विभंजन सुदृढता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Stress intensity factor at which a crack's propagation increases drastically}} | {{Short description|Stress intensity factor at which a crack's propagation increases drastically}} | ||
[[File:Fracture Toughness Thickness Dependence.svg|thumb|upright=1.25|अस्थि-भंग | [[File:Fracture Toughness Thickness Dependence.svg|thumb|upright=1.25|अस्थि-भंग निष्ठुरता पर नमूना मोटाई का प्रभाव]]सामग्री विज्ञान में, [[ भंग | अस्थि-भंग]] की कठोरता तीव्र अस्थि-भंग का महत्वपूर्ण [[तनाव तीव्रता कारक|घृष्टता तीव्रता कारक]] है जहां रंक का प्रसार तीव्र गति से एवं असीमित हो जाता है। घटक की मोटाई समतल घृष्टता की स्थिति वाले पतले घटकों एवं समतल घृष्टता की स्थिति वाले मोटे घटकों के साथ रंक की सीमा पर बाधा की स्थिति को प्रभावित करती है। [[विमान तनाव|विमान घृष्टता]] की स्थिति सबसे अर्घ्य अस्थि-भंग मूल्य देती है, जो भौतिक गुण है। विमान घृष्टता की स्थितियों के अनुसार मापे गए अस्थि-भंग मैकेनिक्स लोडिंग में घृष्टता की स्थिति, फैक्टर के महत्वपूर्ण मूल्य को विमान घृष्टता की स्थिति अस्थि-भंग टफनेस के रूप में जाना जाता है, जिसे <math>K_\text{Ic}</math> निरूपित किया जाता है I<ref name="suresh04">{{cite book |last1=Suresh |first1=S. |year=2004 |title=सामग्री की थकान|publisher=Cambridge University Press |isbn=978-0-521-57046-6}}</ref> जब परीक्षण मोटाई एवं अन्य परीक्षण आवश्यकताओं को पूर्ण करने में विफल रहता है जो विमान घृष्टता की स्थिति सुनिश्चित करने के लिए होता है, तो उत्पादित अस्थि-भंग <math>K_\text{c}</math> क्रूरता मूल्य को पदनाम दिया जाता हैI अस्थि-भंग निर्दयता प्रसार के लिए सामग्री के प्रतिरोध को व्यक्त करने का मात्रात्मक विधि है एवं किसी दिए गए सामग्री के लिए मानक मान उपलब्ध होते हैं। | ||
घृष्टता संघर्ष खुर के रूप में जाना जाने वाला मंद आत्मनिर्भर रंक प्रसार, दहलीज के ऊपर <math>K_\text{Iscc}</math> एवं संक्षारक वातावरण में नीचे <math>K_\text{Ic}</math> हो सकता हैI रंक विस्तार की छोटी वृद्धि थकान (सामग्री) रंक वृद्धि के समय भी हो सकती है, जो बार-बार लोडिंग चक्रों के पश्चात, मंद-मंद रंक को बढ़ा सकती है, जब तक कि अंतिम विफलता अस्थि-भंग की कठोरता से अधिक न हो जाए। | घृष्टता संघर्ष खुर के रूप में जाना जाने वाला मंद आत्मनिर्भर रंक प्रसार, दहलीज के ऊपर <math>K_\text{Iscc}</math> एवं संक्षारक वातावरण में नीचे <math>K_\text{Ic}</math> हो सकता हैI रंक विस्तार की छोटी वृद्धि थकान (सामग्री) रंक वृद्धि के समय भी हो सकती है, जो बार-बार लोडिंग चक्रों के पश्चात, मंद-मंद रंक को बढ़ा सकती है, जब तक कि अंतिम विफलता अस्थि-भंग की कठोरता से अधिक न हो जाए। | ||
Line 43: | Line 43: | ||
|[[Aerogel#Silica aerogel|Silica aerogels]] || 0.0008–0.0048<ref name=phalippou>{{cite journal|author1=J. Phalippou |author2=T. Woignier |author3=R. Rogier |title=Fracture toughness of silica aerogels|journal=Journal de Physique Colloques|year=1989|volume=50|pages=C4–191|url=http://hal.archives-ouvertes.fr/jpa-00229507/en/|doi=10.1051/jphyscol:1989431}}</ref> | |[[Aerogel#Silica aerogel|Silica aerogels]] || 0.0008–0.0048<ref name=phalippou>{{cite journal|author1=J. Phalippou |author2=T. Woignier |author3=R. Rogier |title=Fracture toughness of silica aerogels|journal=Journal de Physique Colloques|year=1989|volume=50|pages=C4–191|url=http://hal.archives-ouvertes.fr/jpa-00229507/en/|doi=10.1051/jphyscol:1989431}}</ref> | ||
|} | |} | ||
अस्थि-भंग | अस्थि-भंग निष्ठुरता सामग्री में परिमाण के लगभग 4 आदेशों से भिन्न होती है। धातु अस्थि-भंग निष्ठुरता के उच्चतम मूल्यों को धारण करते हैं। कठोर सामग्रियों में सरलता से फैल नहीं सकती हैं, जिससे धातुएं घृष्टता के अनुसार क्रैकिंग के लिए अत्यधिक प्रतिरोधी बन जाती हैं एवं उनके घृष्टता वक्र को प्लास्टिक प्रवाह का बड़ा क्षेत्र बना देती हैं। सेरेमिक्स में अस्थि-भंग की कठोरता अर्घ्य होती है, किन्तु घृष्टताअस्थि-भंग में असाधारण सुधार होता है, जो धातुओं के सापेक्ष उनके 1.5 परिमाण की शक्ति में वृद्धि के लिए उत्तरदायी होता है। इंजीनियरिंग पॉलिमर के साथ इंजीनियरिंग सिरेमिक के संयोजन से बने सम्मिश्र की अस्थि-भंग निष्ठुरता, घटक सामग्री की व्यक्तिगत अस्थि-भंग क्रूरता से अधिक है। | ||
== तंत्र == | == तंत्र == | ||
Line 59: | Line 59: | ||
सामग्री में अनाज की उपस्थिति भी रंकें फैलने के तरीके को प्रभावित करके इसकी कठोरता को प्रभावित कर सकती है। एक रंक के सामने, सामग्री उपज के रूप में एक प्लास्टिक क्षेत्र मौजूद हो सकता है। उस क्षेत्र से परे, सामग्री लोचदार रहती है। इस प्लास्टिक एवं लोचदार क्षेत्र के बीच की सीमा पर अस्थि-भंग की स्थिति सबसे अनुकूल होती है, एवं इस प्रकार रंकें अक्सर उस स्थान पर अनाज की रंक से शुरू होती हैं। | सामग्री में अनाज की उपस्थिति भी रंकें फैलने के तरीके को प्रभावित करके इसकी कठोरता को प्रभावित कर सकती है। एक रंक के सामने, सामग्री उपज के रूप में एक प्लास्टिक क्षेत्र मौजूद हो सकता है। उस क्षेत्र से परे, सामग्री लोचदार रहती है। इस प्लास्टिक एवं लोचदार क्षेत्र के बीच की सीमा पर अस्थि-भंग की स्थिति सबसे अनुकूल होती है, एवं इस प्रकार रंकें अक्सर उस स्थान पर अनाज की रंक से शुरू होती हैं। | ||
अर्घ्य तापमान पर, जहां सामग्री पूरी तरह से अस्थि-भंगुर हो सकती है, जैसे शरीर-केंद्रित घन (बीसीसी) धातु में, प्लास्टिक क्षेत्र सिकुड़ जाता है, एवं केवल लोचदार क्षेत्र मौजूद होता है। इस अवस्था में, अनाज के क्रमिक विदलन से रंक फैल जाएगी। इन अर्घ्य तापमानों पर, उपज शक्ति अधिक होती है, | अर्घ्य तापमान पर, जहां सामग्री पूरी तरह से अस्थि-भंगुर हो सकती है, जैसे शरीर-केंद्रित घन (बीसीसी) धातु में, प्लास्टिक क्षेत्र सिकुड़ जाता है, एवं केवल लोचदार क्षेत्र मौजूद होता है। इस अवस्था में, अनाज के क्रमिक विदलन से रंक फैल जाएगी। इन अर्घ्य तापमानों पर, उपज शक्ति अधिक होती है, किन्तु अस्थि-भंग स्ट्रेन एवं क्रैक टिप वक्रता की त्रिज्या अर्घ्य होती है, जिससे अर्घ्य कठोरता होती है।<ref name=":0">{{Cite book|title=सामग्री का यांत्रिक व्यवहार|last=Courtney|first=Thomas H.|date=2000|publisher=McGraw Hill|isbn=9781577664253|oclc=41932585}}</ref> | ||
उच्च तापमान पर, उपज शक्ति अर्घ्य हो जाती है एवं प्लास्टिक क्षेत्र का निर्माण होता है। लोचदार-प्लास्टिक क्षेत्र की सीमा पर विदलन शुरू होने की संभावना है, एवं फिर मुख्य रंक टिप पर वापस लिंक करें। यह आम तौर पर अनाज के रंकों का मिश्रण होता है, एवं रेशेदार लिंकेज के रूप में जाने वाले अनाज के नमनीय अस्थि-भंग होते हैं। जब तक लिंकअप पूरी तरह से रेशेदार लिंकेज नहीं हो जाता, तब तक रेशेदार लिंकेज का प्रतिशत तापमान बढ़ने के साथ बढ़ता है। इस अवस्था में, भले ही उपज शक्ति अर्घ्य हो, तन्य अस्थि-भंग की उपस्थिति एवं वक्रता के एक उच्च रंक टिप त्रिज्या के परिणामस्वरूप उच्च क्रूरता होती है।<ref name=":0" /> | उच्च तापमान पर, उपज शक्ति अर्घ्य हो जाती है एवं प्लास्टिक क्षेत्र का निर्माण होता है। लोचदार-प्लास्टिक क्षेत्र की सीमा पर विदलन शुरू होने की संभावना है, एवं फिर मुख्य रंक टिप पर वापस लिंक करें। यह आम तौर पर अनाज के रंकों का मिश्रण होता है, एवं रेशेदार लिंकेज के रूप में जाने वाले अनाज के नमनीय अस्थि-भंग होते हैं। जब तक लिंकअप पूरी तरह से रेशेदार लिंकेज नहीं हो जाता, तब तक रेशेदार लिंकेज का प्रतिशत तापमान बढ़ने के साथ बढ़ता है। इस अवस्था में, भले ही उपज शक्ति अर्घ्य हो, तन्य अस्थि-भंग की उपस्थिति एवं वक्रता के एक उच्च रंक टिप त्रिज्या के परिणामस्वरूप उच्च क्रूरता होती है।<ref name=":0" /> | ||
Line 91: | Line 91: | ||
== परीक्षण के तरीके == | == परीक्षण के तरीके == | ||
क्रैकिंग द्वारा विफलता के लिए सामग्री के प्रतिरोध को मापने के लिए अस्थि-भंग क्रूरता परीक्षण किया जाता है। इस तरह के परीक्षणों के परिणामस्वरूप या तो अस्थि-भंग की कठोरता का एकल-मूल्यवान माप होता है या [[क्रैक विकास प्रतिरोध वक्र]] होता है। रेजिस्टेंस कर्व्स ऐसे प्लॉट होते हैं जहां अस्थि-भंग टफनेस पैरामीटर्स (के, जे आदि) को क्रैक के प्रसार को चिह्नित करने वाले मापदंडों के खिलाफ प्लॉट किया जाता है। अस्थि-भंग के तंत्र एवं स्थिरता के आधार पर प्रतिरोध वक्र या एकल-मूल्यवान अस्थि-भंग क्रूरता प्राप्त की जाती है। अस्थि-भंग | क्रैकिंग द्वारा विफलता के लिए सामग्री के प्रतिरोध को मापने के लिए अस्थि-भंग क्रूरता परीक्षण किया जाता है। इस तरह के परीक्षणों के परिणामस्वरूप या तो अस्थि-भंग की कठोरता का एकल-मूल्यवान माप होता है या [[क्रैक विकास प्रतिरोध वक्र]] होता है। रेजिस्टेंस कर्व्स ऐसे प्लॉट होते हैं जहां अस्थि-भंग टफनेस पैरामीटर्स (के, जे आदि) को क्रैक के प्रसार को चिह्नित करने वाले मापदंडों के खिलाफ प्लॉट किया जाता है। अस्थि-भंग के तंत्र एवं स्थिरता के आधार पर प्रतिरोध वक्र या एकल-मूल्यवान अस्थि-भंग क्रूरता प्राप्त की जाती है। अस्थि-भंग निष्ठुरता इंजीनियरिंग अनुप्रयोगों के लिए एक महत्वपूर्ण यांत्रिक संपत्ति है। सामग्री की अस्थि-भंग कठोरता को मापने के लिए कई प्रकार के परीक्षण होते हैं, जो आम तौर पर विभिन्न विन्यासों में से एक में [[पायदान (इंजीनियरिंग)]] नमूने का उपयोग करते हैं। एक व्यापक रूप से उपयोग की जाने वाली मानकीकृत परीक्षण विधि [[चरपी प्रभाव परीक्षण]] है जिसके अनुसार वी-नॉट या यू-नॉच के साथ एक नमूना पायदान के पीछे से प्रभाव के अधीन होता है। रंक विस्थापन परीक्षण भी व्यापक रूप से उपयोग किए जाते हैं जैसे लोड लगाने से पहले परीक्षण नमूनों में पतली रंकों के साथ तीन-बिंदु बीम झुकने वाले परीक्षण। | ||
=== परीक्षण आवश्यकताओं === | === परीक्षण आवश्यकताओं === | ||
==== नमूने का चुनाव ==== | ==== नमूने का चुनाव ==== | ||
अस्थि-भंग | अस्थि-भंग निष्ठुरता के माप के लिए ASTM मानक E1820<ref>{{Cite journal|last=E08 Committee|title=फ्रैक्चर टफनेस के मापन के लिए टेस्ट विधि|url=https://www.astm.org/Standards/E1820|language=en|doi=10.1520/e1820-20a}}</ref> अस्थि-भंग टफनेस टेस्टिंग के लिए तीन कूपन प्रकारों की सिफारिश करता है, सिंगल-एज बेंडिंग कूपन [एसई (बी)], [[कॉम्पैक्ट तनाव नमूना|कॉम्पैक्ट घृष्टता नमूना]] [सी (टी)] एवं डिस्क के आकार का कॉम्पैक्ट टेंशन कूपन [डीसी (टी)]। | ||
प्रत्येक नमूना विन्यास को तीन आयामों की विशेषता है, अर्थात् रंक की लंबाई (ए), मोटाई (बी) एवं चौड़ाई (डब्ल्यू)। इन आयामों के मूल्यों को उस विशेष परीक्षण की मांग से निर्धारित किया जाता है जो नमूने पर किया जा रहा है। अधिकांश परीक्षण कॉम्पैक्ट घृष्टता नमूने या [[तीन सूत्री वंक परीक्षण]] कॉन्फ़िगरेशन पर किए जाते हैं। समान विशिष्ट आयामों के लिए, कॉम्पैक्ट कॉन्फ़िगरेशन तीन-बिंदु फ्लेक्सुरल टेस्ट की तुलना में अर्घ्य मात्रा में सामग्री लेता है। | प्रत्येक नमूना विन्यास को तीन आयामों की विशेषता है, अर्थात् रंक की लंबाई (ए), मोटाई (बी) एवं चौड़ाई (डब्ल्यू)। इन आयामों के मूल्यों को उस विशेष परीक्षण की मांग से निर्धारित किया जाता है जो नमूने पर किया जा रहा है। अधिकांश परीक्षण कॉम्पैक्ट घृष्टता नमूने या [[तीन सूत्री वंक परीक्षण]] कॉन्फ़िगरेशन पर किए जाते हैं। समान विशिष्ट आयामों के लिए, कॉम्पैक्ट कॉन्फ़िगरेशन तीन-बिंदु फ्लेक्सुरल टेस्ट की तुलना में अर्घ्य मात्रा में सामग्री लेता है। | ||
Line 106: | Line 106: | ||
चक्रीय लोडिंग को सावधानीपूर्वक नियंत्रित किया जाता है ताकि स्ट्रेन-हार्डनिंग के माध्यम से सामग्री की कठोरता को प्रभावित न किया जा सके। यह मुख्य अस्थि-भंग के प्लास्टिक क्षेत्र की तुलना में बहुत छोटे प्लास्टिक क्षेत्र का उत्पादन करने वाले चक्रीय भार को चुनकर किया जाता है। उदाहरण के लिए, ASTM E399 के अनुसार, अधिकतम घृष्टता तीव्रता K<sub>max</sub> 0.6 से बड़ा नहीं होना चाहिए<math>K_\text{Ic}</math> प्रारंभिक चरण के समय एवं 0.8 से अर्घ्य<math>K_\text{Ic}</math> जब रंक अपने अंतिम आकार तक पहुँच जाती है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E399-90R97|title=धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि।|website=www.astm.org|doi=10.1520/e0399-90r97|access-date=2019-05-10}}</ref> | चक्रीय लोडिंग को सावधानीपूर्वक नियंत्रित किया जाता है ताकि स्ट्रेन-हार्डनिंग के माध्यम से सामग्री की कठोरता को प्रभावित न किया जा सके। यह मुख्य अस्थि-भंग के प्लास्टिक क्षेत्र की तुलना में बहुत छोटे प्लास्टिक क्षेत्र का उत्पादन करने वाले चक्रीय भार को चुनकर किया जाता है। उदाहरण के लिए, ASTM E399 के अनुसार, अधिकतम घृष्टता तीव्रता K<sub>max</sub> 0.6 से बड़ा नहीं होना चाहिए<math>K_\text{Ic}</math> प्रारंभिक चरण के समय एवं 0.8 से अर्घ्य<math>K_\text{Ic}</math> जब रंक अपने अंतिम आकार तक पहुँच जाती है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E399-90R97|title=धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि।|website=www.astm.org|doi=10.1520/e0399-90r97|access-date=2019-05-10}}</ref> | ||
कुछ मामलों में खांचे को अस्थि-भंग | कुछ मामलों में खांचे को अस्थि-भंग निष्ठुरता के नमूने के किनारों में मशीनीकृत किया जाता है ताकि रंक एक्सटेंशन के इच्छित पथ के साथ नमूने की मोटाई मूल मोटाई के न्यूनतम 80% तक अर्घ्य हो जाए।<ref>{{Cite journal|url=https://www.astm.org/doiLink.cgi?STP35842S|title=Thickness and Side-Groove Effects on J- and δ-Resistance Curves for A533-B Steel at 93C|website=www.astm.org|doi=10.1520/stp35842s|access-date=2019-05-10|page=426 | last1 = Andrews | first1 = WR | last2 = Shih | first2 = CF}}</ref> इसका कारण आर-वक्र परीक्षण के समय सीधे रंक वाले मोर्चे को बनाए रखना है। | ||
K के साथ चार मुख्य मानकीकृत परीक्षणों का वर्णन नीचे किया गया है<sub>Ic</sub> एवं के<sub>R</sub> रैखिक-लोचदार अस्थिअस्थि-भंग यांत्रिकी (LEFM) के लिए मान्य परीक्षण जबकि J एवं J<sub>R</sub> लोचदार-प्लास्टिक अस्थि-भंग यांत्रिकी (EPFM) के लिए मान्य परीक्षण | K के साथ चार मुख्य मानकीकृत परीक्षणों का वर्णन नीचे किया गया है<sub>Ic</sub> एवं के<sub>R</sub> रैखिक-लोचदार अस्थिअस्थि-भंग यांत्रिकी (LEFM) के लिए मान्य परीक्षण जबकि J एवं J<sub>R</sub> लोचदार-प्लास्टिक अस्थि-भंग यांत्रिकी (EPFM) के लिए मान्य परीक्षण | ||
=== विमान घृष्टता की स्थिति अस्थि-भंग | === विमान घृष्टता की स्थिति अस्थि-भंग निष्ठुरता का निर्धारण === | ||
जब कोई सामग्री विफलता से पहले एक रैखिक लोचदार तरीके से व्यवहार करती है, जैसे कि प्लास्टिक क्षेत्र नमूना आयाम की तुलना में छोटा होता है, तो मोड- I घृष्टता तीव्रता कारक का एक महत्वपूर्ण मान उपयुक्त अस्थि-भंग पैरामीटर हो सकता है। यह विधि महत्वपूर्ण इनफिनिटिमल घृष्टता सिद्धांत घृष्टता तीव्रता कारक के संदर्भ में अस्थि-भंग क्रूरता का मात्रात्मक माप प्रदान करती है। परिणाम सार्थक हैं यह सुनिश्चित करने के लिए परीक्षण को एक बार पूरा होने के बाद मान्य किया जाना चाहिए। नमूना आकार निश्चित है, एवं रंक की सीमा पर समतल घृष्टता की स्थिति सुनिश्चित करने के लिए पर्याप्त बड़ा होना चाहिए। | जब कोई सामग्री विफलता से पहले एक रैखिक लोचदार तरीके से व्यवहार करती है, जैसे कि प्लास्टिक क्षेत्र नमूना आयाम की तुलना में छोटा होता है, तो मोड- I घृष्टता तीव्रता कारक का एक महत्वपूर्ण मान उपयुक्त अस्थि-भंग पैरामीटर हो सकता है। यह विधि महत्वपूर्ण इनफिनिटिमल घृष्टता सिद्धांत घृष्टता तीव्रता कारक के संदर्भ में अस्थि-भंग क्रूरता का मात्रात्मक माप प्रदान करती है। परिणाम सार्थक हैं यह सुनिश्चित करने के लिए परीक्षण को एक बार पूरा होने के बाद मान्य किया जाना चाहिए। नमूना आकार निश्चित है, एवं रंक की सीमा पर समतल घृष्टता की स्थिति सुनिश्चित करने के लिए पर्याप्त बड़ा होना चाहिए। | ||
Line 118: | Line 118: | ||
प्लेन-स्ट्रेन अस्थि-भंग टफनेस टेस्टिंग | प्लेन-स्ट्रेन अस्थि-भंग टफनेस टेस्टिंग | ||
अस्थि-भंग | अस्थि-भंग निष्ठुरता परीक्षण करते समय, सबसे आम परीक्षण नमूना विन्यास सिंगल एज नॉच (इंजीनियरिंग) बेंड (SENB या थ्री-पॉइंट बेंड), एवं कॉम्पैक्ट टेंशन (CT) नमूने हैं। परीक्षण से पता चला है कि विमान-घृष्टता की स्थिति आमतौर पर प्रबल होती है जब:<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E399-90R97|title=धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि|website=www.astm.org|doi=10.1520/e0399-90r97|access-date=2019-05-10}}</ref> | ||
::<math>B,a\geq2.5\left(\frac{K_{IC}}{\sigma_\text{YS}}\right)^2</math> | ::<math>B,a\geq2.5\left(\frac{K_{IC}}{\sigma_\text{YS}}\right)^2</math> | ||
कहाँ <math>B</math> न्यूनतम आवश्यक मोटाई है, <math>K_\text{Ic}</math> सामग्री की अस्थि-भंग | कहाँ <math>B</math> न्यूनतम आवश्यक मोटाई है, <math>K_\text{Ic}</math> सामग्री की अस्थि-भंग निष्ठुरता एवं <math>\sigma_\text{YS}</math> भौतिक उपज शक्ति है। | ||
परीक्षण एक ऐसी दर पर स्थिर रूप से लोड करके किया जाता है जैसे कि K<sub>I</sub> 0.55 से बढ़कर 2.75 (MPa<math>\sqrt{m}</math>)/एस। परीक्षण के समय, लोड एवं क्रैक माउथ ओपनिंग डिसप्लेसमेंट (CMOD) रिकॉर्ड किया जाता है एवं अधिकतम लोड तक पहुंचने तक परीक्षण जारी रहता है। क्रिटिकल लोड <P<sub>Q</sub> लोड बनाम सीएमओडी प्लॉट के माध्यम से गणना की जाती है। अनंतिम क्रूरता K<sub>Q</sub> के रूप में दिया जाता है | परीक्षण एक ऐसी दर पर स्थिर रूप से लोड करके किया जाता है जैसे कि K<sub>I</sub> 0.55 से बढ़कर 2.75 (MPa<math>\sqrt{m}</math>)/एस। परीक्षण के समय, लोड एवं क्रैक माउथ ओपनिंग डिसप्लेसमेंट (CMOD) रिकॉर्ड किया जाता है एवं अधिकतम लोड तक पहुंचने तक परीक्षण जारी रहता है। क्रिटिकल लोड <P<sub>Q</sub> लोड बनाम सीएमओडी प्लॉट के माध्यम से गणना की जाती है। अनंतिम क्रूरता K<sub>Q</sub> के रूप में दिया जाता है | ||
Line 129: | Line 129: | ||
::<math>min(B,a)>2.5\left(\frac{K_{Q}}{\sigma_\text{YS}}\right)^2</math>एवं <math>P_{max}\leq 1.1P_Q</math> | ::<math>min(B,a)>2.5\left(\frac{K_{Q}}{\sigma_\text{YS}}\right)^2</math>एवं <math>P_{max}\leq 1.1P_Q</math> | ||
जब अज्ञात अस्थि-भंग | जब अज्ञात अस्थि-भंग निष्ठुरता की सामग्री का परीक्षण किया जाता है, तो पूर्ण सामग्री खंड मोटाई का एक नमूना परीक्षण किया जाता है या अस्थि-भंग क्रूरता की भविष्यवाणी के आधार पर नमूना का आकार होता है। यदि परीक्षण से उत्पन्न अस्थि-भंग निष्ठुरता मूल्य उपरोक्त समीकरण की आवश्यकता को पूरा नहीं करता है, तो मोटे नमूने का उपयोग करके परीक्षण को दोहराया जाना चाहिए। इस मोटाई की गणना के अलावा, परीक्षण विनिर्देशों में कई अन्य आवश्यकताएं होती हैं जिन्हें पूरा किया जाना चाहिए (जैसे कतरनी होंठ का आकार) परीक्षण से पहले कहा जा सकता है कि K में परिणाम हुआ है<sub>IC</sub> कीमत। | ||
जब एक परीक्षण मोटाई एवं अन्य सादा-घृष्टता आवश्यकताओं को पूरा करने में विफल रहता है, तो उत्पादित अस्थि-भंग | जब एक परीक्षण मोटाई एवं अन्य सादा-घृष्टता आवश्यकताओं को पूरा करने में विफल रहता है, तो उत्पादित अस्थि-भंग निष्ठुरता मूल्य को पदनाम K दिया जाता है<sub>c</sub>. कभी-कभी, मोटाई की आवश्यकता को पूरा करने वाले नमूने का उत्पादन करना संभव नहीं होता है। उदाहरण के लिए, जब उच्च कठोरता वाली एक अपेक्षाकृत पतली प्लेट का परीक्षण किया जा रहा है, तो रंक की सीमा पर विमान-घृष्टता की स्थिति के साथ एक मोटा नमूना तैयार करना संभव नहीं हो सकता है। | ||
=== आर-वक्र का निर्धारण, के-आर === | === आर-वक्र का निर्धारण, के-आर === | ||
स्थिर रंक वृद्धि दिखाने वाला नमूना अस्थि-भंग की कठोरता में बढ़ती प्रवृत्ति को दर्शाता है क्योंकि रंक की लंबाई बढ़ जाती है (नमनीय रंक विस्तार)। अस्थि-भंग | स्थिर रंक वृद्धि दिखाने वाला नमूना अस्थि-भंग की कठोरता में बढ़ती प्रवृत्ति को दर्शाता है क्योंकि रंक की लंबाई बढ़ जाती है (नमनीय रंक विस्तार)। अस्थि-भंग निष्ठुरता बनाम रंक की लंबाई के इस प्लॉट को प्रतिरोध (आर) -वक्र कहा जाता है। ASTM E561 सामग्री में कठोरता बनाम रंक वृद्धि वक्रों के निर्धारण के लिए एक प्रक्रिया की रूपरेखा तैयार करता है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E561-98|title=आर-वक्र निर्धारण के लिए मानक अभ्यास|website=www.astm.org|doi=10.1520/e0561-98|access-date=2019-05-10}}</ref> इस मानक में सामग्री की न्यूनतम मोटाई पर कोई प्रतिबंध नहीं है एवं इसलिए इसका उपयोग पतली शीट के लिए किया जा सकता है, हालांकि परीक्षण के वैध होने के लिए एलईएफएम की आवश्यकताओं को पूरा किया जाना चाहिए। एलईएफएम के लिए मानदंड अनिवार्य रूप से बताता है कि प्लास्टिक क्षेत्र की तुलना में इन-प्लेन आयाम बड़ा होना चाहिए। आर वक्र के आकार पर मोटाई के प्रभाव के बारे में गलत धारणा है। यह संकेत दिया जाता है कि समान सामग्री के लिए मोटा खंड समतल घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं एकल-मूल्यवान अस्थि-भंग क्रूरता दिखाता है, पतला खंड विमान घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं बढ़ते आर-वक्र को दर्शाता है। हालांकि, आर वक्र के ढलान को नियंत्रित करने वाला मुख्य कारक अस्थि-भंग आकारिकी है न कि मोटाई। कुछ सामग्री खंड मोटाई में अस्थि-भंग आकारिकी को नमनीय फाड़ से रंक को पतले से मोटे खंड में बदल दिया जाता है, इस मामले में मोटाई अकेले आर-वक्र के ढलान को निर्धारित करती है। ऐसे मामले हैं जहां माइक्रोवॉइड कोलेसेंस विफलता का तरीका होने के कारण बढ़ते आर-वक्र में विमान घृष्टता की स्थिति अस्थि-भंग भी होता है। | ||
के-आर वक्र का मूल्यांकन करने का सबसे सटीक तरीका प्लास्टिक ज़ोन के सापेक्ष आकार के आधार पर प्लास्टिसिटी की उपस्थिति को ध्यान में रखना है। नगण्य प्लास्टिसिटी के मामले में, लोड बनाम विस्थापन वक्र परीक्षण से प्राप्त किया जाता है एवं प्रत्येक बिंदु पर अनुपालन पाया जाता है। अनुपालन वक्र के ढलान का पारस्परिक है जिसका पालन किया जाएगा यदि नमूना एक निश्चित बिंदु पर उतार दिया जाता है, जिसे एलईएफएम के लिए विस्थापन के अनुपात के रूप में दिया जा सकता है। एएसटीएम मानक में दिए गए संबंध के माध्यम से तात्कालिक रंक की लंबाई निर्धारित करने के लिए अनुपालन का उपयोग किया जाता है। | के-आर वक्र का मूल्यांकन करने का सबसे सटीक तरीका प्लास्टिक ज़ोन के सापेक्ष आकार के आधार पर प्लास्टिसिटी की उपस्थिति को ध्यान में रखना है। नगण्य प्लास्टिसिटी के मामले में, लोड बनाम विस्थापन वक्र परीक्षण से प्राप्त किया जाता है एवं प्रत्येक बिंदु पर अनुपालन पाया जाता है। अनुपालन वक्र के ढलान का पारस्परिक है जिसका पालन किया जाएगा यदि नमूना एक निश्चित बिंदु पर उतार दिया जाता है, जिसे एलईएफएम के लिए विस्थापन के अनुपात के रूप में दिया जा सकता है। एएसटीएम मानक में दिए गए संबंध के माध्यम से तात्कालिक रंक की लंबाई निर्धारित करने के लिए अनुपालन का उपयोग किया जाता है। | ||
Line 142: | Line 142: | ||
इरविन का दृष्टिकोण पुनरावृत्त समाधान की ओर ले जाता है क्योंकि K स्वयं रंक की लंबाई का कार्य है। | इरविन का दृष्टिकोण पुनरावृत्त समाधान की ओर ले जाता है क्योंकि K स्वयं रंक की लंबाई का कार्य है। | ||
दूसरी विधि, अर्थात् छेदक विधि, प्रभावी अनुपालन से प्रभावी रंक लंबाई की गणना करने के लिए एएसटीएम मानक द्वारा दिए गए अनुपालन-रंक लंबाई समीकरण का उपयोग करती है। लोड बनाम विस्थापन वक्र में किसी भी बिंदु पर अनुपालन अनिवार्य रूप से वक्र के ढलान का पारस्परिक होता है जो उस बिंदु पर नमूना उतारने पर होता है। अब अनलोडिंग वक्र रैखिक लोचदार सामग्री के लिए उत्पत्ति पर लौटता है | दूसरी विधि, अर्थात् छेदक विधि, प्रभावी अनुपालन से प्रभावी रंक लंबाई की गणना करने के लिए एएसटीएम मानक द्वारा दिए गए अनुपालन-रंक लंबाई समीकरण का उपयोग करती है। लोड बनाम विस्थापन वक्र में किसी भी बिंदु पर अनुपालन अनिवार्य रूप से वक्र के ढलान का पारस्परिक होता है जो उस बिंदु पर नमूना उतारने पर होता है। अब अनलोडिंग वक्र रैखिक लोचदार सामग्री के लिए उत्पत्ति पर लौटता है किन्तु लोचदार प्लास्टिक सामग्री के लिए नहीं क्योंकि स्थायी विरूपण होता है। लोचदार प्लास्टिक के मामले के लिए एक बिंदु पर प्रभावी अनुपालन को बिंदु एवं मूल में शामिल होने वाली रेखा के ढलान के रूप में लिया जाता है (यानी अनुपालन यदि सामग्री एक लोचदार थी)। इस प्रभावी अनुपालन का उपयोग प्रभावी रंक वृद्धि प्राप्त करने के लिए किया जाता है एवं शेष गणना समीकरण का अनुसरण करती है | ||
::<math>K_I=\frac{P}{\sqrt{W}B} f(a_\text{eff}/W,...)</math> | ::<math>K_I=\frac{P}{\sqrt{W}B} f(a_\text{eff}/W,...)</math> | ||
Line 148: | Line 148: | ||
=== जे का निर्धारण<sub>IC</sub> === | === जे का निर्धारण<sub>IC</sub> === | ||
घृष्टता ऊर्जा रिलीज दर प्रति यूनिट अस्थि-भंग सतह क्षेत्र की गणना जे-इंटीग्रल विधि द्वारा की जाती है जो रंक की सीमा के चारों ओर एक समोच्च पथ अभिन्न है जहां पथ शुरू होता है एवं दोनों रंक सतहों पर समाप्त होता है। जे-क्रूरता मूल्य एक रंक के बढ़ने के लिए आवश्यक घृष्टता ऊर्जा की मात्रा के संदर्भ में सामग्री के प्रतिरोध को दर्शाता है। जे<sub>IC</sub> | घृष्टता ऊर्जा रिलीज दर प्रति यूनिट अस्थि-भंग सतह क्षेत्र की गणना जे-इंटीग्रल विधि द्वारा की जाती है जो रंक की सीमा के चारों ओर एक समोच्च पथ अभिन्न है जहां पथ शुरू होता है एवं दोनों रंक सतहों पर समाप्त होता है। जे-क्रूरता मूल्य एक रंक के बढ़ने के लिए आवश्यक घृष्टता ऊर्जा की मात्रा के संदर्भ में सामग्री के प्रतिरोध को दर्शाता है। जे<sub>IC</sub> निष्ठुरता मूल्य लोचदार प्लास्टिक सामग्री के लिए मापा जाता है। अब एकल-मूल्यवान जे<sub>IC</sub> तन्य रंक विस्तार की शुरुआत के निकट कठोरता के रूप में निर्धारित किया जाता है (घृष्टता सख्त होने का प्रभाव महत्वपूर्ण नहीं है)। प्रत्येक नमूने को विभिन्न स्तरों पर लोड करने एवं उतारने के लिए कई नमूनों के साथ परीक्षण किया जाता है। यह क्रैक माउथ ओपनिंग कंप्लायंस देता है जिसका उपयोग एएसटीएम मानक ई 1820 में दिए गए रिश्तों की मदद से क्रैक लेंथ प्राप्त करने के लिए किया जाता है, जिसमें जे-इंटीग्रल टेस्टिंग शामिल है।<ref>{{Cite journal|url=https://www.astm.org/cgi-bin/resolver.cgi?E1820-01|title=फ्रैक्चर टफनेस के मापन के लिए मानक परीक्षण विधि|website=www.astm.org|doi=10.1520/e1820-01|access-date=2019-05-10}}</ref> रंक वृद्धि को मापने का एक अन्य तरीका नमूना को हीट टिंटिंग या थकान क्रैकिंग के साथ चिह्नित करना है। नमूना अंततः अलग हो जाता है एवं निशान की मदद से रंक विस्तार को मापा जाता है। | ||
इस प्रकार किए गए परीक्षण से कई लोड बनाम क्रैक माउथ ओपनिंग डिसप्लेसमेंट (CMOD) वक्र प्राप्त होते हैं, जिनका उपयोग J की गणना करने के लिए किया जाता है: - | इस प्रकार किए गए परीक्षण से कई लोड बनाम क्रैक माउथ ओपनिंग डिसप्लेसमेंट (CMOD) वक्र प्राप्त होते हैं, जिनका उपयोग J की गणना करने के लिए किया जाता है: - |
Revision as of 12:37, 25 March 2023
सामग्री विज्ञान में, अस्थि-भंग की कठोरता तीव्र अस्थि-भंग का महत्वपूर्ण घृष्टता तीव्रता कारक है जहां रंक का प्रसार तीव्र गति से एवं असीमित हो जाता है। घटक की मोटाई समतल घृष्टता की स्थिति वाले पतले घटकों एवं समतल घृष्टता की स्थिति वाले मोटे घटकों के साथ रंक की सीमा पर बाधा की स्थिति को प्रभावित करती है। विमान घृष्टता की स्थिति सबसे अर्घ्य अस्थि-भंग मूल्य देती है, जो भौतिक गुण है। विमान घृष्टता की स्थितियों के अनुसार मापे गए अस्थि-भंग मैकेनिक्स लोडिंग में घृष्टता की स्थिति, फैक्टर के महत्वपूर्ण मूल्य को विमान घृष्टता की स्थिति अस्थि-भंग टफनेस के रूप में जाना जाता है, जिसे निरूपित किया जाता है I[1] जब परीक्षण मोटाई एवं अन्य परीक्षण आवश्यकताओं को पूर्ण करने में विफल रहता है जो विमान घृष्टता की स्थिति सुनिश्चित करने के लिए होता है, तो उत्पादित अस्थि-भंग क्रूरता मूल्य को पदनाम दिया जाता हैI अस्थि-भंग निर्दयता प्रसार के लिए सामग्री के प्रतिरोध को व्यक्त करने का मात्रात्मक विधि है एवं किसी दिए गए सामग्री के लिए मानक मान उपलब्ध होते हैं।
घृष्टता संघर्ष खुर के रूप में जाना जाने वाला मंद आत्मनिर्भर रंक प्रसार, दहलीज के ऊपर एवं संक्षारक वातावरण में नीचे हो सकता हैI रंक विस्तार की छोटी वृद्धि थकान (सामग्री) रंक वृद्धि के समय भी हो सकती है, जो बार-बार लोडिंग चक्रों के पश्चात, मंद-मंद रंक को बढ़ा सकती है, जब तक कि अंतिम विफलता अस्थि-भंग की कठोरता से अधिक न हो जाए।
सामग्री भिन्नता
Material type | Material | KIc (MPa · m1/2) |
---|---|---|
Metal | Aluminum | 14–28 |
Aluminum alloy (7075) | 20-35[2] | |
Inconel 718 | 73-87[3] | |
Maraging steel (200 Grade) | 175 | |
Steel alloy (4340) | 50 | |
Titanium alloy | 84–107[4] | |
Ceramic | Aluminum oxide | 3–5 |
Silicon carbide | 3–5 | |
Soda-lime glass | 0.7–0.8 | |
Concrete | 0.2–1.4 | |
Polymer | Polymethyl methacrylate | 0.7–1.60 |
Polystyrene | 0.7–1.1 | |
Composite | Mullite-fibre composite | 1.8–3.3[5] |
Silica aerogels | 0.0008–0.0048[6] |
अस्थि-भंग निष्ठुरता सामग्री में परिमाण के लगभग 4 आदेशों से भिन्न होती है। धातु अस्थि-भंग निष्ठुरता के उच्चतम मूल्यों को धारण करते हैं। कठोर सामग्रियों में सरलता से फैल नहीं सकती हैं, जिससे धातुएं घृष्टता के अनुसार क्रैकिंग के लिए अत्यधिक प्रतिरोधी बन जाती हैं एवं उनके घृष्टता वक्र को प्लास्टिक प्रवाह का बड़ा क्षेत्र बना देती हैं। सेरेमिक्स में अस्थि-भंग की कठोरता अर्घ्य होती है, किन्तु घृष्टताअस्थि-भंग में असाधारण सुधार होता है, जो धातुओं के सापेक्ष उनके 1.5 परिमाण की शक्ति में वृद्धि के लिए उत्तरदायी होता है। इंजीनियरिंग पॉलिमर के साथ इंजीनियरिंग सिरेमिक के संयोजन से बने सम्मिश्र की अस्थि-भंग निष्ठुरता, घटक सामग्री की व्यक्तिगत अस्थि-भंग क्रूरता से अधिक है।
तंत्र
आंतरिक तंत्र
आंतरिक सख्त तंत्र ऐसी प्रक्रियाएं हैं जो सामग्री की कठोरता को बढ़ाने के लिए रंक की सीमा के आगे काम करती हैं। ये आधार सामग्री की संरचना एवं बंधन के साथ-साथ माइक्रोस्ट्रक्चरल फीचर्स एवं एडिटिव्स से संबंधित होंगे। तंत्र के उदाहरणों में शामिल हैं
- द्वितीयक चरणों द्वारा रंक विक्षेपण,
- महीन सूक्ष्म संरचना के कारण रंक द्विभाजन
- अनाज की सीमाओं के कारण रंक पथ में परिवर्तन
आधार सामग्री में कोई परिवर्तन जो इसकी लचीलापन बढ़ाता है, को भी आंतरिक सख्त माना जा सकता है।[7]
अनाज की सीमाएं
सामग्री में अनाज की उपस्थिति भी रंकें फैलने के तरीके को प्रभावित करके इसकी कठोरता को प्रभावित कर सकती है। एक रंक के सामने, सामग्री उपज के रूप में एक प्लास्टिक क्षेत्र मौजूद हो सकता है। उस क्षेत्र से परे, सामग्री लोचदार रहती है। इस प्लास्टिक एवं लोचदार क्षेत्र के बीच की सीमा पर अस्थि-भंग की स्थिति सबसे अनुकूल होती है, एवं इस प्रकार रंकें अक्सर उस स्थान पर अनाज की रंक से शुरू होती हैं।
अर्घ्य तापमान पर, जहां सामग्री पूरी तरह से अस्थि-भंगुर हो सकती है, जैसे शरीर-केंद्रित घन (बीसीसी) धातु में, प्लास्टिक क्षेत्र सिकुड़ जाता है, एवं केवल लोचदार क्षेत्र मौजूद होता है। इस अवस्था में, अनाज के क्रमिक विदलन से रंक फैल जाएगी। इन अर्घ्य तापमानों पर, उपज शक्ति अधिक होती है, किन्तु अस्थि-भंग स्ट्रेन एवं क्रैक टिप वक्रता की त्रिज्या अर्घ्य होती है, जिससे अर्घ्य कठोरता होती है।[8] उच्च तापमान पर, उपज शक्ति अर्घ्य हो जाती है एवं प्लास्टिक क्षेत्र का निर्माण होता है। लोचदार-प्लास्टिक क्षेत्र की सीमा पर विदलन शुरू होने की संभावना है, एवं फिर मुख्य रंक टिप पर वापस लिंक करें। यह आम तौर पर अनाज के रंकों का मिश्रण होता है, एवं रेशेदार लिंकेज के रूप में जाने वाले अनाज के नमनीय अस्थि-भंग होते हैं। जब तक लिंकअप पूरी तरह से रेशेदार लिंकेज नहीं हो जाता, तब तक रेशेदार लिंकेज का प्रतिशत तापमान बढ़ने के साथ बढ़ता है। इस अवस्था में, भले ही उपज शक्ति अर्घ्य हो, तन्य अस्थि-भंग की उपस्थिति एवं वक्रता के एक उच्च रंक टिप त्रिज्या के परिणामस्वरूप उच्च क्रूरता होती है।[8]
समावेशन
दूसरे चरण के कणों जैसी सामग्री में समावेश अस्थि-भंगुर अनाज के समान कार्य कर सकता है जो रंक प्रसार को प्रभावित कर सकता है। समावेशन पर अस्थि-भंग या डीकोहेसन या तो बाहरी लागू घृष्टता या इसके आसपास मैट्रिक्स के साथ निकटता बनाए रखने के लिए समावेशन की आवश्यकता से उत्पन्न अव्यवस्थाओं के कारण हो सकता है। अनाज के समान, प्लास्टिक-लोचदार क्षेत्र की सीमा पर अस्थि-भंग होने की सबसे अधिक संभावना है। फिर रंक वापस मुख्य रंक से जुड़ सकती है। यदि प्लास्टिक क्षेत्र छोटा है या समावेशन का घनत्व छोटा है, तो अस्थि-भंग की मुख्य रंक टिप के साथ सीधे जुड़ने की संभावना अधिक होती है। यदि प्लास्टिक ज़ोन बड़ा है, या समावेशन का घनत्व अधिक है, तो प्लास्टिक ज़ोन के भीतर अतिरिक्त समावेशन अस्थि-भंग हो सकते हैं, एवं लिंकअप रंक से ज़ोन के भीतर निकटतम अस्थि-भंगिंग समावेशन की प्रगति से होता है।[8]
परिवर्तन सख्त
ट्रांसफॉर्मेशन टफनिंग एक घटना है जिससे एक सामग्री एक या एक से अधिक मार्टेंसिक ट्रांसफॉर्मेशन # मार्टेंसिटिक ट्रांसफॉर्मेशन (विस्थापन, प्रसार रहित) चरण परिवर्तनों से गुजरती है, जिसके परिणामस्वरूप उस सामग्री की मात्रा में लगभग तात्कालिक परिवर्तन होता है। यह परिवर्तन सामग्री की घृष्टता स्थिति में परिवर्तन से शुरू होता है, जैसे तन्य घृष्टता में वृद्धि, एवं लागू घृष्टता के विरोध में कार्य करता है। इस प्रकार जब सामग्री को स्थानीय रूप से घृष्टता में रखा जाता है, उदाहरण के लिए बढ़ती रंक की सीमा पर, यह एक चरण परिवर्तन से गुजर सकता है जो इसकी मात्रा बढ़ाता है, स्थानीय तन्यता घृष्टता को अर्घ्य करता है एवं सामग्री के माध्यम से रंक की प्रगति में बाधा डालता है। सिरेमिक सामग्री की कठोरता को बढ़ाने के लिए इस तंत्र का उपयोग किया जाता है, विशेष रूप से जेट इंजन टरबाइन ब्लेड पर सिरेमिक चाकू एवं थर्मल बैरियर कोटिंग्स जैसे अनुप्रयोगों के लिए येट्रिया-स्थिर ज़िरकोनिया में।[9]
बाहरी तंत्र
बाहरी सख्त तंत्र ऐसी प्रक्रियाएं हैं जो रंक की सीमा के पीछे कार्य करती हैं ताकि इसके आगे खुलने का विरोध किया जा सके। उदाहरणों में शामिल
- फाइबर/लैमेला ब्रिजिंग, जहां मैट्रिक्स के माध्यम से रंक के प्रसार के बाद ये संरचनाएं दो अस्थि-भंग सतहों को एक साथ रखती हैं,
- दो खुरदरी अस्थि-भंग सतहों के बीच घर्षण से क्रैक वेजिंग, एवं
- माइक्रोक्रैकिंग, जहां मुख्य रंक के आसपास सामग्री में छोटी रंकें बनती हैं, सामग्री के लोचदार मापांक को प्रभावी ढंग से बढ़ाकर रंक की सीमा पर घृष्टता से राहत मिलती है।[10]
परीक्षण के तरीके
क्रैकिंग द्वारा विफलता के लिए सामग्री के प्रतिरोध को मापने के लिए अस्थि-भंग क्रूरता परीक्षण किया जाता है। इस तरह के परीक्षणों के परिणामस्वरूप या तो अस्थि-भंग की कठोरता का एकल-मूल्यवान माप होता है या क्रैक विकास प्रतिरोध वक्र होता है। रेजिस्टेंस कर्व्स ऐसे प्लॉट होते हैं जहां अस्थि-भंग टफनेस पैरामीटर्स (के, जे आदि) को क्रैक के प्रसार को चिह्नित करने वाले मापदंडों के खिलाफ प्लॉट किया जाता है। अस्थि-भंग के तंत्र एवं स्थिरता के आधार पर प्रतिरोध वक्र या एकल-मूल्यवान अस्थि-भंग क्रूरता प्राप्त की जाती है। अस्थि-भंग निष्ठुरता इंजीनियरिंग अनुप्रयोगों के लिए एक महत्वपूर्ण यांत्रिक संपत्ति है। सामग्री की अस्थि-भंग कठोरता को मापने के लिए कई प्रकार के परीक्षण होते हैं, जो आम तौर पर विभिन्न विन्यासों में से एक में पायदान (इंजीनियरिंग) नमूने का उपयोग करते हैं। एक व्यापक रूप से उपयोग की जाने वाली मानकीकृत परीक्षण विधि चरपी प्रभाव परीक्षण है जिसके अनुसार वी-नॉट या यू-नॉच के साथ एक नमूना पायदान के पीछे से प्रभाव के अधीन होता है। रंक विस्थापन परीक्षण भी व्यापक रूप से उपयोग किए जाते हैं जैसे लोड लगाने से पहले परीक्षण नमूनों में पतली रंकों के साथ तीन-बिंदु बीम झुकने वाले परीक्षण।
परीक्षण आवश्यकताओं
नमूने का चुनाव
अस्थि-भंग निष्ठुरता के माप के लिए ASTM मानक E1820[11] अस्थि-भंग टफनेस टेस्टिंग के लिए तीन कूपन प्रकारों की सिफारिश करता है, सिंगल-एज बेंडिंग कूपन [एसई (बी)], कॉम्पैक्ट घृष्टता नमूना [सी (टी)] एवं डिस्क के आकार का कॉम्पैक्ट टेंशन कूपन [डीसी (टी)]। प्रत्येक नमूना विन्यास को तीन आयामों की विशेषता है, अर्थात् रंक की लंबाई (ए), मोटाई (बी) एवं चौड़ाई (डब्ल्यू)। इन आयामों के मूल्यों को उस विशेष परीक्षण की मांग से निर्धारित किया जाता है जो नमूने पर किया जा रहा है। अधिकांश परीक्षण कॉम्पैक्ट घृष्टता नमूने या तीन सूत्री वंक परीक्षण कॉन्फ़िगरेशन पर किए जाते हैं। समान विशिष्ट आयामों के लिए, कॉम्पैक्ट कॉन्फ़िगरेशन तीन-बिंदु फ्लेक्सुरल टेस्ट की तुलना में अर्घ्य मात्रा में सामग्री लेता है।
भौतिक अभिविन्यास
अधिकांश इंजीनियरिंग सामग्रियों की अंतर्निहित गैर-आइसोट्रोपिक प्रकृति के कारण अस्थि-भंग का ओरिएंटेशन महत्वपूर्ण है। इसके कारण, सामग्री के भीतर अर्घ्यजोरी के तल हो सकते हैं, एवं इस तल के साथ रंक विकास अन्य दिशाओं की तुलना में आसान हो सकता है। इस महत्व के कारण एएसटीएम ने फोर्जिंग एक्सिस के संबंध में क्रैक ओरिएंटेशन की रिपोर्टिंग का एक मानकीकृत तरीका तैयार किया है।[12] अक्षर L, T एवं S का उपयोग अनुदैर्ध्य, अनुप्रस्थ एवं लघु अनुप्रस्थ दिशाओं को निरूपित करने के लिए किया जाता है, जहाँ अनुदैर्ध्य दिशा फोर्जिंग अक्ष के साथ मेल खाती है। अभिविन्यास को दो अक्षरों के साथ परिभाषित किया गया है, पहला मुख्य तन्यता घृष्टता की दिशा है एवं दूसरा रंक प्रसार की दिशा है। सामान्यतया, किसी सामग्री की कठोरता की निचली सीमा उस अभिविन्यास में प्राप्त की जाती है जहां फोर्जिंग अक्ष की दिशा में रंक बढ़ती है।
प्री-क्रैकिंग
सटीक परिणामों के लिए, परीक्षण से पहले एक तीव्र रंक की आवश्यकता होती है। मशीनी खांचे एवं खांचे इस कसौटी पर खरे नहीं उतरते। पर्याप्त रूप से तीव्र रंक को पेश करने का सबसे प्रभावी तरीका एक स्लॉट से थकान रंक को विकसित करने के लिए चक्रीय लोडिंग लागू करना है। स्लॉट की सीमा पर थकान रंकें शुरू की जाती हैं एवं रंक की लंबाई अपने वांछित मूल्य तक पहुंचने तक बढ़ने की अनुमति दी जाती है।
चक्रीय लोडिंग को सावधानीपूर्वक नियंत्रित किया जाता है ताकि स्ट्रेन-हार्डनिंग के माध्यम से सामग्री की कठोरता को प्रभावित न किया जा सके। यह मुख्य अस्थि-भंग के प्लास्टिक क्षेत्र की तुलना में बहुत छोटे प्लास्टिक क्षेत्र का उत्पादन करने वाले चक्रीय भार को चुनकर किया जाता है। उदाहरण के लिए, ASTM E399 के अनुसार, अधिकतम घृष्टता तीव्रता Kmax 0.6 से बड़ा नहीं होना चाहिए प्रारंभिक चरण के समय एवं 0.8 से अर्घ्य जब रंक अपने अंतिम आकार तक पहुँच जाती है।[13] कुछ मामलों में खांचे को अस्थि-भंग निष्ठुरता के नमूने के किनारों में मशीनीकृत किया जाता है ताकि रंक एक्सटेंशन के इच्छित पथ के साथ नमूने की मोटाई मूल मोटाई के न्यूनतम 80% तक अर्घ्य हो जाए।[14] इसका कारण आर-वक्र परीक्षण के समय सीधे रंक वाले मोर्चे को बनाए रखना है।
K के साथ चार मुख्य मानकीकृत परीक्षणों का वर्णन नीचे किया गया हैIc एवं केR रैखिक-लोचदार अस्थिअस्थि-भंग यांत्रिकी (LEFM) के लिए मान्य परीक्षण जबकि J एवं JR लोचदार-प्लास्टिक अस्थि-भंग यांत्रिकी (EPFM) के लिए मान्य परीक्षण
विमान घृष्टता की स्थिति अस्थि-भंग निष्ठुरता का निर्धारण
जब कोई सामग्री विफलता से पहले एक रैखिक लोचदार तरीके से व्यवहार करती है, जैसे कि प्लास्टिक क्षेत्र नमूना आयाम की तुलना में छोटा होता है, तो मोड- I घृष्टता तीव्रता कारक का एक महत्वपूर्ण मान उपयुक्त अस्थि-भंग पैरामीटर हो सकता है। यह विधि महत्वपूर्ण इनफिनिटिमल घृष्टता सिद्धांत घृष्टता तीव्रता कारक के संदर्भ में अस्थि-भंग क्रूरता का मात्रात्मक माप प्रदान करती है। परिणाम सार्थक हैं यह सुनिश्चित करने के लिए परीक्षण को एक बार पूरा होने के बाद मान्य किया जाना चाहिए। नमूना आकार निश्चित है, एवं रंक की सीमा पर समतल घृष्टता की स्थिति सुनिश्चित करने के लिए पर्याप्त बड़ा होना चाहिए।
नमूना मोटाई रंक टिप पर बाधा की डिग्री को प्रभावित करती है जो बदले में अस्थि-भंग क्रूरता मूल्य को प्रभावित करती है एक पठार तक पहुंचने तक नमूना आकार में वृद्धि के साथ अस्थि-भंग की कठोरता अर्घ्य हो जाती है। एएसटीएम ई 399 में नमूना आकार की आवश्यकताओं का उद्देश्य यह सुनिश्चित करना है माप यह सुनिश्चित करके विमान घृष्टता पठार से मेल खाते हैं कि नाममात्र रैखिक लोचदार स्थितियों के अनुसार नमूना अस्थि-भंग। यही है, नमूना क्रॉस सेक्शन की तुलना में प्लास्टिक ज़ोन छोटा होना चाहिए। ई 399 के वर्तमान संस्करण द्वारा चार नमूना विन्यास की अनुमति है: कॉम्पैक्ट, एसई (बी), आर्क-आकार एवं डिस्क-आकार के नमूने। के लिए नमूने परीक्षण आमतौर पर चौड़ाई के साथ गढ़े जाते हैं मोटाई के दोगुने के बराबर . वे थकान पूर्व-रंक हैं ताकि रंक लंबाई/चौड़ाई अनुपात () 0.45 एवं 0.55 के बीच स्थित है। इस प्रकार, नमूना डिजाइन ऐसा है कि सभी प्रमुख आयाम, , , एवं −, लगभग बराबर हैं। इस डिजाइन के परिणामस्वरूप सामग्री का कुशल उपयोग होता है, क्योंकि मानक के लिए आवश्यक है कि इनमें से प्रत्येक आयाम प्लास्टिक क्षेत्र की तुलना में बड़ा होना चाहिए।
प्लेन-स्ट्रेन अस्थि-भंग टफनेस टेस्टिंग
अस्थि-भंग निष्ठुरता परीक्षण करते समय, सबसे आम परीक्षण नमूना विन्यास सिंगल एज नॉच (इंजीनियरिंग) बेंड (SENB या थ्री-पॉइंट बेंड), एवं कॉम्पैक्ट टेंशन (CT) नमूने हैं। परीक्षण से पता चला है कि विमान-घृष्टता की स्थिति आमतौर पर प्रबल होती है जब:[15]
कहाँ न्यूनतम आवश्यक मोटाई है, सामग्री की अस्थि-भंग निष्ठुरता एवं भौतिक उपज शक्ति है।
परीक्षण एक ऐसी दर पर स्थिर रूप से लोड करके किया जाता है जैसे कि KI 0.55 से बढ़कर 2.75 (MPa)/एस। परीक्षण के समय, लोड एवं क्रैक माउथ ओपनिंग डिसप्लेसमेंट (CMOD) रिकॉर्ड किया जाता है एवं अधिकतम लोड तक पहुंचने तक परीक्षण जारी रहता है। क्रिटिकल लोड <PQ लोड बनाम सीएमओडी प्लॉट के माध्यम से गणना की जाती है। अनंतिम क्रूरता KQ के रूप में दिया जाता है
- .
ज्यामिति कारक a/W का आयाम रहित फलन है एवं E 399 मानक में बहुपद रूप में दिया गया है। कॉम्पैक्ट परीक्षण ज्यामिति के लिए ज्यामिति कारक कॉम्पैक्ट घृष्टता नमूना पाया जा सकता है।[16] निम्नलिखित आवश्यकताओं को पूरा करने पर इस अनंतिम क्रूरता मूल्य को मान्य माना जाता है:
- एवं
जब अज्ञात अस्थि-भंग निष्ठुरता की सामग्री का परीक्षण किया जाता है, तो पूर्ण सामग्री खंड मोटाई का एक नमूना परीक्षण किया जाता है या अस्थि-भंग क्रूरता की भविष्यवाणी के आधार पर नमूना का आकार होता है। यदि परीक्षण से उत्पन्न अस्थि-भंग निष्ठुरता मूल्य उपरोक्त समीकरण की आवश्यकता को पूरा नहीं करता है, तो मोटे नमूने का उपयोग करके परीक्षण को दोहराया जाना चाहिए। इस मोटाई की गणना के अलावा, परीक्षण विनिर्देशों में कई अन्य आवश्यकताएं होती हैं जिन्हें पूरा किया जाना चाहिए (जैसे कतरनी होंठ का आकार) परीक्षण से पहले कहा जा सकता है कि K में परिणाम हुआ हैIC कीमत।
जब एक परीक्षण मोटाई एवं अन्य सादा-घृष्टता आवश्यकताओं को पूरा करने में विफल रहता है, तो उत्पादित अस्थि-भंग निष्ठुरता मूल्य को पदनाम K दिया जाता हैc. कभी-कभी, मोटाई की आवश्यकता को पूरा करने वाले नमूने का उत्पादन करना संभव नहीं होता है। उदाहरण के लिए, जब उच्च कठोरता वाली एक अपेक्षाकृत पतली प्लेट का परीक्षण किया जा रहा है, तो रंक की सीमा पर विमान-घृष्टता की स्थिति के साथ एक मोटा नमूना तैयार करना संभव नहीं हो सकता है।
आर-वक्र का निर्धारण, के-आर
स्थिर रंक वृद्धि दिखाने वाला नमूना अस्थि-भंग की कठोरता में बढ़ती प्रवृत्ति को दर्शाता है क्योंकि रंक की लंबाई बढ़ जाती है (नमनीय रंक विस्तार)। अस्थि-भंग निष्ठुरता बनाम रंक की लंबाई के इस प्लॉट को प्रतिरोध (आर) -वक्र कहा जाता है। ASTM E561 सामग्री में कठोरता बनाम रंक वृद्धि वक्रों के निर्धारण के लिए एक प्रक्रिया की रूपरेखा तैयार करता है।[17] इस मानक में सामग्री की न्यूनतम मोटाई पर कोई प्रतिबंध नहीं है एवं इसलिए इसका उपयोग पतली शीट के लिए किया जा सकता है, हालांकि परीक्षण के वैध होने के लिए एलईएफएम की आवश्यकताओं को पूरा किया जाना चाहिए। एलईएफएम के लिए मानदंड अनिवार्य रूप से बताता है कि प्लास्टिक क्षेत्र की तुलना में इन-प्लेन आयाम बड़ा होना चाहिए। आर वक्र के आकार पर मोटाई के प्रभाव के बारे में गलत धारणा है। यह संकेत दिया जाता है कि समान सामग्री के लिए मोटा खंड समतल घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं एकल-मूल्यवान अस्थि-भंग क्रूरता दिखाता है, पतला खंड विमान घृष्टता अस्थि-भंग द्वारा विफल हो जाता है एवं बढ़ते आर-वक्र को दर्शाता है। हालांकि, आर वक्र के ढलान को नियंत्रित करने वाला मुख्य कारक अस्थि-भंग आकारिकी है न कि मोटाई। कुछ सामग्री खंड मोटाई में अस्थि-भंग आकारिकी को नमनीय फाड़ से रंक को पतले से मोटे खंड में बदल दिया जाता है, इस मामले में मोटाई अकेले आर-वक्र के ढलान को निर्धारित करती है। ऐसे मामले हैं जहां माइक्रोवॉइड कोलेसेंस विफलता का तरीका होने के कारण बढ़ते आर-वक्र में विमान घृष्टता की स्थिति अस्थि-भंग भी होता है।
के-आर वक्र का मूल्यांकन करने का सबसे सटीक तरीका प्लास्टिक ज़ोन के सापेक्ष आकार के आधार पर प्लास्टिसिटी की उपस्थिति को ध्यान में रखना है। नगण्य प्लास्टिसिटी के मामले में, लोड बनाम विस्थापन वक्र परीक्षण से प्राप्त किया जाता है एवं प्रत्येक बिंदु पर अनुपालन पाया जाता है। अनुपालन वक्र के ढलान का पारस्परिक है जिसका पालन किया जाएगा यदि नमूना एक निश्चित बिंदु पर उतार दिया जाता है, जिसे एलईएफएम के लिए विस्थापन के अनुपात के रूप में दिया जा सकता है। एएसटीएम मानक में दिए गए संबंध के माध्यम से तात्कालिक रंक की लंबाई निर्धारित करने के लिए अनुपालन का उपयोग किया जाता है।
प्रभावी रंक लंबाई की गणना करके घृष्टता की तीव्रता को ठीक किया जाना चाहिए। एएसटीएम मानक दो वैकल्पिक तरीकों का सुझाव देता है। पहली विधि को इरविन का प्लास्टिक ज़ोन करेक्शन नाम दिया गया है। इरविन का दृष्टिकोण प्रभावी रंक की लंबाई का वर्णन करता है होना[18]
इरविन का दृष्टिकोण पुनरावृत्त समाधान की ओर ले जाता है क्योंकि K स्वयं रंक की लंबाई का कार्य है।
दूसरी विधि, अर्थात् छेदक विधि, प्रभावी अनुपालन से प्रभावी रंक लंबाई की गणना करने के लिए एएसटीएम मानक द्वारा दिए गए अनुपालन-रंक लंबाई समीकरण का उपयोग करती है। लोड बनाम विस्थापन वक्र में किसी भी बिंदु पर अनुपालन अनिवार्य रूप से वक्र के ढलान का पारस्परिक होता है जो उस बिंदु पर नमूना उतारने पर होता है। अब अनलोडिंग वक्र रैखिक लोचदार सामग्री के लिए उत्पत्ति पर लौटता है किन्तु लोचदार प्लास्टिक सामग्री के लिए नहीं क्योंकि स्थायी विरूपण होता है। लोचदार प्लास्टिक के मामले के लिए एक बिंदु पर प्रभावी अनुपालन को बिंदु एवं मूल में शामिल होने वाली रेखा के ढलान के रूप में लिया जाता है (यानी अनुपालन यदि सामग्री एक लोचदार थी)। इस प्रभावी अनुपालन का उपयोग प्रभावी रंक वृद्धि प्राप्त करने के लिए किया जाता है एवं शेष गणना समीकरण का अनुसरण करती है
प्लास्टिसिटी सुधार का विकल्प प्लास्टिक क्षेत्र के आकार पर निर्भर करता है। एएसटीएम मानक आवरण प्रतिरोध वक्र सुझाव देता है कि इरविन की विधि का उपयोग छोटे प्लास्टिक क्षेत्र के लिए स्वीकार्य है एवं क्रैक-टिप प्लास्टिसिटी अधिक प्रमुख होने पर सिकेंट विधि का उपयोग करने की सिफारिश करता है। चूंकि एएसटीएम ई 561 मानक में नमूना आकार या अधिकतम स्वीकार्य रंक विस्तार पर आवश्यकताएं शामिल नहीं हैं, इसलिए प्रतिरोध वक्र के आकार की स्वतंत्रता की गारंटी नहीं है। कुछ अध्ययनों से पता चलता है कि सिकेंट विधि के लिए प्रायोगिक डेटा में आकार की निर्भरता अर्घ्य पाई गई है।
जे का निर्धारणIC
घृष्टता ऊर्जा रिलीज दर प्रति यूनिट अस्थि-भंग सतह क्षेत्र की गणना जे-इंटीग्रल विधि द्वारा की जाती है जो रंक की सीमा के चारों ओर एक समोच्च पथ अभिन्न है जहां पथ शुरू होता है एवं दोनों रंक सतहों पर समाप्त होता है। जे-क्रूरता मूल्य एक रंक के बढ़ने के लिए आवश्यक घृष्टता ऊर्जा की मात्रा के संदर्भ में सामग्री के प्रतिरोध को दर्शाता है। जेIC निष्ठुरता मूल्य लोचदार प्लास्टिक सामग्री के लिए मापा जाता है। अब एकल-मूल्यवान जेIC तन्य रंक विस्तार की शुरुआत के निकट कठोरता के रूप में निर्धारित किया जाता है (घृष्टता सख्त होने का प्रभाव महत्वपूर्ण नहीं है)। प्रत्येक नमूने को विभिन्न स्तरों पर लोड करने एवं उतारने के लिए कई नमूनों के साथ परीक्षण किया जाता है। यह क्रैक माउथ ओपनिंग कंप्लायंस देता है जिसका उपयोग एएसटीएम मानक ई 1820 में दिए गए रिश्तों की मदद से क्रैक लेंथ प्राप्त करने के लिए किया जाता है, जिसमें जे-इंटीग्रल टेस्टिंग शामिल है।[19] रंक वृद्धि को मापने का एक अन्य तरीका नमूना को हीट टिंटिंग या थकान क्रैकिंग के साथ चिह्नित करना है। नमूना अंततः अलग हो जाता है एवं निशान की मदद से रंक विस्तार को मापा जाता है।
इस प्रकार किए गए परीक्षण से कई लोड बनाम क्रैक माउथ ओपनिंग डिसप्लेसमेंट (CMOD) वक्र प्राप्त होते हैं, जिनका उपयोग J की गणना करने के लिए किया जाता है: -
रैखिक लोचदार J का उपयोग करके गणना की जाती है
एवं K से निर्धारित होता है जहां बीN साइड-ग्रूव्ड नमूने के लिए शुद्ध मोटाई है एवं साइड-ग्रूव्ड नमूने के लिए बी के बराबर नहीं है
लोचदार प्लास्टिक जे का उपयोग करके गणना की जाती है
कहाँ =2 SENB नमूने के लिए
बीo प्रारंभिक बंधन लंबाई चौड़ाई एवं प्रारंभिक रंक लंबाई के बीच के अंतर से दी गई है
एPl भार-विस्थापन वक्र के अंतर्गत प्लास्टिक क्षेत्र है।
एक अनंतिम जे प्राप्त करने के लिए विशिष्ट डेटा कटौती तकनीक का उपयोग किया जाता हैQ. निम्नलिखित मानदंड पूरा होने पर मूल्य स्वीकार किया जाता है
आंसू प्रतिरोध का निर्धारण (कान आंसू परीक्षण)
आंसू परीक्षण (उदाहरण कान आंसू परीक्षण) आंसू प्रतिरोध के मामले में क्रूरता का अर्ध-मात्रात्मक माप प्रदान करता है। इस प्रकार के परीक्षण के लिए एक छोटे नमूने की आवश्यकता होती है, एवं इसलिए, उत्पाद रूपों की विस्तृत श्रृंखला के लिए इसका उपयोग किया जा सकता है। आंसू परीक्षण का उपयोग बहुत नमनीय एल्यूमीनियम मिश्र धातुओं (जैसे 1100, 3003) के लिए भी किया जा सकता है, जहां रैखिक लोचदार अस्थि-भंग यांत्रिकी लागू नहीं होती है।
मानक परीक्षण के तरीके
एएसटीएम इंटरनेशनल, बीएसआई समूह , आईएसओ, जेएसएमई जैसे कई संगठन अस्थि-भंग टफनेस मापन से संबंधित मानकों को प्रकाशित करते हैं।
- एएसटीएम सी1161 परिवेशी तापमान पर उन्नत सिरामिक्स की फ्लेक्सुरल स्ट्रेंथ के लिए टेस्ट मेथड
- ASTM C1421 परिवेश के तापमान पर उन्नत सिरेमिक की अस्थि-भंग कठोरता के निर्धारण के लिए मानक परीक्षण विधियाँ
- धात्विक सामग्री के प्लेन-स्ट्रेन अस्थि-भंग टफनेस के लिए ASTM E399 टेस्ट मेथड
- सतह-रंक घृष्टता नमूनों के साथ अस्थिअस्थि-भंग परीक्षण के लिए ASTM E740 अभ्यास
- अस्थिअस्थि-भंग कठोरता के मापन के लिए ASTM E1820 मानक परीक्षण विधि
- ASTM E1823 थकान एवं अस्थि-भंग परीक्षण से संबंधित शब्दावली
- ISO 12135 धात्विक सामग्री - क्वासिस्टैटिक अस्थि-भंग टफनेस के निर्धारण के लिए परीक्षण की एकीकृत विधि
- आईएसओ 28079:2009, पामक्विस्ट विधि, मजबूत कार्बाइड के लिए अस्थि-भंग की कठोरता को निर्धारित करने के लिए प्रयोग किया जाता है[20]
क्रैक विक्षेपण सख्त
पॉलीक्रिस्टलाइन संरचनाओं वाले कई सिरेमिक में बड़ी रंकें विकसित होती हैं जो अनाज के बीच की सीमाओं के साथ फैलती हैं, बजाय व्यक्तिगत क्रिस्टल के माध्यम से क्योंकि अनाज की सीमाओं की कठोरता क्रिस्टल की तुलना में बहुत अर्घ्य होती है। अनाज की सीमा के पहलुओं एवं अवशिष्ट घृष्टता के कारण रंक एक जटिल, टेढ़े-मेढ़े तरीके से आगे बढ़ती है जिसका विश्लेषण करना मुश्किल है। इस टेढ़े-मेढ़ेपन के कारण बढ़ी हुई अनाज सीमा सतह क्षेत्र से जुड़ी अतिरिक्त सतह ऊर्जा की गणना करना सटीक नहीं है, क्योंकि रंक की सतह बनाने के लिए कुछ ऊर्जा अवशिष्ट घृष्टता से आती है।[21]
मॉडल
कैथरीन फैबर एवं एंथोनी जी. इवांस द्वारा पेश किए गए सामग्री मॉडल के एक यांत्रिकी को दूसरे चरण के कणों के आसपास रंक विक्षेपण के कारण सिरेमिक में अस्थि-भंग की कठोरता में वृद्धि की भविष्यवाणी करने के लिए विकसित किया गया है जो एक मैट्रिक्स में माइक्रोक्रैकिंग के लिए प्रवण हैं।[22] मॉडल दूसरे चरण के कण आकृति विज्ञान, पहलू अनुपात, रिक्ति एवं आयतन अंश को ध्यान में रखता है, साथ ही रंक की सीमा पर स्थानीय घृष्टता की तीव्रता में अर्घ्यी आती है जब रंक विक्षेपित होती है या रंक विमान झुक जाता है। वास्तविक रंक टेढ़ापन इमेजिंग तकनीकों के माध्यम से प्राप्त किया जाता है, जिससे विक्षेपण एवं झुके हुए कोणों को सीधे मॉडल में इनपुट किया जा सकता है।
अस्थि-भंग की कठोरता में परिणामी वृद्धि की तुलना प्लेन मैट्रिक्स के माध्यम से एक फ्लैट क्रैक की तुलना में की जाती है। सख्त होने का परिमाण थर्मल संकुचन असंगति एवं कण/मैट्रिक्स इंटरफ़ेस के माइक्रोअस्थि-भंग प्रतिरोध के कारण होने वाले बेमेल घृष्टता से निर्धारित होता है।[23] यह कड़ापन ध्यान देने योग्य हो जाता है जब कणों का एक संकीर्ण आकार वितरण होता है जो उचित आकार के होते हैं। शोधकर्ता आमतौर पर फैबर के विश्लेषण के निष्कर्षों को स्वीकार करते हैं, जो सुझाव देते हैं कि मोटे तौर पर समान अनाज वाले सामग्रियों में विक्षेपण प्रभाव अनाज सीमा मूल्य के लगभग दो बार अस्थि-भंग की कठोरता को बढ़ा सकता है।
यह भी देखें
- भंगुर-तन्य संक्रमण क्षेत्र
- चरपी प्रभाव परीक्षण
- नमनीय-भंगुर संक्रमण तापमान
- प्रभाव (यांत्रिकी)
- इज़ोड प्रभाव शक्ति परीक्षण
- पंचर प्रतिरोधी
- शॉक (यांत्रिकी)
- थ्री-पॉइंट फ्लेक्सुरल टेस्ट#फ्रैक्चर टफनेस टेस्टिंग|थ्री-पॉइंट फ्लेक्सुरल फ्रैक्चर टफनेस टेस्टिंग
- सिरामोग्राफी # माइक्रोइंडेंशन कठोरता और क्रूरता
संदर्भ
- ↑ Suresh, S. (2004). सामग्री की थकान. Cambridge University Press. ISBN 978-0-521-57046-6.
- ↑ Kaufman, J. Gilbert (2015), Aluminum Alloy Database, Knovel, retrieved 1 August 2019
- ↑ ASM International Handbook Committee (1996), ASM Handbook, Volume 19 - Fatigue and Fracture, ASM International, p. 377
- ↑ Titanium Alloys - Ti6Al4V Grade 5, AZO Materials, 2000, retrieved 24 September 2014
- ↑ AR Boccaccini; S Atiq; DN Boccaccini; I Dlouhy; C Kaya (2005). "Fracture behaviour of mullite fibre reinforced-mullite matrix composites under quasi-static and ballistic impact loading". Composites Science and Technology. 65 (2): 325–333. doi:10.1016/j.compscitech.2004.08.002.
- ↑ J. Phalippou; T. Woignier; R. Rogier (1989). "Fracture toughness of silica aerogels". Journal de Physique Colloques. 50: C4–191. doi:10.1051/jphyscol:1989431.
- ↑ Wei, Robert (2010), Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry, Cambridge University Press, ASIN 052119489X
- ↑ 8.0 8.1 8.2 Courtney, Thomas H. (2000). सामग्री का यांत्रिक व्यवहार. McGraw Hill. ISBN 9781577664253. OCLC 41932585.
- ↑ Padture, Nitin (12 April 2002). "Thermal Barrier Coatings for Gas-Turbine Engine Applications". Science. 296 (5566): 280–284. Bibcode:2002Sci...296..280P. doi:10.1126/science.1068609. PMID 11951028. S2CID 19761127.
- ↑ Liang, Yiling (2010), The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites, Lehigh University, p. 20, OCLC 591591884
- ↑ E08 Committee. "फ्रैक्चर टफनेस के मापन के लिए टेस्ट विधि" (in English). doi:10.1520/e1820-20a.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ "थकान फ्रैक्चर परीक्षण से संबंधित मानक शब्दावली". www.astm.org. doi:10.1520/e1823-13. Retrieved 2019-05-10.
- ↑ "धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि।". www.astm.org. doi:10.1520/e0399-90r97. Retrieved 2019-05-10.
- ↑ Andrews, WR; Shih, CF. "Thickness and Side-Groove Effects on J- and δ-Resistance Curves for A533-B Steel at 93C". www.astm.org: 426. doi:10.1520/stp35842s. Retrieved 2019-05-10.
- ↑ "धातु सामग्री के प्लेन-स्ट्रेन फ्रैक्चर टफनेस के लिए मानक परीक्षण विधि". www.astm.org. doi:10.1520/e0399-90r97. Retrieved 2019-05-10.
- ↑ "Stress Intensity Factors Compliances And Elastic Nu Factors For Six Test Geometries".
- ↑ "आर-वक्र निर्धारण के लिए मानक अभ्यास". www.astm.org. doi:10.1520/e0561-98. Retrieved 2019-05-10.
- ↑ Liu, M.; et al. (2015). "राउंड-टिप नॉच पर तनाव के लिए एक बेहतर अर्ध-विश्लेषणात्मक समाधान" (PDF). Engineering Fracture Mechanics. 149: 134–143. doi:10.1016/j.engfracmech.2015.10.004. S2CID 51902898.
- ↑ "फ्रैक्चर टफनेस के मापन के लिए मानक परीक्षण विधि". www.astm.org. doi:10.1520/e1820-01. Retrieved 2019-05-10.
- ↑ ISO 28079:2009, Palmqvist toughness test, Retrieved 22 January 2016
- ↑ Hutchinson, John (1989). "चीनी मिट्टी की चीज़ें सख्त करने की क्रियाविधि". Theoretical and applied mechanics: 139–144 – via Elsevier.
- ↑ Faber, K. T.; Evans, A. G. (1983-04-01). "Crack deflection processes—I. Theory". Acta Metallurgica (in English). 31 (4): 565–576. doi:10.1016/0001-6160(83)90046-9. ISSN 0001-6160.
- ↑ Faber, K. T.; Evans, A. G. (1983-04-01). "Crack deflection processes—II. Experiment". Acta Metallurgica (in English). 31 (4): 577–584. doi:10.1016/0001-6160(83)90047-0. ISSN 0001-6160.
अग्रिम पठन
- Anderson, T. L., Fracture Mechanics: Fundamentals and Applications (CRC Press, Boston 1995).
- Davidge, R. W., Mechanical Behavior of Ceramics (Cambridge University Press 1979).
- Knott, K. F., Fundamentals of Fracture Mechanics (1973).
- Suresh, S., Fatigue of Materials (Cambridge University Press 1998, 2nd edition).