगा जो एक दूसरे के साथ ऊष्मीय संतुलन में दिखाया जा सकता है, विभिन्न विभाजनों से सबसिस्टम का परीक्षण कर रहा है। इस कारण से, एक पृथक प्रणाली, शुरू में आंतरिक ऊष्मीय संतुलन की अपनी स्थिति नहीं थी, लेकिन लंबे समय तक छोड़ दी गई, व्यावहारिक रूप से सदैव एक अंतिम स्थिति तक पहुंच जाएगी जिसे आंतरिक ऊष्मीय संतुलन में से एक माना जा सकता है। इस तरह की अंतिम अवस्था स्थानिक एकरूपता या तापमान की समरूपता में से एक है।<ref>[[Max Planck|Planck, M.]], (1897/1903), p. 3.</ref> ऐसे राज्यों का अस्तित्व शास्त्रीय ऊष्मप्रवैगिकी का एक बुनियादी सिद्धांत है।<ref>[[László Tisza|Tisza, L.]] (1966), p. 108.</ref><ref>Bailyn, M. (1994), p. 20.</ref> यह अवधारणा कभी-कभी होती है, लेकिन अक्सर नहीं, ऊष्मप्रवैगिकी का ऋण पहला नियम कहा जाता है।<ref>{{Cite journal |doi = 10.1119/1.4914528|bibcode = 2015AmJPh..83..628M|title = स्वयंसिद्ध ऊष्मप्रवैगिकी में समय और अपरिवर्तनीयता|year = 2015|last1 = Marsland|first1 = Robert|last2 = Brown|first2 = Harvey R.|last3 = Valente|first3 = Giovanni|journal = American Journal of Physics|volume = 83|issue = 7|pages = 628–634|hdl = 11311/1043322|hdl-access = free}}</ref> पृथक क्वांटम प्रणालियों के लिए एक उल्लेखनीय अपवाद मौजूद है जो [[कई-निकाय स्थानीयकरण]] हैं। कई-निकाय स्थानीयकृत हैं और जो कभी भी आंतरिक तापीय संतुलन तक नहीं पहुंचते हैं।


== थर्मल संपर्क ==
== थर्मल संपर्क ==


[[चालन (गर्मी)]] या तापीय विकिरण के माध्यम से या तापीय जलाशय से एक [[बंद प्रणाली]] में या बाहर गर्मी हस्तांतरण, और जब यह प्रक्रिया गर्मी के शुद्ध हस्तांतरण को प्रभावित कर रही है, तो प्रणाली थर्मल संतुलन में नहीं है। जबकि ऊष्मा के रूप में ऊर्जा का स्थानांतरण जारी रहता है, सिस्टम का तापमान बदल सकता है।
[[चालन (गर्मी)]] या तापीय विकिरण के माध्यम से या तापीय जलाशय से एक [[बंद प्रणाली]] में या बाहर गर्मी हस्तांतरण, और जब यह प्रक्रिया गर्मी के शुद्ध हस्तांतरण को प्रभावित कर रही है, तो प्रणाली ऊष्मीय संतुलन में नहीं है। जबकि ऊष्मा के रूप में ऊर्जा का स्थानांतरण जारी रहता है, सिस्टम का तापमान बदल सकता है।


== अलग-अलग समान तापमान के साथ तैयार निकाय, फिर एक दूसरे के साथ विशुद्ध रूप से थर्मल संचार में डालते हैं ==
== अलग-अलग समान तापमान के साथ तैयार निकाय, फिर एक दूसरे के साथ विशुद्ध रूप से थर्मल संचार में डालते हैं ==


यदि निकायों को अलग-अलग सूक्ष्म रूप से स्थिर अवस्थाओं के साथ तैयार किया जाता है, और फिर प्रवाहकीय या विकिरण पथों द्वारा एक दूसरे के साथ विशुद्ध रूप से थर्मल कनेक्शन में डाल दिया जाता है, तो वे एक दूसरे के साथ थर्मल संतुलन में होंगे, जब कनेक्शन के बाद किसी भी शरीर में कोई बदलाव नहीं होता है। लेकिन अगर शुरू में वे थर्मल संतुलन के संबंध में नहीं हैं, तो गर्म से ठंडे तक गर्मी प्रवाहित होगी, जो भी मार्ग, प्रवाहकीय या विकिरण उपलब्ध है, और यह प्रवाह तब तक जारी रहेगा जब तक कि थर्मल संतुलन नहीं हो जाता है और तब उनके पास होगा समान तापमान।
यदि निकायों को अलग-अलग सूक्ष्म रूप से स्थिर अवस्थाओं के साथ तैयार किया जाता है, और फिर प्रवाहकीय या विकिरण पथों द्वारा एक दूसरे के साथ विशुद्ध रूप से थर्मल कनेक्शन में डाल दिया जाता है, तो वे एक दूसरे के साथ ऊष्मीय संतुलन में होंगे, जब कनेक्शन के बाद किसी भी शरीर में कोई बदलाव नहीं होता है। लेकिन अगर शुरू में वे ऊष्मीय संतुलन के संबंध में नहीं हैं, तो गर्म से ठंडे तक गर्मी प्रवाहित होगी, जो भी मार्ग, प्रवाहकीय या विकिरण उपलब्ध है, और यह प्रवाह तब तक जारी रहेगा जब तक कि ऊष्मीय संतुलन नहीं हो जाता है और तब उनके पास होगा समान तापमान।


थर्मल संतुलन का एक रूप विकिरण विनिमय संतुलन है।<ref name="Prevost 1791">[[Pierre Prevost|Prevost, P.]] (1791). [https://books.google.com/books?id=7ZLOAAAAMAAJ&pg=PA314 Mémoire sur l'equilibre du feu. ''Journal de Physique'' (Paris), vol. 38 pp. 314-322.]</ref><ref name="Planck 1914 40">[[Max Planck|Planck, M.]] (1914), p. 40.</ref> दो शरीर, प्रत्येक अपने स्वयं के समान तापमान के साथ, केवल विकिरण कनेक्शन में, इससे कोई फर्क नहीं पड़ता कि कितनी दूर है, या आंशिक रूप से अवरोधक, परावर्तक, या अपवर्तक, बाधाएं उनके विकिरण विनिमय के मार्ग में हैं, जो एक दूसरे के सापेक्ष गतिमान नहीं हैं, थर्मल का आदान-प्रदान करेंगे विकिरण, कुल मिलाकर गर्म ऊर्जा को कूलर में स्थानांतरित करता है, और जब वे समान तापमान पर होते हैं तो बराबर और विपरीत मात्रा में आदान-प्रदान करेंगे। इस स्थिति में, किरचॉफ का तापीय विकिरण का नियम | किरचॉफ का विकिरण उत्सर्जन और अवशोषण की समानता का नियम और [[हेल्महोल्ट्ज़ पारस्परिकता]] सिद्धांत चलन में हैं।
ऊष्मीय संतुलन का एक रूप विकिरण विनिमय संतुलन है।<ref name="Prevost 1791">[[Pierre Prevost|Prevost, P.]] (1791). [https://books.google.com/books?id=7ZLOAAAAMAAJ&pg=PA314 Mémoire sur l'equilibre du feu. ''Journal de Physique'' (Paris), vol. 38 pp. 314-322.]</ref><ref name="Planck 1914 40">[[Max Planck|Planck, M.]] (1914), p. 40.</ref> दो शरीर, प्रत्येक अपने स्वयं के समान तापमान के साथ, केवल विकिरण कनेक्शन में, इससे कोई फर्क नहीं पड़ता कि कितनी दूर है, या आंशिक रूप से अवरोधक, परावर्तक, या अपवर्तक, बाधाएं उनके विकिरण विनिमय के मार्ग में हैं, जो एक दूसरे के सापेक्ष गतिमान नहीं हैं, थर्मल का आदान-प्रदान करेंगे विकिरण, कुल मिलाकर गर्म ऊर्जा को कूलर में स्थानांतरित करता है, और जब वे समान तापमान पर होते हैं तो बराबर और विपरीत मात्रा में आदान-प्रदान करेंगे। इस स्थिति में, किरचॉफ का तापीय विकिरण का नियम | किरचॉफ का विकिरण उत्सर्जन और अवशोषण की समानता का नियम और [[हेल्महोल्ट्ज़ पारस्परिकता]] सिद्धांत चलन में हैं।


== एक पृथक प्रणाली की आंतरिक स्थिति में परिवर्तन ==
== एक पृथक प्रणाली की आंतरिक स्थिति में परिवर्तन ==


यदि प्रारंभिक रूप से पृथक प्रणाली, आंतरिक दीवारों के बिना जो [[एडियाबेटिक दीवार]] उपप्रणाली स्थापित करती है, काफी देर तक छोड़ दी जाती है, यह आम तौर पर थर्मल संतुलन की स्थिति तक पहुंच जाएगी, जिसमें इसका तापमान एक [[समान वितरण (निरंतर)]] होगा, लेकिन जरूरी नहीं कि एक राज्य हो थर्मोडायनामिक संतुलन का, यदि कोई संरचनात्मक अवरोध है जो सिस्टम में कुछ संभावित प्रक्रियाओं को संतुलन तक पहुँचने से रोक सकता है; कांच एक उदाहरण है। क्लासिकल ऊष्मप्रवैगिकी सामान्य रूप से उन आदर्श प्रणालियों पर विचार करती है जो आंतरिक संतुलन तक पहुंच गई हैं, और उनके बीच पदार्थ और ऊर्जा हस्तांतरण के आदर्श स्थानान्तरण हैं।
यदि प्रारंभिक रूप से पृथक प्रणाली, आंतरिक दीवारों के बिना जो [[एडियाबेटिक दीवार]] उपप्रणाली स्थापित करती है, काफी देर तक छोड़ दी जाती है, यह आम तौर पर ऊष्मीय संतुलन की स्थिति तक पहुंच जाएगी, जिसमें इसका तापमान एक [[समान वितरण (निरंतर)]] होगा, लेकिन जरूरी नहीं कि एक राज्य हो ऊष्मागतिक संतुलन का, यदि कोई संरचनात्मक अवरोध है जो सिस्टम में कुछ संभावित प्रक्रियाओं को संतुलन तक पहुँचने से रोक सकता है; कांच एक उदाहरण है। क्लासिकल ऊष्मप्रवैगिकी सामान्य रूप से उन आदर्श प्रणालियों पर विचार करती है जो आंतरिक संतुलन तक पहुंच गई हैं, और उनके बीच पदार्थ और ऊर्जा हस्तांतरण के आदर्श स्थानान्तरण हैं।


एक पृथक भौतिक प्रणाली [[विषम]] हो सकती है, या दीवारों द्वारा एक दूसरे से अलग किए गए कई उप-प्रणालियों से बना हो सकती है। यदि आंतरिक दीवारों के बिना प्रारंभिक अमानवीय भौतिक प्रणाली को थर्मोडायनामिक ऑपरेशन द्वारा अलग किया जाता है, तो यह सामान्य रूप से समय के साथ अपनी आंतरिक स्थिति को बदल देगा। या यदि यह दीवारों द्वारा एक दूसरे से अलग किए गए कई उप-प्रणालियों से बना है, तो इसकी दीवारों को बदलने वाले थर्मोडायनामिक ऑपरेशन के बाद यह अपनी स्थिति बदल सकता है। इस तरह के परिवर्तनों में घटक सामग्री की स्थिति को बदलकर तापमान में परिवर्तन या तापमान का स्थानिक वितरण शामिल हो सकता है। लोहे की एक छड़, जिसे शुरू में एक छोर पर गर्म और दूसरे पर ठंडा होने के लिए तैयार किया जाता है, अलग होने पर बदल जाएगी ताकि इसका तापमान इसकी लंबाई के साथ समान हो जाए; इस प्रक्रिया के दौरान, रॉड तब तक थर्मल संतुलन में नहीं होता जब तक उसका तापमान एक समान न हो। गर्म पानी के स्नान में तैरते हुए बर्फ के ब्लॉक के रूप में तैयार की गई प्रणाली में, और फिर अलग-थलग, बर्फ पिघल सकती है; पिघलने के दौरान, सिस्टम थर्मल संतुलन में नहीं है; लेकिन अंततः इसका तापमान एक समान हो जाएगा; बर्फ का ब्लॉक दोबारा नहीं बनेगा। पेट्रोल वाष्प और हवा के मिश्रण के रूप में तैयार एक प्रणाली को एक चिंगारी से प्रज्वलित किया जा सकता है और कार्बन डाइऑक्साइड और पानी का उत्पादन किया जा सकता है; यदि यह एक पृथक प्रणाली में होता है, तो यह प्रणाली के तापमान में वृद्धि करेगा, और वृद्धि के दौरान प्रणाली थर्मल संतुलन में नहीं होगी; लेकिन अंततः, सिस्टम एक समान तापमान पर स्थिर हो जाएगा।
एक पृथक भौतिक प्रणाली [[विषम]] हो सकती है, या दीवारों द्वारा एक दूसरे से अलग किए गए कई उप-प्रणालियों से बना हो सकती है। यदि आंतरिक दीवारों के बिना प्रारंभिक अमानवीय भौतिक प्रणाली को ऊष्मागतिक ऑपरेशन द्वारा अलग किया जाता है, तो यह सामान्य रूप से समय के साथ अपनी आंतरिक स्थिति को बदल देगा। या यदि यह दीवारों द्वारा एक दूसरे से अलग किए गए कई उप-प्रणालियों से बना है, तो इसकी दीवारों को बदलने वाले ऊष्मागतिक ऑपरेशन के बाद यह अपनी स्थिति बदल सकता है। इस तरह के परिवर्तनों में घटक सामग्री की स्थिति को बदलकर तापमान में परिवर्तन या तापमान का स्थानिक वितरण शामिल हो सकता है। लोहे की एक छड़, जिसे शुरू में एक छोर पर गर्म और दूसरे पर ठंडा होने के लिए तैयार किया जाता है, अलग होने पर बदल जाएगी ताकि इसका तापमान इसकी लंबाई के साथ समान हो जाए; इस प्रक्रिया के दौरान, रॉड तब तक ऊष्मीय संतुलन में नहीं होता जब तक उसका तापमान एक समान न हो। गर्म पानी के स्नान में तैरते हुए बर्फ के ब्लॉक के रूप में तैयार की गई प्रणाली में, और फिर अलग-थलग, बर्फ पिघल सकती है; पिघलने के दौरान, सिस्टम ऊष्मीय संतुलन में नहीं है; लेकिन अंततः इसका तापमान एक समान हो जाएगा; बर्फ का ब्लॉक दोबारा नहीं बनेगा। पेट्रोल वाष्प और हवा के मिश्रण के रूप में तैयार एक प्रणाली को एक चिंगारी से प्रज्वलित किया जा सकता है और कार्बन डाइऑक्साइड और पानी का उत्पादन किया जा सकता है; यदि यह एक पृथक प्रणाली में होता है, तो यह प्रणाली के तापमान में वृद्धि करेगा, और वृद्धि के दौरान प्रणाली ऊष्मीय संतुलन में नहीं होगी; लेकिन अंततः, सिस्टम एक समान तापमान पर स्थिर हो जाएगा।


पृथक प्रणालियों में इस तरह के परिवर्तन इस अर्थ में अपरिवर्तनीय हैं कि जब भी सिस्टम को उसी तरह से तैयार किया जाता है, तो इस तरह का परिवर्तन अनायास ही हो जाएगा, उलटा परिवर्तन व्यावहारिक रूप से पृथक प्रणाली के भीतर अनायास कभी नहीं होगा; यह ऊष्मप्रवैगिकी के दूसरे नियम की सामग्री का एक बड़ा हिस्सा है। वास्तव में पूरी तरह से अलग सिस्टम प्रकृति में नहीं होते हैं, और हमेशा कृत्रिम रूप से तैयार होते हैं।
पृथक प्रणालियों में इस तरह के परिवर्तन इस अर्थ में अपरिवर्तनीय हैं कि जब भी सिस्टम को उसी तरह से तैयार किया जाता है, तो इस तरह का परिवर्तन अनायास ही हो जाएगा, उलटा परिवर्तन व्यावहारिक रूप से पृथक प्रणाली के भीतर अनायास कभी नहीं होगा; यह ऊष्मप्रवैगिकी के दूसरे नियम की सामग्री का एक बड़ा हिस्सा है। वास्तव में पूरी तरह से अलग सिस्टम प्रकृति में नहीं होते हैं, और सदैव कृत्रिम रूप से तैयार होते हैं।


=== एक गुरुत्वाकर्षण क्षेत्र में ===
=== एक गुरुत्वाकर्षण क्षेत्र में ===


कोई एक ऐसी प्रणाली पर विचार कर सकता है जो कठोर दीवारों के साथ एक बहुत लंबे रुद्धोष्म रूप से पृथक पोत में निहित है, जिसमें प्रारंभिक रूप से एक स्थिर गुरुत्वाकर्षण क्षेत्र के प्रभाव में एक लंबे समय के लिए एक स्थिर गुरुत्वाकर्षण क्षेत्र के प्रभाव के तहत लंबे समय तक छोड़ दिया जाता है, जैसे बाहरी शरीर के कारण पृथ्वी के रूप में। यह पूरे समय समान तापमान की स्थिति में स्थिर रहेगा, हालांकि समान दबाव या घनत्व का नहीं, और शायद इसमें कई चरण होंगे। यह तब आंतरिक तापीय संतुलन में है और थर्मोडायनामिक संतुलन में भी है। इसका मतलब यह है कि सिस्टम के सभी स्थानीय हिस्से पारस्परिक विकिरण विनिमय संतुलन में हैं। इसका मतलब है कि सिस्टम का तापमान स्थानिक रूप से एक समान है।<ref name="Planck 1914 40" />ऐसा सभी मामलों में होता है, जिनमें गैर-समान बाहरी बल क्षेत्र भी शामिल हैं। बाहरी रूप से लगाए गए गुरुत्वाकर्षण क्षेत्र के लिए, यह मैक्रोस्कोपिक थर्मोडायनामिक शब्दों में भिन्नरूपों की कलन द्वारा, लैंगरांगियन मल्टीप्लायरों की विधि का उपयोग करके सिद्ध किया जा सकता है।<ref>Gibbs, J.W. (1876/1878), pp. 144-150.</ref><ref>[[Dirk ter Haar|ter Haar, D.]], [[Harald Wergeland|Wergeland, H.]] (1966), pp. 127–130.</ref><ref>Münster, A. (1970), pp. 309–310.</ref><ref>Bailyn, M. (1994), pp. 254-256.</ref><ref>{{Cite journal | doi=10.1175/1520-0469(2004)061<0931:OMEP>2.0.CO;2| bibcode=2004JAtS...61..931V| issn=1520-0469| year=2004| volume=61| pages=931–936| title=अधिकतम एंट्रॉपी प्रोफाइल पर| last1=Verkley| first1=W. T. M.| last2=Gerkema| first2=T.| journal=Journal of the Atmospheric Sciences| issue=8| doi-access=free}}</ref><ref>Akmaev, R.A. (2008). On the energetics of maximum-entropy temperature profiles, ''Q. J. R. Meteorol. Soc.'', '''134''':187–197.</ref> गतिज सिद्धांत या सांख्यिकीय यांत्रिकी के विचार भी इस कथन का समर्थन करते हैं।<ref>Maxwell, J.C. (1867).</ref><ref>Boltzmann, L. (1896/1964), p. 143.</ref><ref>Chapman, S., Cowling, T.G. (1939/1970), Section 4.14, pp. 75–78.</ref><ref>[[J. R. Partington|Partington, J.R.]] (1949), pp. 275–278.</ref><ref>Coombes, C.A., Laue, H. (1985). A paradox concerning the temperature distribution of a gas in a gravitational field, ''Am. J. Phys.'', '''53''': 272–273.</ref><ref>Román, F.L., White, J.A., Velasco, S. (1995). Microcanonical single-particle distributions for an ideal gas in a gravitational field, ''Eur. J. Phys.'', '''16''': 83–90.</ref><ref>Velasco, S., Román, F.L., White, J.A. (1996). On a paradox concerning the temperature distribution of an ideal gas in a gravitational field, ''Eur. J. Phys.'', '''17''': 43–44.</ref>
कोई एक ऐसी प्रणाली पर विचार कर सकता है जो कठोर दीवारों के साथ एक बहुत लंबे रुद्धोष्म रूप से पृथक पोत में निहित है, जिसमें प्रारंभिक रूप से एक स्थिर गुरुत्वाकर्षण क्षेत्र के प्रभाव में एक लंबे समय के लिए एक स्थिर गुरुत्वाकर्षण क्षेत्र के प्रभाव के तहत लंबे समय तक छोड़ दिया जाता है, जैसे बाहरी शरीर के कारण पृथ्वी के रूप में। यह पूरे समय समान तापमान की स्थिति में स्थिर रहेगा, हालांकि समान दबाव या घनत्व का नहीं, और शायद इसमें कई चरण होंगे। यह तब आंतरिक तापीय संतुलन में है और ऊष्मागतिक संतुलन में भी है। इसका मतलब यह है कि सिस्टम के सभी स्थानीय हिस्से पारस्परिक विकिरण विनिमय संतुलन में हैं। इसका मतलब है कि सिस्टम का तापमान स्थानिक रूप से एक समान है।<ref name="Planck 1914 40" />ऐसा सभी मामलों में होता है, जिनमें गैर-समान बाहरी बल क्षेत्र भी शामिल हैं। बाहरी रूप से लगाए गए गुरुत्वाकर्षण क्षेत्र के लिए, यह मैक्रोस्कोपिक ऊष्मागतिक शब्दों में भिन्नरूपों की कलन द्वारा, लैंगरांगियन मल्टीप्लायरों की विधि का उपयोग करके सिद्ध किया जा सकता है।<ref>Gibbs, J.W. (1876/1878), pp. 144-150.</ref><ref>[[Dirk ter Haar|ter Haar, D.]], [[Harald Wergeland|Wergeland, H.]] (1966), pp. 127–130.</ref><ref>Münster, A. (1970), pp. 309–310.</ref><ref>Bailyn, M. (1994), pp. 254-256.</ref><ref>{{Cite journal | doi=10.1175/1520-0469(2004)061<0931:OMEP>2.0.CO;2| bibcode=2004JAtS...61..931V| issn=1520-0469| year=2004| volume=61| pages=931–936| title=अधिकतम एंट्रॉपी प्रोफाइल पर| last1=Verkley| first1=W. T. M.| last2=Gerkema| first2=T.| journal=Journal of the Atmospheric Sciences| issue=8| doi-access=free}}</ref><ref>Akmaev, R.A. (2008). On the energetics of maximum-entropy temperature profiles, ''Q. J. R. Meteorol. Soc.'', '''134''':187–197.</ref> गतिज सिद्धांत या सांख्यिकीय यांत्रिकी के विचार भी इस कथन का समर्थन करते हैं।<ref>Maxwell, J.C. (1867).</ref><ref>Boltzmann, L. (1896/1964), p. 143.</ref><ref>Chapman, S., Cowling, T.G. (1939/1970), Section 4.14, pp. 75–78.</ref><ref>[[J. R. Partington|Partington, J.R.]] (1949), pp. 275–278.</ref><ref>Coombes, C.A., Laue, H. (1985). A paradox concerning the temperature distribution of a gas in a gravitational field, ''Am. J. Phys.'', '''53''': 272–273.</ref><ref>Román, F.L., White, J.A., Velasco, S. (1995). Microcanonical single-particle distributions for an ideal gas in a gravitational field, ''Eur. J. Phys.'', '''16''': 83–90.</ref><ref>Velasco, S., Román, F.L., White, J.A. (1996). On a paradox concerning the temperature distribution of an ideal gas in a gravitational field, ''Eur. J. Phys.'', '''17''': 43–44.</ref>




== थर्मल और थर्मोडायनामिक इक्विलिब्रिया के बीच अंतर ==
== थर्मल और ऊष्मागतिक इक्विलिब्रिया के बीच अंतर ==


थर्मल और थर्मोडायनामिक संतुलन के बीच एक महत्वपूर्ण अंतर है। मुंस्टर (1970) के अनुसार, थर्मोडायनामिक संतुलन की अवस्थाओं में, एक प्रणाली के राज्य चर एक औसत दर्जे की दर से नहीं बदलते हैं। इसके अलावा, 'मापने योग्य दर पर' प्रावधान का अर्थ है कि हम केवल निर्दिष्ट प्रक्रियाओं और परिभाषित प्रायोगिक स्थितियों के संबंध में एक संतुलन पर विचार कर सकते हैं। साथ ही, थर्मोडायनामिक संतुलन की स्थिति को पदार्थ के किसी दिए गए शरीर के किसी अन्य राज्य की तुलना में कम मैक्रोस्कोपिक चर द्वारा वर्णित किया जा सकता है। एक अकेला पिंड ऐसी अवस्था में शुरू हो सकता है जो थर्मोडायनामिक संतुलन में से एक नहीं है, और थर्मोडायनामिक संतुलन तक पहुंचने तक बदल सकता है। थर्मल संतुलन दो निकायों या बंद प्रणालियों के बीच एक संबंध है, जिसमें स्थानान्तरण केवल ऊर्जा की अनुमति है और गर्मी के लिए पारगम्य विभाजन के माध्यम से होता है, और जिसमें निकायों के राज्यों में परिवर्तन समाप्त होने तक स्थानान्तरण जारी रहता है।<ref>Münster, A. (1970), pp. 6, 22, 52.</ref>
थर्मल और ऊष्मागतिक संतुलन के बीच एक महत्वपूर्ण अंतर है। मुंस्टर (1970) के अनुसार, ऊष्मागतिक संतुलन की अवस्थाओं में, एक प्रणाली के राज्य चर एक औसत दर्जे की दर से नहीं बदलते हैं। इसके अलावा, 'मापने योग्य दर पर' प्रावधान का अर्थ है कि हम केवल निर्दिष्ट प्रक्रियाओं और परिभाषित प्रायोगिक स्थितियों के संबंध में एक संतुलन पर विचार कर सकते हैं। साथ ही, ऊष्मागतिक संतुलन की स्थिति को पदार्थ के किसी दिए गए शरीर के किसी अन्य राज्य की तुलना में कम मैक्रोस्कोपिक चर द्वारा वर्णित किया जा सकता है। एक अकेला पिंड ऐसी अवस्था में शुरू हो सकता है जो ऊष्मागतिक संतुलन में से एक नहीं है, और ऊष्मागतिक संतुलन तक पहुंचने तक बदल सकता है। ऊष्मीय संतुलन दो निकायों या बंद प्रणालियों के बीच एक संबंध है, जिसमें स्थानान्तरण केवल ऊर्जा की अनुमति है और गर्मी के लिए पारगम्य विभाजन के माध्यम से होता है, और जिसमें निकायों के राज्यों में परिवर्तन समाप्त होने तक स्थानान्तरण जारी रहता है।<ref>Münster, A. (1970), pp. 6, 22, 52.</ref>
सीजे एडकिंस द्वारा 'थर्मल संतुलन' और 'थर्मोडायनामिक संतुलन' के बीच एक स्पष्ट अंतर किया गया है। वह अनुमति देता है कि दो प्रणालियों को ऊष्मा का आदान-प्रदान करने की अनुमति दी जा सकती है लेकिन कार्य के आदान-प्रदान से विवश किया जा सकता है; वे स्वाभाविक रूप से तब तक ऊष्मा का आदान-प्रदान करेंगे जब तक कि उनका तापमान समान न हो जाए, और वे तापीय संतुलन तक न पहुँच जाएँ, लेकिन सामान्य तौर पर, थर्मोडायनामिक संतुलन में नहीं होंगे। वे थर्मोडायनामिक संतुलन तक पहुँच सकते हैं जब उन्हें काम का आदान-प्रदान करने की भी अनुमति दी जाती है।<ref>Adkins, C.J. (1968/1983), pp. 6–7.</ref>
सीजे एडकिंस द्वारा 'ऊष्मीय संतुलन' और 'ऊष्मागतिक संतुलन' के बीच एक स्पष्ट अंतर किया गया है। वह अनुमति देता है कि दो प्रणालियों को ऊष्मा का आदान-प्रदान करने की अनुमति दी जा सकती है लेकिन कार्य के आदान-प्रदान से विवश किया जा सकता है; वे स्वाभाविक रूप से तब तक ऊष्मा का आदान-प्रदान करेंगे जब तक कि उनका तापमान समान न हो जाए, और वे तापीय संतुलन तक न पहुँच जाएँ, लेकिन सामान्य तौर पर, ऊष्मागतिक संतुलन में नहीं होंगे। वे ऊष्मागतिक संतुलन तक पहुँच सकते हैं जब उन्हें काम का आदान-प्रदान करने की भी अनुमति दी जाती है।<ref>Adkins, C.J. (1968/1983), pp. 6–7.</ref>
'तापीय संतुलन' और 'थर्मोडायनामिक संतुलन' के बीच एक और स्पष्ट अंतर बीसी ईयू द्वारा किया गया है। वह थर्मल संपर्क में दो प्रणालियों पर विचार करता है, एक थर्मामीटर, दूसरा एक प्रणाली जिसमें कई अपरिवर्तनीय प्रक्रियाएं हो रही हैं। वह उस मामले पर विचार करता है जिसमें ब्याज के समय के पैमाने पर, यह होता है कि थर्मामीटर रीडिंग और अपरिवर्तनीय प्रक्रियाएं दोनों स्थिर हैं। फिर थर्मोडायनामिक संतुलन के बिना थर्मल संतुलन होता है। यूरोपीय संघ प्रस्ताव करता है कि ऊष्मप्रवैगिकी के शून्य नियम को तब भी लागू करने पर विचार किया जा सकता है जब ऊष्मप्रवैगिकी संतुलन मौजूद नहीं है; वह यह भी प्रस्तावित करता है कि यदि परिवर्तन इतनी तेजी से हो रहे हैं कि एक स्थिर तापमान को परिभाषित नहीं किया जा सकता है, तो थर्मोडायनामिक औपचारिकता के माध्यम से प्रक्रिया का वर्णन करना अब संभव नहीं है। दूसरे शब्दों में, ऐसी प्रक्रिया के लिए ऊष्मप्रवैगिकी का कोई अर्थ नहीं है।<ref>Eu, B.C. (2002). ''Generalized Thermodynamics. The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics'', Kluwer Academic Publishers, Dordrecht, {{ISBN|1-4020-0788-4}}, page 13.</ref>
'तापीय संतुलन' और 'ऊष्मागतिक संतुलन' के बीच एक और स्पष्ट अंतर बीसी ईयू द्वारा किया गया है। वह थर्मल संपर्क में दो प्रणालियों पर विचार करता है, एक थर्मामीटर, दूसरा एक प्रणाली जिसमें कई अपरिवर्तनीय प्रक्रियाएं हो रही हैं। वह उस मामले पर विचार करता है जिसमें ब्याज के समय के पैमाने पर, यह होता है कि थर्मामीटर रीडिंग और अपरिवर्तनीय प्रक्रियाएं दोनों स्थिर हैं। फिर ऊष्मागतिक संतुलन के बिना ऊष्मीय संतुलन होता है। यूरोपीय संघ प्रस्ताव करता है कि ऊष्मप्रवैगिकी के शून्य नियम को तब भी लागू करने पर विचार किया जा सकता है जब ऊष्मप्रवैगिकी संतुलन मौजूद नहीं है; वह यह भी प्रस्तावित करता है कि यदि परिवर्तन इतनी तेजी से हो रहे हैं कि एक स्थिर तापमान को परिभाषित नहीं किया जा सकता है, तो ऊष्मागतिक औपचारिकता के माध्यम से प्रक्रिया का वर्णन करना अब संभव नहीं है। दूसरे शब्दों में, ऐसी प्रक्रिया के लिए ऊष्मप्रवैगिकी का कोई अर्थ नहीं है।<ref>Eu, B.C. (2002). ''Generalized Thermodynamics. The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics'', Kluwer Academic Publishers, Dordrecht, {{ISBN|1-4020-0788-4}}, page 13.</ref>




Line 52: Line 51:


== यह भी देखें ==
== यह भी देखें ==
* थर्मोडायनामिक संतुलन
* ऊष्मागतिक संतुलन
* [[विकिरण संतुलन]]
* [[विकिरण संतुलन]]
* [[थर्मल ऑसिलेटर]]
* [[थर्मल ऑसिलेटर]]
Line 61: Line 60:


== उद्धरण संदर्भ ==
== उद्धरण संदर्भ ==
*एडकिन्स, सी.जे. (1968/1983)। संतुलन थर्मोडायनामिक्स, तीसरा संस्करण, मैकग्रा-हिल, लंदन, {{ISBN|0-521-25445-0}}.
*एडकिन्स, सी.जे. (1968/1983)। संतुलन ऊष्मागतिक्स, तीसरा संस्करण, मैकग्रा-हिल, लंदन, {{ISBN|0-521-25445-0}}.
* बेलीन, एम। (1994)। ऊष्मप्रवैगिकी का एक सर्वेक्षण, अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स प्रेस, न्यूयॉर्क, {{ISBN|0-88318-797-3}}.
* बेलीन, एम। (1994)। ऊष्मप्रवैगिकी का एक सर्वेक्षण, अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स प्रेस, न्यूयॉर्क, {{ISBN|0-88318-797-3}}.
*लुडविग बोल्ट्जमैन | बोल्ट्जमैन, एल. (1896/1964)। गैस थ्योरी पर व्याख्यान, एस.जी. ब्रश, कैलिफोर्निया विश्वविद्यालय प्रेस, बर्कले द्वारा अनुवादित।
*लुडविग बोल्ट्जमैन | बोल्ट्जमैन, एल. (1896/1964)। गैस थ्योरी पर व्याख्यान, एस.जी. ब्रश, कैलिफोर्निया विश्वविद्यालय प्रेस, बर्कले द्वारा अनुवादित।
Line 71: Line 70:
*मैक्स प्लैंक|प्लैंक, एम., (1897/1903). [https://archive.org/details/treatiseonthermo00planrich Treaty on Thermodynamics], ए. ओग द्वारा अनुवादित, पहला अंग्रेजी संस्करण, लॉन्गमैन|लॉन्गमैन्स, ग्रीन एंड कंपनी, लंदन।
*मैक्स प्लैंक|प्लैंक, एम., (1897/1903). [https://archive.org/details/treatiseonthermo00planrich Treaty on Thermodynamics], ए. ओग द्वारा अनुवादित, पहला अंग्रेजी संस्करण, लॉन्गमैन|लॉन्गमैन्स, ग्रीन एंड कंपनी, लंदन।
*मैक्स प्लैंक|प्लैंक, एम. (1914). द थ्योरी ऑफ़ हीट रेडिएशन, दूसरा संस्करण एम. मेसियस, पी. ब्लैकिस्टन के सोन एंड कंपनी, फ़िलाडेल्फ़िया द्वारा अनुवादित।
*मैक्स प्लैंक|प्लैंक, एम. (1914). द थ्योरी ऑफ़ हीट रेडिएशन, दूसरा संस्करण एम. मेसियस, पी. ब्लैकिस्टन के सोन एंड कंपनी, फ़िलाडेल्फ़िया द्वारा अनुवादित।
*डिर्क टेर हार|टेर हार, डी., हेराल्ड वर्गलैंड|वर्गलैंड, एच. (1966). थर्मोडायनामिक्स के तत्व, एडिसन-वेस्ली प्रकाशन, रीडिंग एमए।
*डिर्क टेर हार|टेर हार, डी., हेराल्ड वर्गलैंड|वर्गलैंड, एच. (1966). ऊष्मागतिक्स के तत्व, एडिसन-वेस्ली प्रकाशन, रीडिंग एमए।
*लेस्ज़्लो तिस्ज़ा | तिस्ज़ा, एल. (1966). सामान्यीकृत ऊष्मप्रवैगिकी, एम.आई.टी. प्रेस, कैम्ब्रिज एमए।
*लेस्ज़्लो तिस्ज़ा | तिस्ज़ा, एल. (1966). सामान्यीकृत ऊष्मप्रवैगिकी, एम.आई.टी. प्रेस, कैम्ब्रिज एमए।



Revision as of 02:21, 10 April 2023

ताप प्रवाह के माध्यम से समय के साथ एक बंद प्रणाली में एक तापीय संतुलन का विकास जो तापमान के अंतर को कम करता है

दो भौतिक प्रणालियाँ तापीय संतुलन में होती हैं यदि उनके बीच ऊष्मा के लिए पारगम्य पथ से जुड़े होने पर उनके बीच तापीय ऊर्जा का कोई शुद्ध प्रवाह नहीं होता है। ऊष्मीय संतुलन ऊष्मागतिकी के शून्य नियम का पालन करता है। एक प्रणाली को स्वयं के साथ तापीय संतुलन में कहा जाता है यदि प्रणाली के भीतर का तापमान स्थानिक रूप से समान और अस्थायी रूप से स्थिर है।

ऊष्मागतिक संतुलन में प्रणाली सदैव ऊष्मीय संतुलन में होते हैं, लेकिन इसका विलोम सदैव सत्य नहीं होता है। यदि प्रणालियों के बीच संबंध 'आंतरिक ऊर्जा में परिवर्तन' के रूप में ऊर्जा के हस्तांतरण की अनुमति देता है, लेकिन कार्य के रूप में पदार्थ या ऊर्जा के हस्तांतरण की अनुमति नहीं देता है, तो दोनों प्रणालियां ऊष्मागतिक संतुलन तक पहुंचे बिना ऊष्मीय संतुलन तक पहुंच सकती हैं।

तापीय संतुलन की दो किस्में

दो ऊष्मीय रूप से जुड़े पिंडों के बीच तापीय संतुलन का संबंध

ऊष्मीय संतुलन का संबंध दो निकायों के बीच संतुलन का एक उदाहरण है, जिसका अर्थ है कि यह पदार्थ या कार्य के चुनिंदा पारगम्य विभाजन के माध्यम से स्थानांतरण को संदर्भित करता है; इसे डायथर्मल कनेक्शन कहा जाता है। लिब और यंगवासन के अनुसार, तापीय संतुलन के संबंध का आवश्यक अर्थ यह है कि यह स्वतुल्य और सममित है। यह आवश्यक अर्थ में शामिल नहीं है कि यह सकर्मक है या नहीं। परिभाषा के शब्दार्थ पर चर्चा करने के बाद, वे एक पर्याप्त भौतिक स्वयंसिद्ध को मानते हैं, कि वे ऊष्मप्रवैगिकी के शून्य नियम कहते हैं, कि ऊष्मीय संतुलन एक सकर्मक संबंध है। वे टिप्पणी करते हैं कि इस प्रकार स्थापित तंत्रों के तुल्यता वर्ग समतापी कहलाते हैं।[1]


एक पृथक निकाय का आंतरिक तापीय संतुलन

किसी पिंड का ऊष्मीय संतुलन अपने आप में उस पिंड को संदर्भित करता है जब वह पृथक होता है। पृष्ठभूमि यह है कि इसमें कोई भी ऊष्मा प्रवेश या छोड़ती नहीं है, और इसे असीमित समय के लिए अपनी आंतरिक विशेषताओं के तहत व्यवस्थित होने की अनुमति दी जाती है। जब यह पूरी तरह से व्यवस्थित हो जाता है, ताकि स्थूल परिवर्तन का अब पता न चले, यह अपने स्वयं के तापीय संतुलन में होता है। यह निहित नहीं है कि यह आवश्यक रूप से अन्य प्रकार के आंतरिक संतुलन में है। उदाहरण के लिए, यह संभव है कि एक पिंड आंतरिक तापीय संतुलन तक पहुंच जाए लेकिन आंतरिक रासायनिक संतुलन में न हो; कांच एक उदाहरण है।[2] कोई एक पृथक प्रणाली की कल्पना कर सकता है, शुरू में आंतरिक तापीय संतुलन की अपनी स्थिति में नहीं। यह विभाजन के एक कल्पित ऊष्मागतिक ऑपरेशन के अधीन दो उप-प्रणालियों में विभाजित किया जा सकता है जो कुछ भी नहीं, कोई दीवार नहीं है। तब दो उप-प्रणालियों के बीच ऊर्जा के हस्तांतरण की संभावना को गर्मी के रूप में माना जा सकता है। काल्पनिक विभाजन संचालन के एक लंबे समय के बाद, दो उपप्रणालियाँ व्यावहारिक रूप से स्थिर अवस्था में पहुँच जाएँगी, और इसलिए एक दूसरे के साथ तापीय संतुलन के संबंध में होंगी। इस तरह के एक साहसिक कार्य को अलग-अलग काल्पनिक विभाजनों के साथ अनिश्चित काल तक कई तरीकों से संचालित किया जा सकता है। उन सभी का परिणाम सबसिस्टम होगा जो एक दूसरे के साथ ऊष्मीय संतुलन में दिखाया जा सकता है, विभिन्न विभाजनों से सबसिस्टम का परीक्षण कर रहा है। इस कारण से, एक पृथक प्रणाली, शुरू में आंतरिक ऊष्मीय संतुलन की अपनी स्थिति नहीं थी, लेकिन लंबे समय तक छोड़ दी गई, व्यावहारिक रूप से सदैव एक अंतिम स्थिति तक पहुंच जाएगी जिसे आंतरिक ऊष्मीय संतुलन में से एक माना जा सकता है। इस तरह की अंतिम अवस्था स्थानिक एकरूपता या तापमान की समरूपता में से एक है।[3] ऐसे राज्यों का अस्तित्व शास्त्रीय ऊष्मप्रवैगिकी का एक बुनियादी सिद्धांत है।[4][5] यह अवधारणा कभी-कभी होती है, लेकिन अक्सर नहीं, ऊष्मप्रवैगिकी का ऋण पहला नियम कहा जाता है।[6] पृथक क्वांटम प्रणालियों के लिए एक उल्लेखनीय अपवाद मौजूद है जो कई-निकाय स्थानीयकरण हैं। कई-निकाय स्थानीयकृत हैं और जो कभी भी आंतरिक तापीय संतुलन तक नहीं पहुंचते हैं।

थर्मल संपर्क

चालन (गर्मी) या तापीय विकिरण के माध्यम से या तापीय जलाशय से एक बंद प्रणाली में या बाहर गर्मी हस्तांतरण, और जब यह प्रक्रिया गर्मी के शुद्ध हस्तांतरण को प्रभावित कर रही है, तो प्रणाली ऊष्मीय संतुलन में नहीं है। जबकि ऊष्मा के रूप में ऊर्जा का स्थानांतरण जारी रहता है, सिस्टम का तापमान बदल सकता है।

अलग-अलग समान तापमान के साथ तैयार निकाय, फिर एक दूसरे के साथ विशुद्ध रूप से थर्मल संचार में डालते हैं

यदि निकायों को अलग-अलग सूक्ष्म रूप से स्थिर अवस्थाओं के साथ तैयार किया जाता है, और फिर प्रवाहकीय या विकिरण पथों द्वारा एक दूसरे के साथ विशुद्ध रूप से थर्मल कनेक्शन में डाल दिया जाता है, तो वे एक दूसरे के साथ ऊष्मीय संतुलन में होंगे, जब कनेक्शन के बाद किसी भी शरीर में कोई बदलाव नहीं होता है। लेकिन अगर शुरू में वे ऊष्मीय संतुलन के संबंध में नहीं हैं, तो गर्म से ठंडे तक गर्मी प्रवाहित होगी, जो भी मार्ग, प्रवाहकीय या विकिरण उपलब्ध है, और यह प्रवाह तब तक जारी रहेगा जब तक कि ऊष्मीय संतुलन नहीं हो जाता है और तब उनके पास होगा समान तापमान।

ऊष्मीय संतुलन का एक रूप विकिरण विनिमय संतुलन है।[7][8] दो शरीर, प्रत्येक अपने स्वयं के समान तापमान के साथ, केवल विकिरण कनेक्शन में, इससे कोई फर्क नहीं पड़ता कि कितनी दूर है, या आंशिक रूप से अवरोधक, परावर्तक, या अपवर्तक, बाधाएं उनके विकिरण विनिमय के मार्ग में हैं, जो एक दूसरे के सापेक्ष गतिमान नहीं हैं, थर्मल का आदान-प्रदान करेंगे विकिरण, कुल मिलाकर गर्म ऊर्जा को कूलर में स्थानांतरित करता है, और जब वे समान तापमान पर होते हैं तो बराबर और विपरीत मात्रा में आदान-प्रदान करेंगे। इस स्थिति में, किरचॉफ का तापीय विकिरण का नियम | किरचॉफ का विकिरण उत्सर्जन और अवशोषण की समानता का नियम और हेल्महोल्ट्ज़ पारस्परिकता सिद्धांत चलन में हैं।

एक पृथक प्रणाली की आंतरिक स्थिति में परिवर्तन

यदि प्रारंभिक रूप से पृथक प्रणाली, आंतरिक दीवारों के बिना जो एडियाबेटिक दीवार उपप्रणाली स्थापित करती है, काफी देर तक छोड़ दी जाती है, यह आम तौर पर ऊष्मीय संतुलन की स्थिति तक पहुंच जाएगी, जिसमें इसका तापमान एक समान वितरण (निरंतर) होगा, लेकिन जरूरी नहीं कि एक राज्य हो ऊष्मागतिक संतुलन का, यदि कोई संरचनात्मक अवरोध है जो सिस्टम में कुछ संभावित प्रक्रियाओं को संतुलन तक पहुँचने से रोक सकता है; कांच एक उदाहरण है। क्लासिकल ऊष्मप्रवैगिकी सामान्य रूप से उन आदर्श प्रणालियों पर विचार करती है जो आंतरिक संतुलन तक पहुंच गई हैं, और उनके बीच पदार्थ और ऊर्जा हस्तांतरण के आदर्श स्थानान्तरण हैं।

एक पृथक भौतिक प्रणाली विषम हो सकती है, या दीवारों द्वारा एक दूसरे से अलग किए गए कई उप-प्रणालियों से बना हो सकती है। यदि आंतरिक दीवारों के बिना प्रारंभिक अमानवीय भौतिक प्रणाली को ऊष्मागतिक ऑपरेशन द्वारा अलग किया जाता है, तो यह सामान्य रूप से समय के साथ अपनी आंतरिक स्थिति को बदल देगा। या यदि यह दीवारों द्वारा एक दूसरे से अलग किए गए कई उप-प्रणालियों से बना है, तो इसकी दीवारों को बदलने वाले ऊष्मागतिक ऑपरेशन के बाद यह अपनी स्थिति बदल सकता है। इस तरह के परिवर्तनों में घटक सामग्री की स्थिति को बदलकर तापमान में परिवर्तन या तापमान का स्थानिक वितरण शामिल हो सकता है। लोहे की एक छड़, जिसे शुरू में एक छोर पर गर्म और दूसरे पर ठंडा होने के लिए तैयार किया जाता है, अलग होने पर बदल जाएगी ताकि इसका तापमान इसकी लंबाई के साथ समान हो जाए; इस प्रक्रिया के दौरान, रॉड तब तक ऊष्मीय संतुलन में नहीं होता जब तक उसका तापमान एक समान न हो। गर्म पानी के स्नान में तैरते हुए बर्फ के ब्लॉक के रूप में तैयार की गई प्रणाली में, और फिर अलग-थलग, बर्फ पिघल सकती है; पिघलने के दौरान, सिस्टम ऊष्मीय संतुलन में नहीं है; लेकिन अंततः इसका तापमान एक समान हो जाएगा; बर्फ का ब्लॉक दोबारा नहीं बनेगा। पेट्रोल वाष्प और हवा के मिश्रण के रूप में तैयार एक प्रणाली को एक चिंगारी से प्रज्वलित किया जा सकता है और कार्बन डाइऑक्साइड और पानी का उत्पादन किया जा सकता है; यदि यह एक पृथक प्रणाली में होता है, तो यह प्रणाली के तापमान में वृद्धि करेगा, और वृद्धि के दौरान प्रणाली ऊष्मीय संतुलन में नहीं होगी; लेकिन अंततः, सिस्टम एक समान तापमान पर स्थिर हो जाएगा।

पृथक प्रणालियों में इस तरह के परिवर्तन इस अर्थ में अपरिवर्तनीय हैं कि जब भी सिस्टम को उसी तरह से तैयार किया जाता है, तो इस तरह का परिवर्तन अनायास ही हो जाएगा, उलटा परिवर्तन व्यावहारिक रूप से पृथक प्रणाली के भीतर अनायास कभी नहीं होगा; यह ऊष्मप्रवैगिकी के दूसरे नियम की सामग्री का एक बड़ा हिस्सा है। वास्तव में पूरी तरह से अलग सिस्टम प्रकृति में नहीं होते हैं, और सदैव कृत्रिम रूप से तैयार होते हैं।

एक गुरुत्वाकर्षण क्षेत्र में

कोई एक ऐसी प्रणाली पर विचार कर सकता है जो कठोर दीवारों के साथ एक बहुत लंबे रुद्धोष्म रूप से पृथक पोत में निहित है, जिसमें प्रारंभिक रूप से एक स्थिर गुरुत्वाकर्षण क्षेत्र के प्रभाव में एक लंबे समय के लिए एक स्थिर गुरुत्वाकर्षण क्षेत्र के प्रभाव के तहत लंबे समय तक छोड़ दिया जाता है, जैसे बाहरी शरीर के कारण पृथ्वी के रूप में। यह पूरे समय समान तापमान की स्थिति में स्थिर रहेगा, हालांकि समान दबाव या घनत्व का नहीं, और शायद इसमें कई चरण होंगे। यह तब आंतरिक तापीय संतुलन में है और ऊष्मागतिक संतुलन में भी है। इसका मतलब यह है कि सिस्टम के सभी स्थानीय हिस्से पारस्परिक विकिरण विनिमय संतुलन में हैं। इसका मतलब है कि सिस्टम का तापमान स्थानिक रूप से एक समान है।[8]ऐसा सभी मामलों में होता है, जिनमें गैर-समान बाहरी बल क्षेत्र भी शामिल हैं। बाहरी रूप से लगाए गए गुरुत्वाकर्षण क्षेत्र के लिए, यह मैक्रोस्कोपिक ऊष्मागतिक शब्दों में भिन्नरूपों की कलन द्वारा, लैंगरांगियन मल्टीप्लायरों की विधि का उपयोग करके सिद्ध किया जा सकता है।[9][10][11][12][13][14] गतिज सिद्धांत या सांख्यिकीय यांत्रिकी के विचार भी इस कथन का समर्थन करते हैं।[15][16][17][18][19][20][21]


थर्मल और ऊष्मागतिक इक्विलिब्रिया के बीच अंतर

थर्मल और ऊष्मागतिक संतुलन के बीच एक महत्वपूर्ण अंतर है। मुंस्टर (1970) के अनुसार, ऊष्मागतिक संतुलन की अवस्थाओं में, एक प्रणाली के राज्य चर एक औसत दर्जे की दर से नहीं बदलते हैं। इसके अलावा, 'मापने योग्य दर पर' प्रावधान का अर्थ है कि हम केवल निर्दिष्ट प्रक्रियाओं और परिभाषित प्रायोगिक स्थितियों के संबंध में एक संतुलन पर विचार कर सकते हैं। साथ ही, ऊष्मागतिक संतुलन की स्थिति को पदार्थ के किसी दिए गए शरीर के किसी अन्य राज्य की तुलना में कम मैक्रोस्कोपिक चर द्वारा वर्णित किया जा सकता है। एक अकेला पिंड ऐसी अवस्था में शुरू हो सकता है जो ऊष्मागतिक संतुलन में से एक नहीं है, और ऊष्मागतिक संतुलन तक पहुंचने तक बदल सकता है। ऊष्मीय संतुलन दो निकायों या बंद प्रणालियों के बीच एक संबंध है, जिसमें स्थानान्तरण केवल ऊर्जा की अनुमति है और गर्मी के लिए पारगम्य विभाजन के माध्यम से होता है, और जिसमें निकायों के राज्यों में परिवर्तन समाप्त होने तक स्थानान्तरण जारी रहता है।[22] सीजे एडकिंस द्वारा 'ऊष्मीय संतुलन' और 'ऊष्मागतिक संतुलन' के बीच एक स्पष्ट अंतर किया गया है। वह अनुमति देता है कि दो प्रणालियों को ऊष्मा का आदान-प्रदान करने की अनुमति दी जा सकती है लेकिन कार्य के आदान-प्रदान से विवश किया जा सकता है; वे स्वाभाविक रूप से तब तक ऊष्मा का आदान-प्रदान करेंगे जब तक कि उनका तापमान समान न हो जाए, और वे तापीय संतुलन तक न पहुँच जाएँ, लेकिन सामान्य तौर पर, ऊष्मागतिक संतुलन में नहीं होंगे। वे ऊष्मागतिक संतुलन तक पहुँच सकते हैं जब उन्हें काम का आदान-प्रदान करने की भी अनुमति दी जाती है।[23] 'तापीय संतुलन' और 'ऊष्मागतिक संतुलन' के बीच एक और स्पष्ट अंतर बीसी ईयू द्वारा किया गया है। वह थर्मल संपर्क में दो प्रणालियों पर विचार करता है, एक थर्मामीटर, दूसरा एक प्रणाली जिसमें कई अपरिवर्तनीय प्रक्रियाएं हो रही हैं। वह उस मामले पर विचार करता है जिसमें ब्याज के समय के पैमाने पर, यह होता है कि थर्मामीटर रीडिंग और अपरिवर्तनीय प्रक्रियाएं दोनों स्थिर हैं। फिर ऊष्मागतिक संतुलन के बिना ऊष्मीय संतुलन होता है। यूरोपीय संघ प्रस्ताव करता है कि ऊष्मप्रवैगिकी के शून्य नियम को तब भी लागू करने पर विचार किया जा सकता है जब ऊष्मप्रवैगिकी संतुलन मौजूद नहीं है; वह यह भी प्रस्तावित करता है कि यदि परिवर्तन इतनी तेजी से हो रहे हैं कि एक स्थिर तापमान को परिभाषित नहीं किया जा सकता है, तो ऊष्मागतिक औपचारिकता के माध्यम से प्रक्रिया का वर्णन करना अब संभव नहीं है। दूसरे शब्दों में, ऐसी प्रक्रिया के लिए ऊष्मप्रवैगिकी का कोई अर्थ नहीं है।[24]


ग्रहों का ऊष्मीय संतुलन

एक ग्रह तापीय संतुलन में होता है जब उस तक पहुँचने वाली घटना ऊर्जा (आमतौर पर उसके मूल तारे से सौर विकिरण) अंतरिक्ष में दूर जाने वाली अवरक्त ऊर्जा के बराबर होती है।

यह भी देखें

उद्धरण

  1. Lieb, E.H., Yngvason, J. (1999). The physics and mathematics of the second law of thermodynamics, Physics Reports, '314..a': 1–96, p. 55–56.
  2. Adkins, C.J. (1968/1983), pp. 249–251.
  3. Planck, M., (1897/1903), p. 3.
  4. Tisza, L. (1966), p. 108.
  5. Bailyn, M. (1994), p. 20.
  6. Marsland, Robert; Brown, Harvey R.; Valente, Giovanni (2015). "स्वयंसिद्ध ऊष्मप्रवैगिकी में समय और अपरिवर्तनीयता". American Journal of Physics. 83 (7): 628–634. Bibcode:2015AmJPh..83..628M. doi:10.1119/1.4914528. hdl:11311/1043322.
  7. Prevost, P. (1791). Mémoire sur l'equilibre du feu. Journal de Physique (Paris), vol. 38 pp. 314-322.
  8. 8.0 8.1 Planck, M. (1914), p. 40.
  9. Gibbs, J.W. (1876/1878), pp. 144-150.
  10. ter Haar, D., Wergeland, H. (1966), pp. 127–130.
  11. Münster, A. (1970), pp. 309–310.
  12. Bailyn, M. (1994), pp. 254-256.
  13. Verkley, W. T. M.; Gerkema, T. (2004). "अधिकतम एंट्रॉपी प्रोफाइल पर". Journal of the Atmospheric Sciences. 61 (8): 931–936. Bibcode:2004JAtS...61..931V. doi:10.1175/1520-0469(2004)061<0931:OMEP>2.0.CO;2. ISSN 1520-0469.
  14. Akmaev, R.A. (2008). On the energetics of maximum-entropy temperature profiles, Q. J. R. Meteorol. Soc., 134:187–197.
  15. Maxwell, J.C. (1867).
  16. Boltzmann, L. (1896/1964), p. 143.
  17. Chapman, S., Cowling, T.G. (1939/1970), Section 4.14, pp. 75–78.
  18. Partington, J.R. (1949), pp. 275–278.
  19. Coombes, C.A., Laue, H. (1985). A paradox concerning the temperature distribution of a gas in a gravitational field, Am. J. Phys., 53: 272–273.
  20. Román, F.L., White, J.A., Velasco, S. (1995). Microcanonical single-particle distributions for an ideal gas in a gravitational field, Eur. J. Phys., 16: 83–90.
  21. Velasco, S., Román, F.L., White, J.A. (1996). On a paradox concerning the temperature distribution of an ideal gas in a gravitational field, Eur. J. Phys., 17: 43–44.
  22. Münster, A. (1970), pp. 6, 22, 52.
  23. Adkins, C.J. (1968/1983), pp. 6–7.
  24. Eu, B.C. (2002). Generalized Thermodynamics. The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics, Kluwer Academic Publishers, Dordrecht, ISBN 1-4020-0788-4, page 13.


उद्धरण संदर्भ

  • एडकिन्स, सी.जे. (1968/1983)। संतुलन ऊष्मागतिक्स, तीसरा संस्करण, मैकग्रा-हिल, लंदन, ISBN 0-521-25445-0.
  • बेलीन, एम। (1994)। ऊष्मप्रवैगिकी का एक सर्वेक्षण, अमेरिकन इंस्टीट्यूट ऑफ फिजिक्स प्रेस, न्यूयॉर्क, ISBN 0-88318-797-3.
  • लुडविग बोल्ट्जमैन | बोल्ट्जमैन, एल. (1896/1964)। गैस थ्योरी पर व्याख्यान, एस.जी. ब्रश, कैलिफोर्निया विश्वविद्यालय प्रेस, बर्कले द्वारा अनुवादित।
  • सिडनी चैपमैन (गणितज्ञ)|चैपमैन, एस., थॉमस जॉर्ज काउलिंग|काउलिंग, टी.जी. (1939/1970)। गैर-समान गैसों का गणितीय सिद्धांत। एन अकाउंट ऑफ द काइनेटिक थ्योरी ऑफ विस्कोसिटी, थर्मल कंडक्शन एंड डिफ्यूजन इन गैसेस, तीसरा संस्करण 1970, कैम्ब्रिज यूनिवर्सिटी प्रेस, लंदन।
  • जोशिया विलार्ड गिब्स|गिब्स, जे.डब्ल्यू. (1876/1878)। विषम पदार्थों के संतुलन पर, ट्रांस। कनेक्टिकट अकादमी, '3': 108-248, 343-524, द कलेक्टेड वर्क्स ऑफ जे. विलार्ड गिब्स, पीएचडी, एलएल में पुनर्मुद्रित। डी., डब्ल्यू.आर. लोंगले, आर.जी. द्वारा संपादित वैन नेम, लॉन्गमैन्स, ग्रीन एंड कंपनी, न्यूयॉर्क, 1928, वॉल्यूम 1, पीपी। 55-353।
  • जेम्स क्लर्क मैक्सवेल|मैक्सवेल, जे.सी. (1867). गैसों के गतिशील सिद्धांत पर, फिल। ट्रांस। रॉय। समाज। लंदन, '157': 49-88।
  • मुंस्टर, ए. (1970). शास्त्रीय ऊष्मप्रवैगिकी, ई.एस. द्वारा अनुवादित हैलबर्स्टाट, विली-इंटर्ससाइंस, लंदन।
  • जे। आर. पार्टिंगटन | पार्टिंगटन, जे.आर. (1949). भौतिक रसायन विज्ञान पर एक उन्नत ग्रंथ, खंड 1, मौलिक सिद्धांत। गैसों के गुण, लॉन्गमैन्स, ग्रीन एंड कंपनी, लंदन।
  • मैक्स प्लैंक|प्लैंक, एम., (1897/1903). Treaty on Thermodynamics, ए. ओग द्वारा अनुवादित, पहला अंग्रेजी संस्करण, लॉन्गमैन|लॉन्गमैन्स, ग्रीन एंड कंपनी, लंदन।
  • मैक्स प्लैंक|प्लैंक, एम. (1914). द थ्योरी ऑफ़ हीट रेडिएशन, दूसरा संस्करण एम. मेसियस, पी. ब्लैकिस्टन के सोन एंड कंपनी, फ़िलाडेल्फ़िया द्वारा अनुवादित।
  • डिर्क टेर हार|टेर हार, डी., हेराल्ड वर्गलैंड|वर्गलैंड, एच. (1966). ऊष्मागतिक्स के तत्व, एडिसन-वेस्ली प्रकाशन, रीडिंग एमए।
  • लेस्ज़्लो तिस्ज़ा | तिस्ज़ा, एल. (1966). सामान्यीकृत ऊष्मप्रवैगिकी, एम.आई.टी. प्रेस, कैम्ब्रिज एमए।

श्रेणी:तापमान श्रेणी:भौतिक मात्रा श्रेणी:गर्मी हस्तांतरण श्रेणी:ऊष्मागतिकी