एकरूपता: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
[[File:Normal distribution pdf.svg|thumb|चित्रा 1. सामान्य वितरण की संभावना घनत्व समारोह, एकरूप वितरण का उदाहरण है।]] | [[File:Normal distribution pdf.svg|thumb|चित्रा 1. सामान्य वितरण की संभावना घनत्व समारोह, एकरूप वितरण का उदाहरण है।]] | ||
[[File:Bimodal.png|thumb|चित्र 2. साधारण द्विपाद वितरण।]] | [[File:Bimodal.png|thumb|चित्र 2. साधारण द्विपाद वितरण।]] | ||
[[File:Bimodal geological.PNG|thumb|चित्रा 3. | [[File:Bimodal geological.PNG|thumb|चित्रा 3. द्विपक्षीय वितरण। ध्यान दें कि केवल सबसे बड़ी चोटी मोड की परिभाषा के सख्त अर्थों में मोड के अनुरूप होगी]]आँकड़ों में, एकरूप संभाव्यता वितरण या एकरूप वितरण संभाव्यता वितरण है जिसमें शिखर होता है। इस संदर्भ में मोड शब्द वितरण के किसी भी शिखर को संदर्भित करता है, न कि केवल मोड (सांख्यिकी) की सख्त परिभाषा के लिए जो आंकड़ों में सामान्य है। | ||
यदि एकल बहुलक है, तो वितरण फलन को एकरूपी कहा जाता है। यदि इसके अधिक मोड हैं तो यह बिमोडल (2), ट्राइमोडल (3) आदि, या सामान्य रूप से मल्टीमॉडल है।<ref>{{MathWorld|urlname=Mode|title=Mode}}</ref> चित्र 1 सामान्य बंटनों को प्रदर्शित करता है, जो एकरूपी हैं। एकरूप वितरण के अन्य उदाहरणों में [[कॉची वितरण]], छात्र का टी-वितरण | छात्र का टी-वितरण, [[ची-वर्ग वितरण]] और घातीय वितरण सम्मिलित हैं। असतत वितरणों के मध्य, [[द्विपद वितरण]] और प्वासों वितरण को एकरूपी के रूप में देखा जा सकता है, चूँकि कुछ मापदंडों के लिए उनके समीप समान संभावना वाले दो आसन्न मान हो सकते हैं। | यदि एकल बहुलक है, तो वितरण फलन को एकरूपी कहा जाता है। यदि इसके अधिक मोड हैं तो यह बिमोडल (2), ट्राइमोडल (3) आदि, या सामान्य रूप से मल्टीमॉडल है।<ref>{{MathWorld|urlname=Mode|title=Mode}}</ref> चित्र 1 सामान्य बंटनों को प्रदर्शित करता है, जो एकरूपी हैं। एकरूप वितरण के अन्य उदाहरणों में [[कॉची वितरण]], छात्र का टी-वितरण | छात्र का टी-वितरण, [[ची-वर्ग वितरण]] और घातीय वितरण सम्मिलित हैं। असतत वितरणों के मध्य, [[द्विपद वितरण]] और प्वासों वितरण को एकरूपी के रूप में देखा जा सकता है, चूँकि कुछ मापदंडों के लिए उनके समीप समान संभावना वाले दो आसन्न मान हो सकते हैं। | ||
Line 21: | Line 21: | ||
=== उपयोग और परिणाम === | === उपयोग और परिणाम === | ||
वितरण की एकरूपता के महत्व का कारण यह है कि यह कई महत्वपूर्ण परिणामों की अनुमति देता है। नीचे कई असमानताएं (गणित) दी गई हैं जो केवल एकरूपी वितरण के लिए मान्य हैं। इस प्रकार, यह आकलन करना महत्वपूर्ण है कि दिया गया डेटा सेट | वितरण की एकरूपता के महत्व का कारण यह है कि यह कई महत्वपूर्ण परिणामों की अनुमति देता है। नीचे कई असमानताएं (गणित) दी गई हैं जो केवल एकरूपी वितरण के लिए मान्य हैं। इस प्रकार, यह आकलन करना महत्वपूर्ण है कि दिया गया डेटा सेट एकरूप वितरण से आता है या नहीं। [[बहुविध वितरण]] पर लेख में एकरूपता के लिए कई परीक्षण दिए गए हैं। | ||
===असमानताएं=== | ===असमानताएं=== | ||
Line 28: | Line 28: | ||
==== गॉस की असमानता ==== | ==== गॉस की असमानता ==== | ||
प्रथम महत्वपूर्ण परिणाम गॉस की असमानता है।<ref>{{cite journal|last=Gauss|first=C. F.|author-link=Carl Friedrich Gauss|year=1823|title=न्यूनतम त्रुटियों के अधीन टिप्पणियों के संयोजन का सिद्धांत, भाग एक|journal=Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores|volume=5}}</ref> गॉस की असमानता इस संभावना पर ऊपरी सीमा प्रदान करती है कि कोई मान अपने मोड से किसी भी दूरी से अधिक है। यह असमानता एकरूपता पर निर्भर करती है। | |||
==== वायसोचान्स्की-पेटुनिन असमानता ==== | ==== वायसोचान्स्की-पेटुनिन असमानता ==== | ||
सेकंड वैसोचन्स्की–पेटुनिन असमानता,<ref>{{cite journal |author=D. F. Vysochanskij, Y. I. Petunin |year=1980 |title=Justification of the 3σ rule for unimodal distributions |journal=Theory of Probability and Mathematical Statistics |volume=21 |pages=25–36}}</ref> [[चेबिशेव असमानता]] का शोधन है। चेबीशेव असमानता गारंटी देती है कि किसी भी संभाव्यता वितरण में, लगभग सभी मान माध्य मान के करीब हैं। वायसोचन्स्की-पेटुनिन असमानता इसे और भी निकट मूल्यों तक परिष्कृत करती है, बशर्ते कि वितरण कार्य निरंतर और एकरूप है। आगे के परिणाम सेलके और सेलके द्वारा दिखाए गए।<ref>{{Cite journal | |||
| last1 = Sellke | first1 = T.M. | | last1 = Sellke | first1 = T.M. | ||
| last2 = Sellke | first2 = S.H. | | last2 = Sellke | first2 = S.H. | ||
Line 49: | Line 49: | ||
==== बहुलक, माध्यिका और माध्य ==== | ==== बहुलक, माध्यिका और माध्य ==== | ||
गॉस ने 1823 में | गॉस ने 1823 में असमान वितरण के लिए भी दिखाया<ref name=Gauss1823>Gauss C.F. Theoria Combinationis Observationum Erroribus Minimis Obnoxiae. Pars Prior. Pars Posterior. Supplementum. Theory of the Combination of Observations Least Subject to Errors. Part One. Part Two. Supplement. 1995. Translated by G.W. Stewart. Classics in Applied Mathematics Series, Society for Industrial and Applied Mathematics, Philadelphia</ref> | ||
: <math>\sigma \le \omega \le 2 \sigma</math> | : <math>\sigma \le \omega \le 2 \sigma</math> | ||
और | और | ||
Line 56: | Line 56: | ||
जहां माध्य ν है, माध्य μ है और ω मोड से [[मूल माध्य वर्ग विचलन]] है। | जहां माध्य ν है, माध्य μ है और ω मोड से [[मूल माध्य वर्ग विचलन]] है। | ||
यह | यह असमान वितरण के लिए प्रदर्शित किया जाता है कि औसत ν और माध्य μ (3/5) के अंदर स्थित है<sup>1/2</sup> ≈ 0.7746 दूसरे के [[मानक विचलन]]।<ref name="unimodal">{{cite journal | url=http://epubs.siam.org/doi/pdf/10.1137/S0040585X97975447 | doi=10.1137/S0040585X97975447 | title=The Mean, Median, and Mode of Unimodal Distributions: A Characterization | year=1997 | last1=Basu | first1=S. | last2=Dasgupta | first2=A. | journal=Theory of Probability & Its Applications | volume=41 | issue=2 | pages=210–223 }}</ref> प्रतीकों में, | ||
: <math>\frac{|\nu - \mu|}{\sigma} \le \sqrt{\frac{3}{5}}</math> | : <math>\frac{|\nu - \mu|}{\sigma} \le \sqrt{\frac{3}{5}}</math> | ||
जहाँ | . . | |||
2020 में, बर्नार्ड, काज़ी और वंडफेल ने सममित क्वांटाइल औसत के मध्य अधिकतम दूरी प्राप्त करके पिछली असमानता को सामान्यीकृत किया <math>\frac{ q_\alpha + q_{(1-\alpha)} }{ 2 } </math> और | 2020 में, बर्नार्ड, काज़ी और वंडफेल ने सममित क्वांटाइल औसत के मध्य अधिकतम दूरी प्राप्त करके पिछली असमानता को सामान्यीकृत किया <math>\frac{ q_\alpha + q_{(1-\alpha)} }{ 2 } </math> और तात्पर्य,<ref name="unimodalbounds">{{cite journal | doi=10.1016/j.insmatheco.2020.05.013 | title=आंशिक जानकारी के तहत एकरूप वितरण के लिए रेंज वैल्यू-पर-जोखिम सीमा| year=2020 | last1=Bernard | first1=Carole | last2=Kazzi | first2=Rodrigue | last3=Vanduffel | first3=Steven | journal=Insurance: Mathematics and Economics | volume=94 | pages=9–24 | doi-access=free }}</ref> | ||
: <math>\frac{ \left| \frac{ q_\alpha + q_{(1-\alpha)} }{2} - \mu \right| }{ \sigma } \le \left\{ | : <math>\frac{ \left| \frac{ q_\alpha + q_{(1-\alpha)} }{2} - \mu \right| }{ \sigma } \le \left\{ | ||
\begin{array}{cl} | \begin{array}{cl} | ||
Line 72: | Line 72: | ||
\end{array} | \end{array} | ||
\right.</math> | \right.</math> | ||
यह ध्यान देने योग्य है कि अधिकतम दूरी कम से कम है <math>\alpha=0.5</math> (यानी, जब सममित क्वांटाइल औसत के बराबर होता है <math>q_{0.5} = \nu</math>), जो वास्तव में माध्यिका की आम पसंद को माध्य के लिए | यह ध्यान देने योग्य है कि अधिकतम दूरी कम से कम है <math>\alpha=0.5</math> (यानी, जब सममित क्वांटाइल औसत के बराबर होता है <math>q_{0.5} = \nu</math>), जो वास्तव में माध्यिका की आम पसंद को माध्य के लिए मजबूत अनुमानक के रूप में प्रेरित करता है। इसके अलावा, कब <math>\alpha = 0.5</math>, सीमा के बराबर है <math>\sqrt{3/5}</math>, जो माध्यिका और एकरूप वितरण के माध्य के मध्य की अधिकतम दूरी है। | ||
माध्यिका और बहुलक θ के मध्य | माध्यिका और बहुलक θ के मध्य समान संबंध होता है: वे 3 के भीतर स्थित होते हैं<sup>1/2</sup> ≈ 1.732 एक दूसरे के मानक विचलन: | ||
: <math>\frac{|\nu - \theta|}{\sigma} \le \sqrt{3}.</math> | : <math>\frac{|\nu - \theta|}{\sigma} \le \sqrt{3}.</math> | ||
Line 84: | Line 84: | ||
==== [[तिरछापन]] और [[ कुकुदता ]] ==== | ==== [[तिरछापन]] और [[ कुकुदता ]] ==== | ||
रोहतगी और ज़ेकेली ने दावा किया कि | रोहतगी और ज़ेकेली ने दावा किया कि असमान वितरण का विषमता और कुर्तोसिस असमानता से संबंधित हैं:<ref name=Rohatgi1989>{{cite journal | doi=10.1016/0167-7152(89)90035-7 | title=तिरछापन और कर्टोसिस के बीच तीव्र असमानताएँ| year=1989 | last1=Rohatgi | first1=Vijay K. | last2=Székely | first2=Gábor J. | journal=Statistics & Probability Letters | volume=8 | issue=4 | pages=297–299 }}</ref> | ||
: <math> \gamma^2 - \kappa \le \frac{ 6 }{ 5 } = 1.2 </math> | : <math> \gamma^2 - \kappa \le \frac{ 6 }{ 5 } = 1.2 </math> | ||
जहां κ ककुदता है और γ तिरछापन है। क्लासेन, मोकवेल्ड और वैन ईएस ने दिखाया कि यह केवल कुछ सेटिंग्स में | जहां κ ककुदता है और γ तिरछापन है। क्लासेन, मोकवेल्ड और वैन ईएस ने दिखाया कि यह केवल कुछ सेटिंग्स में प्रस्तावित होता है, जैसे कि एकरूप वितरण का सेट जहां मोड और माध्य मेल खाते हैं।<ref name=Klaassen2000>{{cite journal | doi=10.1016/S0167-7152(00)00090-0 | title=Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions | year=2000 | last1=Klaassen | first1=Chris A.J. | last2=Mokveld | first2=Philip J. | last3=Van Es | first3=Bert | journal=Statistics & Probability Letters | volume=50 | issue=2 | pages=131–135 }}</ref> | ||
उन्होंने | उन्होंने कमजोर असमानता प्राप्त की जो सभी असमान वितरणों पर प्रस्तावित होती है:<ref name=Klaassen2000 /> | ||
: <math> \gamma^2 - \kappa \le \frac{ 186 }{ 125 } = 1.488 </math> | : <math> \gamma^2 - \kappa \le \frac{ 186 }{ 125 } = 1.488 </math> | ||
यह सीमा तीक्ष्ण है, क्योंकि यह [0,1] पर समान वितरण के समान भार मिश्रण और {0} पर असतत वितरण द्वारा पहुँचा जाता है। | यह सीमा तीक्ष्ण है, क्योंकि यह [0,1] पर समान वितरण के समान भार मिश्रण और {0} पर असतत वितरण द्वारा पहुँचा जाता है। | ||
== यूनिमोडल | == यूनिमोडल फलन == | ||
जैसा कि मोडल शब्द डेटा सेट और संभाव्यता वितरण पर | जैसा कि मोडल शब्द डेटा सेट और संभाव्यता वितरण पर प्रस्तावित होता है, और सामान्य रूप से कार्य (गणित) के लिए नहीं, उपरोक्त परिभाषाएँ प्रस्तावित नहीं होती हैं। यूनिमोडल की परिभाषा को [[वास्तविक संख्या|वास्तविक संख्याओं]] के फलनों तक भी विस्तारित किया गया था। | ||
सामान्य परिभाषा इस प्रकार है फलन f(x) 'यूनिमोडल फलन' है, यदि कुछ मान m के लिए, यह x ≤ m के लिए [[मोनोटोनिक]] रूप से बढ़ रहा है और x ≥ m के लिए मोनोटोनिक रूप से घट रहा है। उस स्थिति में, f(x) का [[अधिकतम]] मान f(m) है और कोई अन्य स्थानीय उच्चिष्ठ नहीं हैं। | |||
एकरूपता साबित करना | एकरूपता साबित करना प्रायः कठिन होता है। उस संपत्ति की परिभाषा का उपयोग करना है, लेकिन यह केवल साधारण कार्यों के लिए उपयुक्त है। [[ यौगिक |यौगिक]] पर आधारित सामान्य विधि सम्मिलित है,<ref>{{cite web|url=http://homepage.univie.ac.at/thibaut.barthelemy/METRIC.pdf|title=सामान्य रूप से वितरित मांगों के अधीन मेट्रिक सन्निकटन की एकरूपता पर।|work=Method in appendix D, Example in theorem 2 page 5|access-date=2013-08-28}}</ref> पर यह अपनी सरलता के बावजूद प्रत्येक कार्य के लिए सफल नहीं होता। | ||
एकरूप कार्यों के उदाहरणों में ऋणात्मक द्विघात गुणांक वाले [[द्विघात बहुपद]] फलन, टेंट मानचित्र फलन, और बहुत कुछ सम्मिलित हैं। | एकरूप कार्यों के उदाहरणों में ऋणात्मक द्विघात गुणांक वाले [[द्विघात बहुपद]] फलन, टेंट मानचित्र फलन, और बहुत कुछ सम्मिलित हैं। | ||
उपरोक्त कभी-कभी as से संबंधित होता है{{visible anchor|strong unimodality}}, इस तथ्य से कि निहित एकरसता ''मजबूत एकस्वरता'' है। | उपरोक्त कभी-कभी as से संबंधित होता है{{visible anchor|strong unimodality}}, इस तथ्य से कि निहित एकरसता ''मजबूत एकस्वरता'' है। फलन ''f''(''x'') कमजोर यूनिमॉडल फलन है यदि कोई मान ''m'' सम्मिलित है जिसके लिए यह ''x'' ≤ ''m'' के लिए कमजोर नीरस रूप से बढ़ रहा है और कमजोर रूप से ''x'' ≥ ''m'' के लिए नीरस रूप से कम रहा है। उस स्थिति में, ''x'' के मानों की निरंतर श्रेणी के लिए अधिकतम मूल्य ''f''(''m'') तक पहुँचा जा सकता है। पास्कल के त्रिकोण में हर दूसरी पंक्ति कमजोर एकरूप समारोह का उदाहरण है जो दृढ़ता से एकरूप नहीं है। | ||
संदर्भ के आधार पर, अनिमॉडल | संदर्भ के आधार पर, अनिमॉडल फलन उस फलन को भी संदर्भित कर सकता है जिसमें अधिकतम के अतिरिक्त स्थानीय न्यूनतम है।<ref>{{cite web|url=https://glossary.informs.org/indexVer1.php?page=U.html|title=गणितीय प्रोग्रामिंग शब्दावली।|access-date=2020-03-29}}</ref> उदाहरण के लिए, [[स्थानीय अनिमॉडल नमूनाकरण]], संख्यात्मक अनुकूलन करने की विधि, प्रायः ऐसे फलन के साथ प्रदर्शित की जाती है। यह कहा जा सकता है कि इस विस्तार के अंतर्गत अनिमॉडल कार्य एकल स्थानीय चरम के साथ कार्य है। | ||
अनिमॉडल कार्यों की एक महत्वपूर्ण संपत्ति यह है कि [[समाप्त]] को [[खोज एल्गोरिदम]] जैसे कि [[गोल्डन सेक्शन सर्च]], [[ त्रिगुट खोज ]] या [[क्रमिक परवलयिक प्रक्षेप]] का उपयोग करके पाया जा सकता है। | अनिमॉडल कार्यों की एक महत्वपूर्ण संपत्ति यह है कि [[समाप्त]] को [[खोज एल्गोरिदम]] जैसे कि [[गोल्डन सेक्शन सर्च]], [[ त्रिगुट खोज ]] या [[क्रमिक परवलयिक प्रक्षेप]] का उपयोग करके पाया जा सकता है। | ||
Line 109: | Line 109: | ||
== अन्य एक्सटेंशन == | == अन्य एक्सटेंशन == | ||
फलन f(x) एस-अनिमॉडल है (प्रायः इसे एस-यूनिमॉडल मैप कहा जाता है) यदि इसका श्वार्ज़ियन व्युत्पन्न सभी के लिए ऋणात्मक है <math>x \ne c</math>, कहाँ <math>c</math> महत्वपूर्ण बिन्दु है।<ref>See e.g. {{cite journal|title=Distortion of S-Unimodal Maps|authors=John Guckenheimer and Stewart Johnson|journal=Annals of Mathematics |series=Second Series|volume=132|number=1|date=July 1990|pages=71–130|doi=10.2307/1971501|jstor=1971501 }}</ref> | |||
[[कम्प्यूटेशनल ज्यामिति]] में यदि कोई | [[कम्प्यूटेशनल ज्यामिति]] में यदि कोई फलन अनिमॉडल है तो यह फलन के एक्स्ट्रेमा के शोध के लिए कुशल एल्गोरिदम के डिज़ाइन की अनुमति देता है।<ref>{{cite journal|author=Godfried T. Toussaint|title=जटिलता, उत्तलता और एकरूपता|journal=International Journal of Computer and Information Sciences|volume=13|number=3|date=June 1984|pages=197–217|doi=10.1007/bf00979872|s2cid=11577312 }}</ref> | ||
सदिश चर X के फलन f(X) पर | सदिश चर X के फलन f(X) पर प्रस्तावित होने वाली अधिक सामान्य परिभाषा यह है कि यदि फलन | अवकलनीय मानचित्रण X = G(Z) ऐसा है कि f एकरूपी है। (जी (जेड)) उत्तल है। सामान्यतः कोई चाहता है कि जी (जेड) नॉनसिंगुलर जैकोबियन मैट्रिक्स के साथ लगातार भिन्न है। | ||
[[क्वासिकॉनवेक्स फ़ंक्शन]] और क्वासिकोनकेव फ़ंक्शंस एकरूपता की अवधारणा को उन कार्यों तक विस्तारित करते हैं जिनके तर्क उच्च-आयामी [[यूक्लिडियन अंतरिक्ष]] स्थान से संबंधित हैं। | [[क्वासिकॉनवेक्स फ़ंक्शन|क्वासिकॉनवेक्स फलन]] और क्वासिकोनकेव फ़ंक्शंस एकरूपता की अवधारणा को उन कार्यों तक विस्तारित करते हैं जिनके तर्क उच्च-आयामी [[यूक्लिडियन अंतरिक्ष]] स्थान से संबंधित हैं। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 10:34, 29 March 2023
गणित में, एकरूपता का अर्थ है अद्वितीय विधा (सांख्यिकी) रखना है। सामान्यतः, एकरूपता का तात्पर्य है कि किसी गणितीय वस्तु का केवल उच्चतम मूल्य है, किसी तरह परिभाषित है।[1]
यूनिमोडल संभाव्यता वितरण
आँकड़ों में, एकरूप संभाव्यता वितरण या एकरूप वितरण संभाव्यता वितरण है जिसमें शिखर होता है। इस संदर्भ में मोड शब्द वितरण के किसी भी शिखर को संदर्भित करता है, न कि केवल मोड (सांख्यिकी) की सख्त परिभाषा के लिए जो आंकड़ों में सामान्य है।
यदि एकल बहुलक है, तो वितरण फलन को एकरूपी कहा जाता है। यदि इसके अधिक मोड हैं तो यह बिमोडल (2), ट्राइमोडल (3) आदि, या सामान्य रूप से मल्टीमॉडल है।[2] चित्र 1 सामान्य बंटनों को प्रदर्शित करता है, जो एकरूपी हैं। एकरूप वितरण के अन्य उदाहरणों में कॉची वितरण, छात्र का टी-वितरण | छात्र का टी-वितरण, ची-वर्ग वितरण और घातीय वितरण सम्मिलित हैं। असतत वितरणों के मध्य, द्विपद वितरण और प्वासों वितरण को एकरूपी के रूप में देखा जा सकता है, चूँकि कुछ मापदंडों के लिए उनके समीप समान संभावना वाले दो आसन्न मान हो सकते हैं।
चित्रा 2 और चित्रा 3 बिमॉडल वितरण को प्रदर्शित करता है।
अन्य परिभाषाएं
वितरण कार्यों में एकरूपता की अन्य परिभाषाएँ भी सम्मिलित हैं।
निरंतर वितरण में, एकरूपता को संचयी वितरण समारोह (सीडीएफ) के व्यवहार के माध्यम से परिभाषित किया जा सकता है।[3] यदि सीडीएफ x < m के लिए उत्तल फलन और x > m के लिए अवतल फलन है, तो वितरण असमान है, m मोड है। ध्यान दें कि इस परिभाषा के अंतर्गत समान वितरण (सतत) एकरूप है,[4]कोई भी अन्य वितरण जिसमें मूल्यों की श्रेणी के लिए अधिकतम वितरण प्राप्त किया जाता है, उदहारण ट्रेपेज़ॉइडल वितरण है। सामान्यतः यह परिभाषा मोड में विच्छिन्नता की अनुमति देती है; सामान्यतः सतत वितरण में किसी मूल्य की संभावना शून्य होती है, परन्तु यह परिभाषा मोड में अन्य-शून्य संभावना, या प्रायिकता के परमाणु की अनुमति देती है।
एकरूपता के मानदंड को वितरण के विशिष्ट कार्य (संभाव्यता सिद्धांत) के[3]या इसके लाप्लास-स्टील्टजेस रूपांतरण के माध्यम से भी परिभाषित किया जा सकता है।[5]असमान असतत वितरण को परिभाषित करने का अन्य उपाय संभावनाओं के अंतर के अनुक्रम में संकेत परिवर्तन की घटना है।[6] संभाव्यता द्रव्यमान समारोह के साथ असतत वितरण, , को अनिमॉडल कहा जाता है यदि अनुक्रम ठीक संकेत परिवर्तन होता है (जब शून्य की गिनती नहीं होती है)।
उपयोग और परिणाम
वितरण की एकरूपता के महत्व का कारण यह है कि यह कई महत्वपूर्ण परिणामों की अनुमति देता है। नीचे कई असमानताएं (गणित) दी गई हैं जो केवल एकरूपी वितरण के लिए मान्य हैं। इस प्रकार, यह आकलन करना महत्वपूर्ण है कि दिया गया डेटा सेट एकरूप वितरण से आता है या नहीं। बहुविध वितरण पर लेख में एकरूपता के लिए कई परीक्षण दिए गए हैं।
असमानताएं
गॉस की असमानता
प्रथम महत्वपूर्ण परिणाम गॉस की असमानता है।[7] गॉस की असमानता इस संभावना पर ऊपरी सीमा प्रदान करती है कि कोई मान अपने मोड से किसी भी दूरी से अधिक है। यह असमानता एकरूपता पर निर्भर करती है।
वायसोचान्स्की-पेटुनिन असमानता
सेकंड वैसोचन्स्की–पेटुनिन असमानता,[8] चेबिशेव असमानता का शोधन है। चेबीशेव असमानता गारंटी देती है कि किसी भी संभाव्यता वितरण में, लगभग सभी मान माध्य मान के करीब हैं। वायसोचन्स्की-पेटुनिन असमानता इसे और भी निकट मूल्यों तक परिष्कृत करती है, बशर्ते कि वितरण कार्य निरंतर और एकरूप है। आगे के परिणाम सेलके और सेलके द्वारा दिखाए गए।[9]
बहुलक, माध्यिका और माध्य
गॉस ने 1823 में असमान वितरण के लिए भी दिखाया[10]
और
जहां माध्य ν है, माध्य μ है और ω मोड से मूल माध्य वर्ग विचलन है।
यह असमान वितरण के लिए प्रदर्शित किया जाता है कि औसत ν और माध्य μ (3/5) के अंदर स्थित है1/2 ≈ 0.7746 दूसरे के मानक विचलन।[11] प्रतीकों में,
जहाँ | . .
2020 में, बर्नार्ड, काज़ी और वंडफेल ने सममित क्वांटाइल औसत के मध्य अधिकतम दूरी प्राप्त करके पिछली असमानता को सामान्यीकृत किया और तात्पर्य,[12]
यह ध्यान देने योग्य है कि अधिकतम दूरी कम से कम है (यानी, जब सममित क्वांटाइल औसत के बराबर होता है ), जो वास्तव में माध्यिका की आम पसंद को माध्य के लिए मजबूत अनुमानक के रूप में प्रेरित करता है। इसके अलावा, कब , सीमा के बराबर है , जो माध्यिका और एकरूप वितरण के माध्य के मध्य की अधिकतम दूरी है।
माध्यिका और बहुलक θ के मध्य समान संबंध होता है: वे 3 के भीतर स्थित होते हैं1/2 ≈ 1.732 एक दूसरे के मानक विचलन:
यह भी दिखाया जा सकता है कि माध्य और बहुलक 3 के भीतर हैंएक दूसरे का 1/2:
तिरछापन और कुकुदता
रोहतगी और ज़ेकेली ने दावा किया कि असमान वितरण का विषमता और कुर्तोसिस असमानता से संबंधित हैं:[13]
जहां κ ककुदता है और γ तिरछापन है। क्लासेन, मोकवेल्ड और वैन ईएस ने दिखाया कि यह केवल कुछ सेटिंग्स में प्रस्तावित होता है, जैसे कि एकरूप वितरण का सेट जहां मोड और माध्य मेल खाते हैं।[14] उन्होंने कमजोर असमानता प्राप्त की जो सभी असमान वितरणों पर प्रस्तावित होती है:[14]
यह सीमा तीक्ष्ण है, क्योंकि यह [0,1] पर समान वितरण के समान भार मिश्रण और {0} पर असतत वितरण द्वारा पहुँचा जाता है।
यूनिमोडल फलन
जैसा कि मोडल शब्द डेटा सेट और संभाव्यता वितरण पर प्रस्तावित होता है, और सामान्य रूप से कार्य (गणित) के लिए नहीं, उपरोक्त परिभाषाएँ प्रस्तावित नहीं होती हैं। यूनिमोडल की परिभाषा को वास्तविक संख्याओं के फलनों तक भी विस्तारित किया गया था।
सामान्य परिभाषा इस प्रकार है फलन f(x) 'यूनिमोडल फलन' है, यदि कुछ मान m के लिए, यह x ≤ m के लिए मोनोटोनिक रूप से बढ़ रहा है और x ≥ m के लिए मोनोटोनिक रूप से घट रहा है। उस स्थिति में, f(x) का अधिकतम मान f(m) है और कोई अन्य स्थानीय उच्चिष्ठ नहीं हैं।
एकरूपता साबित करना प्रायः कठिन होता है। उस संपत्ति की परिभाषा का उपयोग करना है, लेकिन यह केवल साधारण कार्यों के लिए उपयुक्त है। यौगिक पर आधारित सामान्य विधि सम्मिलित है,[15] पर यह अपनी सरलता के बावजूद प्रत्येक कार्य के लिए सफल नहीं होता।
एकरूप कार्यों के उदाहरणों में ऋणात्मक द्विघात गुणांक वाले द्विघात बहुपद फलन, टेंट मानचित्र फलन, और बहुत कुछ सम्मिलित हैं।
उपरोक्त कभी-कभी as से संबंधित होता हैstrong unimodality, इस तथ्य से कि निहित एकरसता मजबूत एकस्वरता है। फलन f(x) कमजोर यूनिमॉडल फलन है यदि कोई मान m सम्मिलित है जिसके लिए यह x ≤ m के लिए कमजोर नीरस रूप से बढ़ रहा है और कमजोर रूप से x ≥ m के लिए नीरस रूप से कम रहा है। उस स्थिति में, x के मानों की निरंतर श्रेणी के लिए अधिकतम मूल्य f(m) तक पहुँचा जा सकता है। पास्कल के त्रिकोण में हर दूसरी पंक्ति कमजोर एकरूप समारोह का उदाहरण है जो दृढ़ता से एकरूप नहीं है।
संदर्भ के आधार पर, अनिमॉडल फलन उस फलन को भी संदर्भित कर सकता है जिसमें अधिकतम के अतिरिक्त स्थानीय न्यूनतम है।[16] उदाहरण के लिए, स्थानीय अनिमॉडल नमूनाकरण, संख्यात्मक अनुकूलन करने की विधि, प्रायः ऐसे फलन के साथ प्रदर्शित की जाती है। यह कहा जा सकता है कि इस विस्तार के अंतर्गत अनिमॉडल कार्य एकल स्थानीय चरम के साथ कार्य है।
अनिमॉडल कार्यों की एक महत्वपूर्ण संपत्ति यह है कि समाप्त को खोज एल्गोरिदम जैसे कि गोल्डन सेक्शन सर्च, त्रिगुट खोज या क्रमिक परवलयिक प्रक्षेप का उपयोग करके पाया जा सकता है।
अन्य एक्सटेंशन
फलन f(x) एस-अनिमॉडल है (प्रायः इसे एस-यूनिमॉडल मैप कहा जाता है) यदि इसका श्वार्ज़ियन व्युत्पन्न सभी के लिए ऋणात्मक है , कहाँ महत्वपूर्ण बिन्दु है।[17] कम्प्यूटेशनल ज्यामिति में यदि कोई फलन अनिमॉडल है तो यह फलन के एक्स्ट्रेमा के शोध के लिए कुशल एल्गोरिदम के डिज़ाइन की अनुमति देता है।[18] सदिश चर X के फलन f(X) पर प्रस्तावित होने वाली अधिक सामान्य परिभाषा यह है कि यदि फलन | अवकलनीय मानचित्रण X = G(Z) ऐसा है कि f एकरूपी है। (जी (जेड)) उत्तल है। सामान्यतः कोई चाहता है कि जी (जेड) नॉनसिंगुलर जैकोबियन मैट्रिक्स के साथ लगातार भिन्न है।
क्वासिकॉनवेक्स फलन और क्वासिकोनकेव फ़ंक्शंस एकरूपता की अवधारणा को उन कार्यों तक विस्तारित करते हैं जिनके तर्क उच्च-आयामी यूक्लिडियन अंतरिक्ष स्थान से संबंधित हैं।
यह भी देखें
संदर्भ
- ↑ Weisstein, Eric W. "Unimodal". MathWorld.
- ↑ Weisstein, Eric W. "Mode". MathWorld.
- ↑ 3.0 3.1 A.Ya. Khinchin (1938). "एकमॉडल वितरण पर". Trams. Res. Inst. Math. Mech. (in русский). University of Tomsk. 2 (2): 1–7.
- ↑ Ushakov, N.G. (2001) [1994], "Unimodal distribution", Encyclopedia of Mathematics, EMS Press
- ↑ Vladimirovich Gnedenko and Victor Yu Korolev (1996). Random summation: limit theorems and applications. CRC-Press. ISBN 0-8493-2875-6. p. 31
- ↑ Medgyessy, P. (March 1972). "असतत वितरण की एकरूपता पर". Periodica Mathematica Hungarica. 2 (1–4): 245–257. doi:10.1007/bf02018665. S2CID 119817256.
- ↑ Gauss, C. F. (1823). "न्यूनतम त्रुटियों के अधीन टिप्पणियों के संयोजन का सिद्धांत, भाग एक". Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. 5.
- ↑ D. F. Vysochanskij, Y. I. Petunin (1980). "Justification of the 3σ rule for unimodal distributions". Theory of Probability and Mathematical Statistics. 21: 25–36.
- ↑ Sellke, T.M.; Sellke, S.H. (1997). "Chebyshev inequalities for unimodal distributions". American Statistician. American Statistical Association. 51 (1): 34–40. doi:10.2307/2684690. JSTOR 2684690.
- ↑ Gauss C.F. Theoria Combinationis Observationum Erroribus Minimis Obnoxiae. Pars Prior. Pars Posterior. Supplementum. Theory of the Combination of Observations Least Subject to Errors. Part One. Part Two. Supplement. 1995. Translated by G.W. Stewart. Classics in Applied Mathematics Series, Society for Industrial and Applied Mathematics, Philadelphia
- ↑ Basu, S.; Dasgupta, A. (1997). "The Mean, Median, and Mode of Unimodal Distributions: A Characterization". Theory of Probability & Its Applications. 41 (2): 210–223. doi:10.1137/S0040585X97975447.
- ↑ Bernard, Carole; Kazzi, Rodrigue; Vanduffel, Steven (2020). "आंशिक जानकारी के तहत एकरूप वितरण के लिए रेंज वैल्यू-पर-जोखिम सीमा". Insurance: Mathematics and Economics. 94: 9–24. doi:10.1016/j.insmatheco.2020.05.013.
- ↑ Rohatgi, Vijay K.; Székely, Gábor J. (1989). "तिरछापन और कर्टोसिस के बीच तीव्र असमानताएँ". Statistics & Probability Letters. 8 (4): 297–299. doi:10.1016/0167-7152(89)90035-7.
- ↑ 14.0 14.1 Klaassen, Chris A.J.; Mokveld, Philip J.; Van Es, Bert (2000). "Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions". Statistics & Probability Letters. 50 (2): 131–135. doi:10.1016/S0167-7152(00)00090-0.
- ↑ "सामान्य रूप से वितरित मांगों के अधीन मेट्रिक सन्निकटन की एकरूपता पर।" (PDF). Method in appendix D, Example in theorem 2 page 5. Retrieved 2013-08-28.
- ↑ "गणितीय प्रोग्रामिंग शब्दावली।". Retrieved 2020-03-29.
- ↑ See e.g. John Guckenheimer and Stewart Johnson (July 1990). "Distortion of S-Unimodal Maps". Annals of Mathematics. Second Series. 132 (1): 71–130. doi:10.2307/1971501. JSTOR 1971501.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ Godfried T. Toussaint (June 1984). "जटिलता, उत्तलता और एकरूपता". International Journal of Computer and Information Sciences. 13 (3): 197–217. doi:10.1007/bf00979872. S2CID 11577312.