जारज़िन्स्की समानता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Equation in statistical mechanics}} | {{Short description|Equation in statistical mechanics}} | ||
जारज़िन्स्की समानता (जेई) [[सांख्यिकीय यांत्रिकी]] में | जारज़िन्स्की समानता (जेई) [[सांख्यिकीय यांत्रिकी]] में [[समीकरण]] है जो दो स्थिति के बीच [[थर्मोडायनामिक मुक्त ऊर्जा]] अंतर और एक ही स्थिति में सम्मिलित होने वाले प्रक्षेपवक्रों के समूह के साथ अपरिवर्तनीय कार्य से संबंधित है। इसका नाम भौतिक विज्ञानी [[क्रिस्टोफर जारज़िन्स्की]] (तब [[वाशिंगटन विश्वविद्यालय]] और [[लॉस अलामोस नेशनल लेबोरेटरी]], वर्तमान में [[मैरीलैंड विश्वविद्यालय]] में) के नाम पर रखा गया है, जिन्होंने इसे 1996 में प्राप्त किया था।<ref name="Jarzynski1">{{citation|first1=C.|last1=Jarzynski|title=Nonequilibrium equality for free energy differences|journal=Phys. Rev. Lett.|volume=78| page=2690|year=1997|issue=14|doi=10.1103/PhysRevLett.78.2690|arxiv = cond-mat/9610209 |bibcode = 1997PhRvL..78.2690J |s2cid=16112025}}</ref><ref name="Jarzynski2">{{citation|first1=C.|last1=Jarzynski|title=Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach|journal=Phys. Rev. E|volume=56|page=5018|year=1997|issue=5|doi=10.1103/PhysRevE.56.5018|arxiv = cond-mat/9707325 |bibcode = 1997PhRvE..56.5018J |s2cid=119101580}}</ref> मौलिक रूप से, जार्जिनस्की समानता इस तथ्य की ओर संकेत करती है कि कार्य में उतार-चढ़ाव कुछ प्रक्रियाओं में होने वाले कार्य के औसत मूल्य से अलग कुछ बाधाओं को पूरा करते हैं। | ||
== अवलोकन == | == अवलोकन == | ||
Line 7: | Line 7: | ||
: <math> \Delta F \leq W </math>, | : <math> \Delta F \leq W </math>, | ||
समानता के साथ केवल | समानता के साथ केवल अर्धस्थैतिक प्रक्रिया के स्थितियों में, यानी जब कोई प्रणाली को A से B तक असीम रूप से धीरे-धीरे ले जाता है (जैसे कि सभी मध्यवर्ती स्थिति [[थर्मोडायनामिक संतुलन]] में हैं)। उपरोक्त उष्मागतिकीय कथन के विपरीत, जेई वैध रहता है, यद्यपि प्रक्रिया कितनी भी तेज क्यों न हो। जेई कहते हैं: | ||
: <math> e^ { -\Delta F / k T} = \overline{ e^{ -W/kT } }. </math> | : <math> e^ { -\Delta F / k T} = \overline{ e^{ -W/kT } }. </math> | ||
यहाँ k बोल्ट्ज़मैन स्थिरांक है और T संतुलन अवस्था A में प्रणाली का तापमान है या, समतुल्य, ताप भंडार का तापमान जिसके साथ प्रक्रिया होने से पहले प्रणाली को थर्मल किया गया था। | यहाँ k बोल्ट्ज़मैन स्थिरांक है और T संतुलन अवस्था A में प्रणाली का तापमान है या, समतुल्य, ताप भंडार का तापमान जिसके साथ प्रक्रिया होने से पहले प्रणाली को थर्मल किया गया था। | ||
ओवर-लाइन | ओवर-लाइन बाहरी प्रक्रिया के सभी संभावित अनुभव पर औसत इंगित करता है जो प्रणाली को संतुलन स्थिति A से नए, सामान्यतः गैर-संतुलन स्थिति में समान बाहरी परिस्थितियों के तहत संतुलन स्थिति B के रूप में ले जाता है। यह औसत संभव प्राप्तियों पर औसत है प्रक्रिया के समय होने वाले विभिन्न संभावित उतार-चढ़ाव का औसत (उदाहरण के लिए, ब्राउनियन गति के कारण), जिनमें से प्रत्येक प्रणाली पर किए गए कार्य के लिए थोड़ा अलग मूल्य देगा। असीम रूप से धीमी प्रक्रिया की सीमा में, प्रत्येक अहसास में प्रणाली पर किया गया कार्य W संख्यात्मक रूप से समान होता है, इसलिए औसत अप्रासंगिक हो जाता है और जार्ज़िनस्की समानता थर्मोडायनामिक समानता को कम कर देती है <math>\Delta F = W</math> (ऊपर देखें)। असीम रूप से धीमी सीमा से दूर, कार्य का औसत मूल्य पालन करता है <math>\Delta F \leq \overline{W}, </math> जबकि कार्य में उतार-चढ़ाव के वितरण को और अधिक विवश किया जाता है <math> e^ { -\Delta F / k T} = \overline{ e^{ -W/kT } }. </math> इस सामान्य स्थितियों में, डब्ल्यू प्रणाली के विशिष्ट प्रारंभिक [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)]] पर निर्भर करता है, चूंकि इसका औसत अभी भी संबंधित हो सकता है <math>\Delta F</math> जेई में जेन्सेन की असमानता के अनुप्रयोग के माध्यम से, अर्थात। | ||
: <math>\Delta F \leq \overline{W}, </math> | : <math>\Delta F \leq \overline{W}, </math> | ||
ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार। | ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार। | ||
जार्जिनस्की समानता तब होती है जब प्रारंभिक अवस्था | जार्जिनस्की समानता तब होती है जब प्रारंभिक अवस्था बोल्ट्जमान वितरण होती है (उदाहरण के लिए प्रणाली संतुलन में है) और प्रणाली और पर्यावरण को मनमाने ढंग से हैमिल्टनियन गतिशीलता के अंतर्गत विकसित होने वाली स्वतंत्रता की बड़ी संख्या से वर्णित किया जा सकता है। अंतिम अवस्था को संतुलन में होने की आवश्यकता नहीं है। (उदाहरण के लिए, पिस्टन द्वारा संपीड़ित गैस के पाठ्यपुस्तक के स्थितियों में, गैस को पिस्टन की स्थिति A पर संतुलित किया जाता है और पिस्टन की स्थिति B में संपीड़ित किया जाता है; जारज़िनस्की समानता में, गैस की अंतिम स्थिति को इस पर संतुलित करने की आवश्यकता नहीं होती है। नई पिस्टन स्थिति)। | ||
इसकी मूल व्युत्पत्ति के बाद से, जार्जिनस्की समानता को विभिन्न संदर्भों में सत्यापित किया गया है, जिसमें जैव-अणुओं के प्रयोगों से लेकर संख्यात्मक सिमुलेशन तक सम्मिलित हैं।<ref>{{Cite journal |last1=Rademacher |first1=Markus |last2=Konopik |first2=Michael |last3=Debiossac |first3=Maxime |last4=Grass |first4=David |last5=Lutz |first5=Eric |last6=Kiesel |first6=Nikolai |date=2022-02-15 |title=उत्तोलित प्रणाली में ऊष्मीय और यांत्रिक परिवर्तनों का असंतुलित नियंत्रण|url=https://link.aps.org/doi/10.1103/PhysRevLett.128.070601 |journal=Physical Review Letters |language=en |volume=128 |issue=7 |pages=070601 |doi=10.1103/PhysRevLett.128.070601 |pmid=35244419 |arxiv=2103.10898 |bibcode=2022PhRvL.128g0601R |s2cid=232290453 |issn=0031-9007}}</ref> [[क्रुक्स उतार-चढ़ाव प्रमेय]], दो साल बाद सिद्ध हुआ, तुरंत जारज़िनस्की समानता की ओर ले जाता है। कई अन्य सैद्धांतिक व्युत्पत्तियाँ भी प्रकट हुई हैं, जो इसकी व्यापकता को और अधिक विश्वास प्रदान करती हैं। | इसकी मूल व्युत्पत्ति के बाद से, जार्जिनस्की समानता को विभिन्न संदर्भों में सत्यापित किया गया है, जिसमें जैव-अणुओं के प्रयोगों से लेकर संख्यात्मक सिमुलेशन तक सम्मिलित हैं।<ref>{{Cite journal |last1=Rademacher |first1=Markus |last2=Konopik |first2=Michael |last3=Debiossac |first3=Maxime |last4=Grass |first4=David |last5=Lutz |first5=Eric |last6=Kiesel |first6=Nikolai |date=2022-02-15 |title=उत्तोलित प्रणाली में ऊष्मीय और यांत्रिक परिवर्तनों का असंतुलित नियंत्रण|url=https://link.aps.org/doi/10.1103/PhysRevLett.128.070601 |journal=Physical Review Letters |language=en |volume=128 |issue=7 |pages=070601 |doi=10.1103/PhysRevLett.128.070601 |pmid=35244419 |arxiv=2103.10898 |bibcode=2022PhRvL.128g0601R |s2cid=232290453 |issn=0031-9007}}</ref> [[क्रुक्स उतार-चढ़ाव प्रमेय]], दो साल बाद सिद्ध हुआ, तुरंत जारज़िनस्की समानता की ओर ले जाता है। कई अन्य सैद्धांतिक व्युत्पत्तियाँ भी प्रकट हुई हैं, जो इसकी व्यापकता को और अधिक विश्वास प्रदान करती हैं। | ||
Line 23: | Line 23: | ||
== इतिहास == | == इतिहास == | ||
इस बारे में | इस बारे में प्रश्न उठाया गया है कि जारज़िनस्की समानता का सबसे पहला कथन किसने दिया था। उदाहरण के लिए, 1977 में रूसी भौतिक विज्ञानी जी.एन. बोचकोव और यू. ई. कुज़ोवलेव (ग्रंथ सूची देखें) ने [[उतार-चढ़ाव-अपव्यय प्रमेय]] का सामान्यीकृत संस्करण प्रस्तावित किया जो मनमाना बाहरी समय-निर्भर बलों की उपस्थिति में है। जेई के साथ इसकी समीप समानता के अतिरिक्त, बोचकोव-कुज़ोवलेव परिणाम कार्य मापन के लिए मुक्त ऊर्जा अंतरों से संबंधित नहीं है, जैसा कि 2007 में खुद जारज़िन्स्की ने चर्चा की थी।<ref name="Jarzynski1"/><ref name="Jarzynski2"/> | ||
जार्जिंस्की समानता के लिए | जार्जिंस्की समानता के लिए और समान बयान गैर-संतुलन विभाजन पहचान है, जिसे यामादा और कावासाकी में वापस देखा जा सकता है। ([[ असंतुलित विभाजन पहचान ]] जार्ज़िनस्की समानता है जो दो प्रणालियों पर प्रयुक्त होती है जिनकी मुक्त ऊर्जा अंतर शून्य है - जैसे तरल पदार्थ को छानना।) चूंकि, ये प्रारंभिक बयान उनके आवेदन में बहुत सीमित हैं। बोचकोव और कुज़ोवलेव दोनों के साथ-साथ यमादा और कावासाकी दोनों नियतात्मक समय प्रतिवर्ती [[हैमिल्टनियन प्रणाली]] पर विचार करते हैं। जैसा कि कावासाकी ने स्वयं नोट किया है कि यह गैर-संतुलन स्थिर अवस्थाओं के किसी भी उपचार को रोकता है। तथ्य यह है कि किसी भी थर्मोस्टैटिंग तंत्र की कमी के कारण ये गैर-संतुलन प्रणाली हमेशा के लिए गर्म हो जाती है, जो अलग-अलग इंटीग्रल आदि की ओर ले जाती है। कोई भी विशुद्ध रूप से हैमिल्टनियन विवरण क्रुक के [[उतार-चढ़ाव प्रमेय]], जार्ज़िनस्की समानता और उतार-चढ़ाव प्रमेय को सत्यापित करने के लिए किए गए प्रयोगों का इलाज करने में सक्षम नहीं है। इन प्रयोगों में हीट बाथ के संपर्क में थर्मोस्टेट प्रणाली सम्मिलित हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* उतार-चढ़ाव प्रमेय - | * उतार-चढ़ाव प्रमेय - समानता प्रदान करता है जो गैर-संतुलन प्रणालियों की विस्तृत विविधता में समय औसत एन्ट्रापी उत्पादन में उतार-चढ़ाव की मात्रा निर्धारित करता है। | ||
* बदमाश उतार-चढ़ाव प्रमेय - दो संतुलन स्थिति के बीच | * बदमाश उतार-चढ़ाव प्रमेय - दो संतुलन स्थिति के बीच उतार-चढ़ाव प्रमेय प्रदान करता है। जार्जिंस्की समानता का तात्पर्य है। | ||
* असंतुलित विभाजन पहचान | * असंतुलित विभाजन पहचान | ||
Revision as of 01:06, 8 April 2023
जारज़िन्स्की समानता (जेई) सांख्यिकीय यांत्रिकी में समीकरण है जो दो स्थिति के बीच थर्मोडायनामिक मुक्त ऊर्जा अंतर और एक ही स्थिति में सम्मिलित होने वाले प्रक्षेपवक्रों के समूह के साथ अपरिवर्तनीय कार्य से संबंधित है। इसका नाम भौतिक विज्ञानी क्रिस्टोफर जारज़िन्स्की (तब वाशिंगटन विश्वविद्यालय और लॉस अलामोस नेशनल लेबोरेटरी, वर्तमान में मैरीलैंड विश्वविद्यालय में) के नाम पर रखा गया है, जिन्होंने इसे 1996 में प्राप्त किया था।[1][2] मौलिक रूप से, जार्जिनस्की समानता इस तथ्य की ओर संकेत करती है कि कार्य में उतार-चढ़ाव कुछ प्रक्रियाओं में होने वाले कार्य के औसत मूल्य से अलग कुछ बाधाओं को पूरा करते हैं।
अवलोकन
ऊष्मप्रवैगिकी में, मुक्त ऊर्जा अंतर असमानता के माध्यम से प्रणाली पर किए गए कार्य W से दो स्थिति A और B के बीच जुड़ा हुआ है:
- ,
समानता के साथ केवल अर्धस्थैतिक प्रक्रिया के स्थितियों में, यानी जब कोई प्रणाली को A से B तक असीम रूप से धीरे-धीरे ले जाता है (जैसे कि सभी मध्यवर्ती स्थिति थर्मोडायनामिक संतुलन में हैं)। उपरोक्त उष्मागतिकीय कथन के विपरीत, जेई वैध रहता है, यद्यपि प्रक्रिया कितनी भी तेज क्यों न हो। जेई कहते हैं:
यहाँ k बोल्ट्ज़मैन स्थिरांक है और T संतुलन अवस्था A में प्रणाली का तापमान है या, समतुल्य, ताप भंडार का तापमान जिसके साथ प्रक्रिया होने से पहले प्रणाली को थर्मल किया गया था।
ओवर-लाइन बाहरी प्रक्रिया के सभी संभावित अनुभव पर औसत इंगित करता है जो प्रणाली को संतुलन स्थिति A से नए, सामान्यतः गैर-संतुलन स्थिति में समान बाहरी परिस्थितियों के तहत संतुलन स्थिति B के रूप में ले जाता है। यह औसत संभव प्राप्तियों पर औसत है प्रक्रिया के समय होने वाले विभिन्न संभावित उतार-चढ़ाव का औसत (उदाहरण के लिए, ब्राउनियन गति के कारण), जिनमें से प्रत्येक प्रणाली पर किए गए कार्य के लिए थोड़ा अलग मूल्य देगा। असीम रूप से धीमी प्रक्रिया की सीमा में, प्रत्येक अहसास में प्रणाली पर किया गया कार्य W संख्यात्मक रूप से समान होता है, इसलिए औसत अप्रासंगिक हो जाता है और जार्ज़िनस्की समानता थर्मोडायनामिक समानता को कम कर देती है (ऊपर देखें)। असीम रूप से धीमी सीमा से दूर, कार्य का औसत मूल्य पालन करता है जबकि कार्य में उतार-चढ़ाव के वितरण को और अधिक विवश किया जाता है इस सामान्य स्थितियों में, डब्ल्यू प्रणाली के विशिष्ट प्रारंभिक माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) पर निर्भर करता है, चूंकि इसका औसत अभी भी संबंधित हो सकता है जेई में जेन्सेन की असमानता के अनुप्रयोग के माध्यम से, अर्थात।
ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार।
जार्जिनस्की समानता तब होती है जब प्रारंभिक अवस्था बोल्ट्जमान वितरण होती है (उदाहरण के लिए प्रणाली संतुलन में है) और प्रणाली और पर्यावरण को मनमाने ढंग से हैमिल्टनियन गतिशीलता के अंतर्गत विकसित होने वाली स्वतंत्रता की बड़ी संख्या से वर्णित किया जा सकता है। अंतिम अवस्था को संतुलन में होने की आवश्यकता नहीं है। (उदाहरण के लिए, पिस्टन द्वारा संपीड़ित गैस के पाठ्यपुस्तक के स्थितियों में, गैस को पिस्टन की स्थिति A पर संतुलित किया जाता है और पिस्टन की स्थिति B में संपीड़ित किया जाता है; जारज़िनस्की समानता में, गैस की अंतिम स्थिति को इस पर संतुलित करने की आवश्यकता नहीं होती है। नई पिस्टन स्थिति)।
इसकी मूल व्युत्पत्ति के बाद से, जार्जिनस्की समानता को विभिन्न संदर्भों में सत्यापित किया गया है, जिसमें जैव-अणुओं के प्रयोगों से लेकर संख्यात्मक सिमुलेशन तक सम्मिलित हैं।[3] क्रुक्स उतार-चढ़ाव प्रमेय, दो साल बाद सिद्ध हुआ, तुरंत जारज़िनस्की समानता की ओर ले जाता है। कई अन्य सैद्धांतिक व्युत्पत्तियाँ भी प्रकट हुई हैं, जो इसकी व्यापकता को और अधिक विश्वास प्रदान करती हैं।
इतिहास
इस बारे में प्रश्न उठाया गया है कि जारज़िनस्की समानता का सबसे पहला कथन किसने दिया था। उदाहरण के लिए, 1977 में रूसी भौतिक विज्ञानी जी.एन. बोचकोव और यू. ई. कुज़ोवलेव (ग्रंथ सूची देखें) ने उतार-चढ़ाव-अपव्यय प्रमेय का सामान्यीकृत संस्करण प्रस्तावित किया जो मनमाना बाहरी समय-निर्भर बलों की उपस्थिति में है। जेई के साथ इसकी समीप समानता के अतिरिक्त, बोचकोव-कुज़ोवलेव परिणाम कार्य मापन के लिए मुक्त ऊर्जा अंतरों से संबंधित नहीं है, जैसा कि 2007 में खुद जारज़िन्स्की ने चर्चा की थी।[1][2]
जार्जिंस्की समानता के लिए और समान बयान गैर-संतुलन विभाजन पहचान है, जिसे यामादा और कावासाकी में वापस देखा जा सकता है। (असंतुलित विभाजन पहचान जार्ज़िनस्की समानता है जो दो प्रणालियों पर प्रयुक्त होती है जिनकी मुक्त ऊर्जा अंतर शून्य है - जैसे तरल पदार्थ को छानना।) चूंकि, ये प्रारंभिक बयान उनके आवेदन में बहुत सीमित हैं। बोचकोव और कुज़ोवलेव दोनों के साथ-साथ यमादा और कावासाकी दोनों नियतात्मक समय प्रतिवर्ती हैमिल्टनियन प्रणाली पर विचार करते हैं। जैसा कि कावासाकी ने स्वयं नोट किया है कि यह गैर-संतुलन स्थिर अवस्थाओं के किसी भी उपचार को रोकता है। तथ्य यह है कि किसी भी थर्मोस्टैटिंग तंत्र की कमी के कारण ये गैर-संतुलन प्रणाली हमेशा के लिए गर्म हो जाती है, जो अलग-अलग इंटीग्रल आदि की ओर ले जाती है। कोई भी विशुद्ध रूप से हैमिल्टनियन विवरण क्रुक के उतार-चढ़ाव प्रमेय, जार्ज़िनस्की समानता और उतार-चढ़ाव प्रमेय को सत्यापित करने के लिए किए गए प्रयोगों का इलाज करने में सक्षम नहीं है। इन प्रयोगों में हीट बाथ के संपर्क में थर्मोस्टेट प्रणाली सम्मिलित हैं।
यह भी देखें
- उतार-चढ़ाव प्रमेय - समानता प्रदान करता है जो गैर-संतुलन प्रणालियों की विस्तृत विविधता में समय औसत एन्ट्रापी उत्पादन में उतार-चढ़ाव की मात्रा निर्धारित करता है।
- बदमाश उतार-चढ़ाव प्रमेय - दो संतुलन स्थिति के बीच उतार-चढ़ाव प्रमेय प्रदान करता है। जार्जिंस्की समानता का तात्पर्य है।
- असंतुलित विभाजन पहचान
संदर्भ
- ↑ 1.0 1.1 Jarzynski, C. (1997), "Nonequilibrium equality for free energy differences", Phys. Rev. Lett., 78 (14): 2690, arXiv:cond-mat/9610209, Bibcode:1997PhRvL..78.2690J, doi:10.1103/PhysRevLett.78.2690, S2CID 16112025
- ↑ 2.0 2.1 Jarzynski, C. (1997), "Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach", Phys. Rev. E, 56 (5): 5018, arXiv:cond-mat/9707325, Bibcode:1997PhRvE..56.5018J, doi:10.1103/PhysRevE.56.5018, S2CID 119101580
- ↑ Rademacher, Markus; Konopik, Michael; Debiossac, Maxime; Grass, David; Lutz, Eric; Kiesel, Nikolai (2022-02-15). "उत्तोलित प्रणाली में ऊष्मीय और यांत्रिक परिवर्तनों का असंतुलित नियंत्रण". Physical Review Letters (in English). 128 (7): 070601. arXiv:2103.10898. Bibcode:2022PhRvL.128g0601R. doi:10.1103/PhysRevLett.128.070601. ISSN 0031-9007. PMID 35244419. S2CID 232290453.
ग्रन्थसूची
- Crooks, G. E. (1998), "Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems", J. Stat. Phys., 90 (5/6): 1481, Bibcode:1998JSP....90.1481C, doi:10.1023/A:1023208217925, S2CID 7014602
For earlier results dealing with the statistics of work in adiabatic (i.e. Hamiltonian) nonequilibrium processes, see:
- Bochkov, G. N.; Kuzovlev, Yu. E. (1977), "General theory of thermal fluctuations in nonlinear systems", Zh. Eksp. Teor. Fiz., 72: 238, Bibcode:1977ZhETF..72..238B; op. cit. 76, 1071 (1979)
- Bochkov, G. N.; Kuzovlev, Yu. E. (1981), "Nonlinear fluctuation-dissipation relations and stochastic models in nonequilibrium thermodynamics: I. Generalized fluctuation-dissipation theorem", Physica A, 106 (3): 443, Bibcode:1981PhyA..106..443B, doi:10.1016/0378-4371(81)90122-9; op. cit. 106A, 480 (1981)
- Kawasaki, K.; Gunton, J.D. (1973), "Theory of Nonlinear Transport Processes: Nonlinear Shear Viscosity and Normal Stress Effects", Phys. Rev. A, 8 (4): 2048, Bibcode:1973PhRvA...8.2048K, doi:10.1103/PhysRevA.8.2048
- Yamada, T.; Kawasaki, K. (1967), "Nonlinear Effects in the Shear Viscosity of Critical Mixtures", Prog. Theor. Phys., 38 (5): 1031, Bibcode:1967PThPh..38.1031Y, doi:10.1143/PTP.38.1031
For a comparison of such results, see:
- Jarzynski, C. (2007), "Comparison of far-from-equilibrium work relations", Comptes Rendus Physique, 8 (5–6): 495, arXiv:cond-mat/0612305, Bibcode:2007CRPhy...8..495J, doi:10.1016/j.crhy.2007.04.010, S2CID 119086414
For an extension to relativistic Brownian motion, see:
- Pal, P. S.; Deffner, Sebastian (2020), "Stochastic thermodynamics of relativistic Brownian motion", New Journal of Physics, 22 (7): 073054, arXiv:2003.02136, Bibcode:2020NJPh...22g3054P, doi:10.1088/1367-2630/ab9ce6