विभाजन वलय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 17: Line 17:
निर्धारकों को गैर-विनिमेय विभाजन बीजगणित पर परिभाषित नहीं किया गया है, और इस अवधारणा की आवश्यकता की प्रत्येक वस्तु को गैर-विनिमेय विभाजन बीजगणित के लिए सामान्यीकृत नहीं किया जा सकता है।
निर्धारकों को गैर-विनिमेय विभाजन बीजगणित पर परिभाषित नहीं किया गया है, और इस अवधारणा की आवश्यकता की प्रत्येक वस्तु को गैर-विनिमेय विभाजन बीजगणित के लिए सामान्यीकृत नहीं किया जा सकता है।


निर्देशांक में काम करते हुए, एक परिमित आयामी सही मॉड्यूल के तत्वों को कॉलम वैक्टर द्वारा दर्शाया जा सकता है, जिसे स्केलर द्वारा दाईं ओर गुणा किया जा सकता है, और बाईं ओर मेट्रिसेस (रैखिक मानचित्रों का प्रतिनिधित्व) द्वारा गुणा किया जा सकता है; एक परिमित आयामी बाएं मॉड्यूल के तत्वों के लिए, पंक्ति वैक्टर का उपयोग किया जाना चाहिए, जिसे स्केलर द्वारा बाईं ओर और मैट्रिक्स द्वारा दाईं ओर गुणा किया जा सकता है। दाएं मॉड्यूल का दोहरा बाएं मॉड्यूल है, और इसके विपरीत। एक मैट्रिक्स के स्थानान्तरण को विपरीत विभाजन वलय D पर एक मैट्रिक्स के रूप में देखा जाना चाहिए<sup>op</sup> नियम के क्रम में {{math|(''AB'')<sup>T</sup> {{=}} ''B''<sup>T</sup>''A''<sup>T</sup>}} वैध रहने के लिए।
निर्देशांक में काम करते हुए, एक परिमित आयामी सही मॉड्यूल के तत्वों को कॉलम वैक्टर द्वारा दर्शाया जा सकता है, जिसे स्केलर द्वारा दाईं ओर गुणा किया जा सकता है, और बाईं ओर मेट्रिसेस (रैखिक मानचित्रों का प्रतिनिधित्व) द्वारा गुणा किया जा सकता है; एक परिमित आयामी बाएं मॉड्यूल के तत्वों के लिए, पंक्ति वैक्टर का उपयोग किया जाना चाहिए, जिसे स्केलर द्वारा बाईं ओर और मैट्रिक्स द्वारा दाईं ओर गुणा किया जा सकता है। दाएं मॉड्यूल का दोहरा बाएं मॉड्यूल है, और इसके विपरीत। नियम (''AB'')<sup>T</sup> = ''B''<sup>T</sup>''A''<sup>T</sup> के वैध रहने के लिए मैट्रिक्स के स्थानान्तरण को विपरीत विभाजन वलय ''D''<sup>op</sup> पर मैट्रिक्स के रूप में देखा जाना चाहिए।


एक डिवीजन रिंग पर प्रत्येक मॉड्यूल [[ मुफ्त मॉड्यूल ]] है; अर्थात्, इसका एक आधार है, और एक मॉड्यूल के सभी आधार [[अपरिवर्तनीय आधार संख्या]] हैं। एक डिवीजन रिंग पर परिमित-आयामी मॉड्यूल के बीच रैखिक मानचित्रों को मैट्रिक्स (गणित) द्वारा वर्णित किया जा सकता है; तथ्य यह है कि स्केलर गुणन के साथ परिभाषा के अनुसार रेखीय मानचित्रों को स्केलर के रूप में वैक्टर के विपरीत दिशा में लिखकर संकेतन में सबसे आसानी से दर्शाया जाता है। गाऊसी उन्मूलन एल्गोरिथ्म लागू रहता है। मैट्रिक्स का कॉलम रैंक कॉलम द्वारा उत्पन्न सही मॉड्यूल का आयाम है, और पंक्ति रैंक पंक्तियों द्वारा उत्पन्न बाएं मॉड्यूल का आयाम है; वेक्टर स्पेस केस के समान प्रमाण का उपयोग यह दिखाने के लिए किया जा सकता है कि ये रैंक समान हैं, और मैट्रिक्स के रैंक को परिभाषित करते हैं।
विभाजन वलय पर प्रत्येक मॉड्यूल[[ मुफ्त मॉड्यूल ]]है; अर्थात्, इसका एक आधार है, और एक मॉड्यूल के सभी तत्व [[अपरिवर्तनीय आधार संख्या]] हैं। एक विभाजन वलय पर परिमित-आयामी मॉड्यूल के मध्य रैखिक मानचित्रों को मैट्रिक्स (गणित) द्वारा वर्णित किया जा सकता है; तथ्य यह है कि अदिश गुणन के साथ परिभाषा के अनुसार रेखीय मानचित्रों को सदिशों के विपरीत दिशा में लिखकर सरलता से संकेतन में दर्शाया जाता है क्योकि ये अदिश होते हैं। गाऊसी उन्मूलन एल्गोरिथ्म क्रियान्वित रहता है। मैट्रिक्स का कॉलम रैंक कॉलम द्वारा उत्पन्न सही मॉड्यूल का आयाम है, और पंक्ति रैंक पंक्तियों द्वारा उत्पन्न बाएं मॉड्यूल का आयाम है; सदिश स्पेस केस के समान प्रमाण का उपयोग यह दिखाने के लिए किया जा सकता है कि ये रैंक समान हैं, और मैट्रिक्स के रैंक को परिभाषित करते हैं।


डिवीजन रिंग एकमात्र रिंग (गणित) हैं, जिस पर हर मॉड्यूल मुक्त है: एक रिंग आर एक डिवीजन रिंग है अगर और केवल अगर हर आर-मॉड्यूल फ्री मॉड्यूल है।<ref>Grillet, Pierre Antoine. Abstract algebra. Vol. 242. Springer Science & Business Media, 2007</ref>
विभाजन वलय एकमात्र वलय (गणित) हैं, जिस पर प्रत्येक मॉड्यूल मुक्त है, वलय R विभाजन वलय है और यदि प्रत्येक R-मॉड्यूल फ्री मॉड्यूल है।<ref>Grillet, Pierre Antoine. Abstract algebra. Vol. 242. Springer Science & Business Media, 2007</ref>
विभाजन वलय के वलय का केंद्र क्रमविनिमेय है और इसलिए एक क्षेत्र है।<ref>Simple commutative rings are fields. See Lam (2001), {{Google books|id=f15FyZuZ3-4C|page=39|text=simple commutative rings|title=simple commutative rings}} and {{Google books|id=f15FyZuZ3-4C|page=45|text=center of a simple ring|title=exercise 3.4}}.</ref> प्रत्येक विभाजन वलय इसलिए अपने केंद्र पर एक [[विभाजन बीजगणित]] है। विभाजन के छल्ले मोटे तौर पर वर्गीकृत किए जा सकते हैं कि वे अपने केंद्रों पर परिमित-आयामी या अनंत-आयामी हैं या नहीं। पूर्व को केंद्रीय रूप से परिमित और बाद वाले को केंद्रीय रूप से अनंत कहा जाता है। बेशक, हर क्षेत्र अपने केंद्र पर एक आयामी है। [[हैमिल्टनियन चतुष्कोण]]ों की अंगूठी इसके केंद्र पर एक 4-आयामी बीजगणित बनाती है, जो वास्तविक संख्याओं के लिए आइसोमोर्फिक है।
 
विभाजन वलय का केंद्र क्रमविनिमेय है और इसलिए एक क्षेत्र है।<ref>Simple commutative rings are fields. See Lam (2001), {{Google books|id=f15FyZuZ3-4C|page=39|text=simple commutative rings|title=simple commutative rings}} and {{Google books|id=f15FyZuZ3-4C|page=45|text=center of a simple ring|title=exercise 3.4}}.</ref> प्रत्येक विभाजन वलय इसलिए अपने केंद्र पर एक [[विभाजन बीजगणित]] है। विभाजन वलय सामान्यतः वर्गीकृत किए जा सकते हैं कि वे अपने केंद्रों पर परिमित-आयामी या अनंत-आयामी हैं या नहीं। पूर्व को केंद्रीय रूप से परिमित और पीछे वाले को केंद्रीय रूप से अनंत कहा जाता है। निःसंदेह, प्रत्येक क्षेत्र अपने केंद्र पर एक आयामी है। [[हैमिल्टनियन चतुष्कोण]]ों का वलय इसके केंद्र पर 4-आयामी बीजगणित बनाती है, जो वास्तविक संख्याओं के लिए समरूप है।


== उदाहरण ==
== उदाहरण ==

Revision as of 04:57, 7 April 2023

बीजगणित में, एक विभाजन वलय, जिसे तिरछा क्षेत्र भी कहा जाता है, एक शून्य वलय (गणित) है जिसमें अशून्य तत्वों द्वारा विभाजन (गणित) को परिभाषित किया गया है। विशेष रूप से, यह एक शून्य वलय है[1] जिसमें प्रत्येक अशून्य तत्व a का गुणनात्मक व्युत्क्रम होता है, अर्थात, एक तत्व जिसे सामान्यतः a–1 के रूप में दर्शाया जाता है, जैसे कि aa–1 = a–1a = 1 इसलिए, (दाएं) विभाजन को a / b = ab–1 के रूप में परिभाषित किया जा सकता है , किन्तु इस अंकन से बचा जाता है, क्योंकि किसी के पास a b–1b–1a. हो सकता है।

क्रमविनिमेय विभाजन वलय एक क्षेत्र (गणित) है। वेडरबर्न की छोटी प्रमेय का दावा है कि सभी परिमित विभाजन वलय क्रमविनिमेय हैं और इसलिए परिमित क्षेत्र हैं।

ऐतिहासिक रूप से, विभाजन के छल्ले को कभी-कभी खेतों के रूप में संदर्भित किया जाता था, जबकि खेतों को क्रमविनिमेय क्षेत्र कहा जाता था।[5] कुछ भाषाओं में, जैसे कि फ्रेंच भाषा, फ़ील्ड (कॉर्प्स) के समतुल्य शब्द का उपयोग क्रमविनिमेय और गैर-विनिमेय दोनों स्तिथियों के लिए किया जाता है, और दो स्तिथियों के मध्य अंतर कॉर्प्स कम्यूटेटिफ (क्रमविनिमेय क्षेत्र) या कॉर्प्स गॉचे (तिरछा क्षेत्र) जैसे योग्यताओं को जोड़कर किया जाता है।

सभी विभाजन वलय साधारण हैं। अर्थात्, उनके पास शून्य आदर्श और स्वयं के अतिरिक्त कोई पारस्परिक आदर्श (वलय सिद्धांत) नहीं है।

खेतों और रैखिक बीजगणित से संबंध

सभी क्षेत्र विभाजन वलय हैं, और प्रत्येक अन्य विभाजन वलय गैर-विनिमेय है। उत्कृष्ट उदाहरण चतुष्कोणों का वलय है। यदि कोई चतुष्कोणों के निर्माण में वास्तविक संख्या गुणांकों के अतिरिक्त एकमात्र परिमेय संख्या की अनुमति देता है, तो एक अन्य विभाजन वलय प्राप्त होता है। सामान्यतः, यदि R एक वलय है और S, R के ऊपर एक सरल मॉड्यूल है, तो शूर लेम्मा द्वारा, S का एंडोमोर्फिज्म वलय एक विभाजन वलय है;[6] प्रत्येक विभाजन वलय किसी साधारण मॉड्यूल से इस प्रकार उत्पन्न होता है।

एक क्षेत्र पर सदिश रिक्त स्थान के अतिरिक्त विभाजन वलय डी पर मॉड्यूल (गणित) के लिए अधिकांश रैखिक बीजगणित उन्मुख किए जा सकते हैं और सही रहते हैं। ऐसा करने से यह निर्दिष्ट किया जाना चाहिए कि क्या कोई दाएं या बाएं मॉड्यूल पर विचार कर रहा है, और सूत्रों में बाएं और दाएं को ठीक से भिन्न करने में कुछ देखभाल की आवश्यकता है। विशेष रूप से, प्रत्येक मॉड्यूल का आधार (रैखिक बीजगणित) होता है, और गॉसियन उन्मूलन का उपयोग किया जा सकता है। तो, इन उपकरणों के साथ परिभाषित की जा सकने वाली प्रत्येक वस्तु विभाजन बीजगणित पर कार्य करती है। मैट्रिक्स (गणित) और उनके उत्पादों को समान रूप से परिभाषित किया गया है, किन्तु एक मैट्रिक्स जो उलटा छोड़ दिया गया है, उसे उलटा होने की आवश्यकता नहीं है, और यदि यह है, तो इसका सही व्युत्क्रम इसके बाएं व्युत्क्रम से भिन्न हो सकता है।

निर्धारकों को गैर-विनिमेय विभाजन बीजगणित पर परिभाषित नहीं किया गया है, और इस अवधारणा की आवश्यकता की प्रत्येक वस्तु को गैर-विनिमेय विभाजन बीजगणित के लिए सामान्यीकृत नहीं किया जा सकता है।

निर्देशांक में काम करते हुए, एक परिमित आयामी सही मॉड्यूल के तत्वों को कॉलम वैक्टर द्वारा दर्शाया जा सकता है, जिसे स्केलर द्वारा दाईं ओर गुणा किया जा सकता है, और बाईं ओर मेट्रिसेस (रैखिक मानचित्रों का प्रतिनिधित्व) द्वारा गुणा किया जा सकता है; एक परिमित आयामी बाएं मॉड्यूल के तत्वों के लिए, पंक्ति वैक्टर का उपयोग किया जाना चाहिए, जिसे स्केलर द्वारा बाईं ओर और मैट्रिक्स द्वारा दाईं ओर गुणा किया जा सकता है। दाएं मॉड्यूल का दोहरा बाएं मॉड्यूल है, और इसके विपरीत। नियम (AB)T = BTAT के वैध रहने के लिए मैट्रिक्स के स्थानान्तरण को विपरीत विभाजन वलय Dop पर मैट्रिक्स के रूप में देखा जाना चाहिए।

विभाजन वलय पर प्रत्येक मॉड्यूलमुफ्त मॉड्यूल है; अर्थात्, इसका एक आधार है, और एक मॉड्यूल के सभी तत्व अपरिवर्तनीय आधार संख्या हैं। एक विभाजन वलय पर परिमित-आयामी मॉड्यूल के मध्य रैखिक मानचित्रों को मैट्रिक्स (गणित) द्वारा वर्णित किया जा सकता है; तथ्य यह है कि अदिश गुणन के साथ परिभाषा के अनुसार रेखीय मानचित्रों को सदिशों के विपरीत दिशा में लिखकर सरलता से संकेतन में दर्शाया जाता है क्योकि ये अदिश होते हैं। गाऊसी उन्मूलन एल्गोरिथ्म क्रियान्वित रहता है। मैट्रिक्स का कॉलम रैंक कॉलम द्वारा उत्पन्न सही मॉड्यूल का आयाम है, और पंक्ति रैंक पंक्तियों द्वारा उत्पन्न बाएं मॉड्यूल का आयाम है; सदिश स्पेस केस के समान प्रमाण का उपयोग यह दिखाने के लिए किया जा सकता है कि ये रैंक समान हैं, और मैट्रिक्स के रैंक को परिभाषित करते हैं।

विभाजन वलय एकमात्र वलय (गणित) हैं, जिस पर प्रत्येक मॉड्यूल मुक्त है, वलय R विभाजन वलय है और यदि प्रत्येक R-मॉड्यूल फ्री मॉड्यूल है।[7]

विभाजन वलय का केंद्र क्रमविनिमेय है और इसलिए एक क्षेत्र है।[8] प्रत्येक विभाजन वलय इसलिए अपने केंद्र पर एक विभाजन बीजगणित है। विभाजन वलय सामान्यतः वर्गीकृत किए जा सकते हैं कि वे अपने केंद्रों पर परिमित-आयामी या अनंत-आयामी हैं या नहीं। पूर्व को केंद्रीय रूप से परिमित और पीछे वाले को केंद्रीय रूप से अनंत कहा जाता है। निःसंदेह, प्रत्येक क्षेत्र अपने केंद्र पर एक आयामी है। हैमिल्टनियन चतुष्कोणों का वलय इसके केंद्र पर 4-आयामी बीजगणित बनाती है, जो वास्तविक संख्याओं के लिए समरूप है।

उदाहरण

  • जैसा कि ऊपर उल्लेख किया गया है, सभी क्षेत्र (गणित) विभाजन वलय हैं।
  • चतुष्कोण एक गैर-अनुवर्ती विभाजन वलय बनाते हैं।
  • चतुष्कोणों का सबसेट a + bi + cj + dk, ऐसा है कि a, b, c, और d वास्तविक संख्याओं के एक निश्चित उपक्षेत्र से संबंधित है, एक गैर-अनुक्रमिक विभाजन वलय है। जब यह उपक्षेत्र परिमेय संख्याओं का क्षेत्र होता है, तो यह परिमेय चतुष्कोणों का विभाजन वलय होता है।
  • होने देना क्षेत्र का एक automorphism हो . होने देना जटिल गुणांकों के साथ औपचारिक लॉरेंट श्रृंखला की अंगूठी को निरूपित करें, जिसमें गुणन को निम्नानुसार परिभाषित किया गया है: गुणांक को सीधे अनिश्चित के साथ बदलने की अनुमति देने के बजाय , के लिए , परिभाषित करना प्रत्येक सूचकांक के लिए . अगर जटिल संख्याओं (जैसे जटिल संयुग्म) का एक गैर-तुच्छ ऑटोमोर्फिज्म है, तो लॉरेंट श्रृंखला की परिणामी अंगूठी एक गैर-अनुक्रमिक विभाजन की अंगूठी है जिसे तिरछा लॉरेंट श्रृंखला की अंगूठी के रूप में जाना जाता है;[9] अगर σ = id तो यह औपचारिक लॉरेंट श्रृंखला की अंगूठी पेश करता है। इस अवधारणा को किसी निश्चित क्षेत्र पर लॉरेंट श्रृंखला की अंगूठी के लिए सामान्यीकृत किया जा सकता है , एक nontrivial दिया -automorphism .

मुख्य प्रमेय

वेडरबर्न की छोटी प्रमेय: सभी परिमित विभाजन वलय विनिमेय हैं और इसलिए परिमित क्षेत्र हैं। (अर्नेस्ट विट ने एक सरल उपपत्ति दी।)

फ्रोबेनियस प्रमेय (वास्तविक विभाजन बीजगणित): वास्तविकताओं पर एकमात्र परिमित-आयामी साहचर्य विभाजन बीजगणित स्वयं वास्तविक, जटिल संख्याएँ और चतुष्कोण हैं।

संबंधित धारणाएं

विभाजन के छल्ले को पुराने उपयोग में क्षेत्र कहा जाता था। कई भाषाओं में, एक शब्द जिसका अर्थ शरीर विभाजन के छल्ले के लिए प्रयोग किया जाता है, कुछ भाषाओं में या तो क्रमविनिमेय या गैर-अनुसूचित विभाजन के छल्ले को नामित किया जाता है, जबकि अन्य में विशेष रूप से क्रमविनिमेय विभाजन के छल्ले (जिसे अब हम अंग्रेजी में फ़ील्ड कहते हैं) को निर्दिष्ट करते हैं। फील्ड (गणित) पर आलेख में एक और पूर्ण तुलना मिलती है।

तिरछा क्षेत्र नाम में एक दिलचस्प शाब्दिक शब्दार्थ विशेषता है: एक संशोधक (यहाँ तिरछा) आधार शब्द (यहाँ क्षेत्र) के दायरे को चौड़ा करता है। इस प्रकार एक क्षेत्र एक विशेष प्रकार का तिरछा क्षेत्र है, और सभी तिरछा क्षेत्र क्षेत्र नहीं हैं।

जैसा कि यहां चर्चा की गई विभाजन के छल्ले और बीजगणित को साहचर्य गुणन माना जाता है, विभाजन बीजगणित # जरूरी नहीं कि साहचर्य विभाजन बीजगणित जैसे कि ऑक्टोनियन भी रुचि रखते हैं।

नियर-फ़ील्ड (गणित) | नियर-फ़ील्ड एक विभाजन वलय के समान एक बीजीय संरचना है, सिवाय इसके कि इसमें दो वितरण कानूनों में से केवल एक है।

टिप्पणियाँ

  1. In this article, rings have a 1.
  2. 1948, Rings and Ideals. Northampton, Mass., Mathematical Association of America
  3. Artin, Emil, 1965: Collected Papers. Edited by Serge Lang, John T. Tate. New York et al.: Springer
  4. Brauer, Richard, 1932: Über die algebraische Struktur von Schiefkörpern. Journal für die reine und angewandte Mathematik 166.4, 103-252
  5. Within the English language area the terms "skew field" and "sfield" were mentioned 1948 by Neal McCoy[2] as "sometimes used in the literature", and since 1965 skewfield has an entry in the OED. The German term Schiefkörper [de] is documented, as a suggestion by van der Waerden, in a 1927 text by Emil Artin,[3] and was used by Emmy Noether as lecture title in 1928.[4]
  6. Lam (2001), Schur's Lemma, p. 33, at Google Books.
  7. Grillet, Pierre Antoine. Abstract algebra. Vol. 242. Springer Science & Business Media, 2007
  8. Simple commutative rings are fields. See Lam (2001), simple commutative rings, p. 39, at Google Books and exercise 3.4, p. 45, at Google Books.
  9. Lam (2001), p. 10


यह भी देखें

  • हुआ की पहचान

संदर्भ

  • Lam, Tsit-Yuen (2001). A first course in noncommutative rings. Graduate Texts in Mathematics. Vol. 131 (2nd ed.). Springer. ISBN 0-387-95183-0. Zbl 0980.16001.


अग्रिम पठन


बाहरी संबंध