लेमोइन बिंदु: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
त्रिभुज केंद्रों के विश्वकोश में सिम्मेडियन बिंदु छठे बिंदु, X(6) के रूप में प्रकट होता है।<ref name="etc">[http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers], accessed 2014-11-06.</ref> गैर-समबाहु त्रिभुज के लिए, यह अपने स्वयं के केंद्र में खुली [[ऑर्थोसेंट्रोइडल डिस्क]] में स्थित है, और इसमें कोई भी बिंदु हो सकता है।<ref>{{citation|first1=Christopher J.|last1=Bradley|first2=Geoff C.|last2=Smith|title=The locations of triangle centers|journal=Forum Geometricorum|volume=6|year=2006|pages=57–70|url=http://forumgeom.fau.edu/FG2006volume6/FG200607index.html}}.</ref> | त्रिभुज केंद्रों के विश्वकोश में सिम्मेडियन बिंदु छठे बिंदु, X(6) के रूप में प्रकट होता है।<ref name="etc">[http://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers], accessed 2014-11-06.</ref> गैर-समबाहु त्रिभुज के लिए, यह अपने स्वयं के केंद्र में खुली [[ऑर्थोसेंट्रोइडल डिस्क]] में स्थित है, और इसमें कोई भी बिंदु हो सकता है।<ref>{{citation|first1=Christopher J.|last1=Bradley|first2=Geoff C.|last2=Smith|title=The locations of triangle centers|journal=Forum Geometricorum|volume=6|year=2006|pages=57–70|url=http://forumgeom.fau.edu/FG2006volume6/FG200607index.html}}.</ref> | ||
भुजाओं की लंबाई वाले त्रिभुज का सममध्य बिंदु {{mvar|a}}, {{mvar|b}} और {{mvar|c}} सजातीय [[ट्रिलिनियर निर्देशांक]] | भुजाओं की लंबाई वाले त्रिभुज का सममध्य बिंदु {{mvar|a}}, {{mvar|b}} और {{mvar|c}} सजातीय [[ट्रिलिनियर निर्देशांक]] {{math|[''a'' : ''b'' : ''c'']}}<ref name="etc" /> होते है। | ||
सममध्य बिंदु को | सममध्य बिंदु को प्राप्त करने की बीजगणितीय विधि त्रिभुज को तीन रैखिक समीकरणों द्वारा दो अज्ञात में संबंधित रेखाओं के हेसे सामान्य रूपों द्वारा व्यक्त करना है। कम से कम वर्ग विधि द्वारा प्राप्त इस [[अतिनिर्धारित प्रणाली]] का समाधान बिंदु के निर्देशांक देता है। यह पक्षों से न्यूनतम वर्ग दूरी के साथ बिंदु को प्राप्त करने के लिए अनुकूलन समस्या को भी हल करता है। | ||
त्रिभुज का [[गेरगोन बिंदु]] त्रिभुज के संपर्क त्रिभुज के सममध्य बिंदु के समान है।<ref>{{citation | त्रिभुज का [[गेरगोन बिंदु]] त्रिभुज के संपर्क त्रिभुज के सममध्य बिंदु के समान है।<ref>{{citation |
Revision as of 22:42, 11 April 2023
ज्यामिति में, लेमोइन बिंदु, ग्रीबे बिंदु या सिम्मेडियन बिंदु त्रिभुज के तीन सिम्मेडियंस (मध्यिका (ज्यामिति) संबंधित कोण द्विभाजक पर परिलक्षित होता है) का प्रतिच्छेदन है।
रॉस होन्सबर्गर ने अपने अस्तित्व को आधुनिक ज्यामिति के मुकुट रत्नों में से एक कहा।[1]
त्रिभुज केंद्रों के विश्वकोश में सिम्मेडियन बिंदु छठे बिंदु, X(6) के रूप में प्रकट होता है।[2] गैर-समबाहु त्रिभुज के लिए, यह अपने स्वयं के केंद्र में खुली ऑर्थोसेंट्रोइडल डिस्क में स्थित है, और इसमें कोई भी बिंदु हो सकता है।[3]
भुजाओं की लंबाई वाले त्रिभुज का सममध्य बिंदु a, b और c सजातीय ट्रिलिनियर निर्देशांक [a : b : c][2] होते है।
सममध्य बिंदु को प्राप्त करने की बीजगणितीय विधि त्रिभुज को तीन रैखिक समीकरणों द्वारा दो अज्ञात में संबंधित रेखाओं के हेसे सामान्य रूपों द्वारा व्यक्त करना है। कम से कम वर्ग विधि द्वारा प्राप्त इस अतिनिर्धारित प्रणाली का समाधान बिंदु के निर्देशांक देता है। यह पक्षों से न्यूनतम वर्ग दूरी के साथ बिंदु को प्राप्त करने के लिए अनुकूलन समस्या को भी हल करता है।
त्रिभुज का गेरगोन बिंदु त्रिभुज के संपर्क त्रिभुज के सममध्य बिंदु के समान है।[4]
त्रिभुज ABC का सममध्य बिंदु निम्न प्रकार से बनाया जा सकता है: B और C के माध्यम से ABC के परिवृत्त की स्पर्श रेखाएँ A' पर मिलती हैं, और समान रूप से B' और C' को परिभाषित करती हैं; तब A'B'C' ABC का स्पर्शरेखा त्रिभुज है, और रेखाएँ AA', BB' और CC' ABC के सममितीय बिंदु पर प्रतिच्छेद करती हैं। यह दिखाया जा सकता है कि ये तीन रेखाएँ एक बिंदु पर मिलती हैं जो कि ब्रायनचोन के प्रमेय। रेखा AA' सममध्य रेखा है, जैसा कि B और C के माध्यम से केंद्र A' के साथ वृत्त खींचकर देखा जा सकता है।
फ्रांसीसी गणितज्ञ एमिल लेमोइन ने 1873 में सिम्मीडियन बिंदु के अस्तित्व को सिद्ध किया, और अर्नेस्ट विल्हेम ग्रीबे ने 1847 में इस पर पेपर प्रकाशित किया। साइमन एंटोनी जीन ल'हुइलियर ने भी 1809 में इस बिंदु को टिप्पणी किया था।[1]
अनियमित चतुष्फलक के विस्तार के लिए सिम्मीडियन देखें।
टिप्पणियाँ
संदर्भ
- ↑ 1.0 1.1 Honsberger, Ross (1995), "Chapter 7: The Symmedian Point", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Washington, D.C.: Mathematical Association of America.
- ↑ 2.0 2.1 Encyclopedia of Triangle Centers, accessed 2014-11-06.
- ↑ Bradley, Christopher J.; Smith, Geoff C. (2006), "The locations of triangle centers", Forum Geometricorum, 6: 57–70.
- ↑ Beban-Brkić, J.; Volenec, V.; Kolar-Begović, Z.; Kolar-Šuper, R. (2013), "On Gergonne point of the triangle in isotropic plane", Rad Hrvatske Akademije Znanosti i Umjetnosti, 17: 95–106, MR 3100227.