टोपोलॉजी की तुलना: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, किसी दिए गए सेट पर सभी संभावित टोपोलॉजी का सेट आंशिक रूप से ऑर्डर किए गए सेट का निर्माण करता है। इस क्रम संबंध का उपयोग टोपोलॉजी की तुलना के लिए किया जा सकता है। | [[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, किसी दिए गए सेट पर सभी संभावित टोपोलॉजी का सेट आंशिक रूप से ऑर्डर किए गए सेट का निर्माण करता है। इस क्रम संबंध का उपयोग टोपोलॉजी की तुलना के लिए किया जा सकता है। | ||
'''लॉजी की तुलना के लिए किया जा सकता है।टोपोलॉजी की तुलना के लिए किया जा सकता है।''' | '''लॉजी की तुलना के लिए किया जा सकता है।टोपोलॉजी की तुलना के लिए किया जा सकता है।ना के लिए किया जा सकता है।''' | ||
== परिभाषा == | == परिभाषा == | ||
एक सेट पर टोपोलॉजी को [[सबसेट]] के संग्रह के रूप में परिभाषित किया जा सकता है जिसे खुला माना जाता है। वैकल्पिक परिभाषा यह है कि यह सबसेट का संग्रह है जिसे बंद माना जाता है। टोपोलॉजी को परिभाषित करने की ये दो विधियाँ अनिवार्य रूप से समतुल्य हैं क्योंकि खुले सेट का [[पूरक (सेट सिद्धांत)]] बंद और इसके विपरीत है। निम्नलिखित में, इससे कोई अंतर नहीं पड़ता कि किस परिभाषा का उपयोग किया जाता है। | एक सेट पर टोपोलॉजी को [[सबसेट]] के संग्रह के रूप में परिभाषित किया जा सकता है जिसे खुला माना जाता है। वैकल्पिक परिभाषा यह है कि यह सबसेट का संग्रह है जिसे बंद माना जाता है। टोपोलॉजी को परिभाषित करने की ये दो विधियाँ अनिवार्य रूप से समतुल्य हैं क्योंकि खुले सेट का [[पूरक (सेट सिद्धांत)]] बंद और इसके विपरीत है। निम्नलिखित में, इससे कोई अंतर नहीं पड़ता कि किस परिभाषा का उपयोग किया जाता है। | ||
चलो τ<sub>1</sub> और | चलो τ<sub>1</sub> और ''τ''<sub>2</sub> सेट X पर दो टोपोलॉजी हो जैसे कि τ<sub>1</sub> ''τ''<sub>2</sub> का उपसमुच्चय है: | ||
:<math>\tau_1 \subseteq \tau_2</math>. | :<math>\tau_1 \subseteq \tau_2</math>. | ||
यानी τ | यानी τ<sub>1</sub> का हर तत्व τ<sub>2</sub> का तत्व भी है। फिर टोपोलॉजी τ<sub>1</sub> ''τ<sub>2</sub>'' की तुलना में मोटे (कमजोर या छोटे) टोपोलॉजी कहा जाता है, और ''τ<sub>2</sub>'' ''τ<sub>1</sub>'' की तुलना में महीन (मजबूत या बड़ा) टोपोलॉजी कहा जाता है।<ref group="nb">There are some authors, especially [[mathematical analysis|analyst]]s, who use the terms ''weak'' and ''strong'' with opposite meaning (Munkres, p. 78).</ref> | ||
<ref group="nb">There are some authors, especially [[mathematical analysis|analyst]]s, who use the terms ''weak'' and ''strong'' with opposite meaning (Munkres, p. 78).</ref> | |||
यदि इसके अतिरिक्त | |||
:<math>\tau_1 \neq \tau_2</math> | :<math>\tau_1 \neq \tau_2</math> | ||
जबकि τ<sub>1</sub> ''τ | जबकि τ<sub>1</sub> ''τ<sub>2</sub>'' की तुलना में सख्त है और ''τ<sub>2</sub>'' ''τ<sub>1</sub>'' से सख्ती से श्रेष्ठ है.<ref name="Munkres" /> | ||
[[ द्विआधारी संबंध ]] ⊆ एक्स पर सभी संभावित टोपोलॉजी के सेट पर [[आंशिक आदेश संबंध]] को परिभाषित करता है। | [[ द्विआधारी संबंध ]] ⊆ एक्स पर सभी संभावित टोपोलॉजी के सेट पर [[आंशिक आदेश संबंध]] को परिभाषित करता है। | ||
Line 41: | Line 41: | ||
* एक खुला (प्रतिक्रिया बंद) मानचित्र f : X → Y खुला रहता है (उत्तर बंद)। यदि Y पर टोपोलॉजी महीन हो जाती है या X मोटे पर टोपोलॉजी हो जाती है। | * एक खुला (प्रतिक्रिया बंद) मानचित्र f : X → Y खुला रहता है (उत्तर बंद)। यदि Y पर टोपोलॉजी महीन हो जाती है या X मोटे पर टोपोलॉजी हो जाती है। | ||
आस-पड़ोस के ठिकानों का उपयोग करके कोई भी टोपोलॉजी की तुलना कर सकता है। चलो τ<sub>1</sub> और टी<sub>2</sub> सेट एक्स पर दो टोपोलॉजी बनें और बी दें<sub>''i''</sub>(x) टोपोलॉजी τ के लिए स्थानीय आधार हो<sub>''i''</sub> x ∈ X पर i = 1,2 के लिए। फिर τ<sub>1</sub> ⊆ टी<sub>2</sub> अगर और केवल अगर सभी x ∈ X के लिए, प्रत्येक खुला सेट U<sub>1</sub> बी में<sub>1</sub>(x) में कुछ खुला समुच्चय U है<sub>2</sub> बी में<sub>2</sub>(एक्स)। सहजता से, यह समझ में आता है: | आस-पड़ोस के ठिकानों का उपयोग करके कोई भी टोपोलॉजी की तुलना कर सकता है। चलो τ<sub>1</sub> और टी<sub>2</sub> सेट एक्स पर दो टोपोलॉजी बनें और बी दें<sub>''i''</sub>(x) टोपोलॉजी τ के लिए स्थानीय आधार हो<sub>''i''</sub> x ∈ X पर i = 1,2 के लिए। फिर τ<sub>1</sub> ⊆ टी<sub>2</sub> अगर और केवल अगर सभी x ∈ X के लिए, प्रत्येक खुला सेट U<sub>1</sub> बी में<sub>1</sub>(x) में कुछ खुला समुच्चय U है<sub>2</sub> बी में<sub>2</sub>(एक्स)। सहजता से, यह समझ में आता है: श्रेष्ठ टोपोलॉजी में छोटे पड़ोस होने चाहिए। | ||
== टोपोलॉजी का जाल == | == टोपोलॉजी का जाल == |
Revision as of 14:56, 7 April 2023
टोपोलॉजी और गणित के संबंधित क्षेत्रों में, किसी दिए गए सेट पर सभी संभावित टोपोलॉजी का सेट आंशिक रूप से ऑर्डर किए गए सेट का निर्माण करता है। इस क्रम संबंध का उपयोग टोपोलॉजी की तुलना के लिए किया जा सकता है।
लॉजी की तुलना के लिए किया जा सकता है।टोपोलॉजी की तुलना के लिए किया जा सकता है।ना के लिए किया जा सकता है।
परिभाषा
एक सेट पर टोपोलॉजी को सबसेट के संग्रह के रूप में परिभाषित किया जा सकता है जिसे खुला माना जाता है। वैकल्पिक परिभाषा यह है कि यह सबसेट का संग्रह है जिसे बंद माना जाता है। टोपोलॉजी को परिभाषित करने की ये दो विधियाँ अनिवार्य रूप से समतुल्य हैं क्योंकि खुले सेट का पूरक (सेट सिद्धांत) बंद और इसके विपरीत है। निम्नलिखित में, इससे कोई अंतर नहीं पड़ता कि किस परिभाषा का उपयोग किया जाता है।
चलो τ1 और τ2 सेट X पर दो टोपोलॉजी हो जैसे कि τ1 τ2 का उपसमुच्चय है:
- .
यानी τ1 का हर तत्व τ2 का तत्व भी है। फिर टोपोलॉजी τ1 τ2 की तुलना में मोटे (कमजोर या छोटे) टोपोलॉजी कहा जाता है, और τ2 τ1 की तुलना में महीन (मजबूत या बड़ा) टोपोलॉजी कहा जाता है।[nb 1]
यदि इसके अतिरिक्त
जबकि τ1 τ2 की तुलना में सख्त है और τ2 τ1 से सख्ती से श्रेष्ठ है.[1]
द्विआधारी संबंध ⊆ एक्स पर सभी संभावित टोपोलॉजी के सेट पर आंशिक आदेश संबंध को परिभाषित करता है।
उदाहरण
एक्स पर बेहतरीन टोपोलॉजी असतत टोपोलॉजी है; यह टोपोलॉजी सभी उपसमुच्चयों को खुला बनाती है। एक्स पर सबसे मोटे टोपोलॉजी तुच्छ टोपोलॉजी है; यह टोपोलॉजी केवल खाली सेट को स्वीकार करती है और पूरी जगह खुले सेट के रूप में।
कार्य स्थान और माप के स्थान (गणित) में अक्सर कई संभावित टोपोलॉजी होती हैं। कुछ जटिल संबंधों के लिए हिल्बर्ट स्पेस पर ऑपरेटरों के सेट पर टोपोलॉजी देखें।
एक दोहरी जोड़ी पर सभी संभावित ध्रुवीय टोपोलॉजी कमजोर टोपोलॉजी (ध्रुवीय टोपोलॉजी) से महीन और मजबूत टोपोलॉजी (ध्रुवीय टोपोलॉजी) की तुलना में मोटे हैं।
कॉम्प्लेक्स समन्वय स्थान 'सी'n या तो इसकी सामान्य (यूक्लिडियन) टोपोलॉजी, या इसकी जरिस्की टोपोलॉजी से लैस हो सकता है। बाद वाले में, 'C' का उपसमुच्चय Vn बंद है अगर और केवल अगर इसमें बहुपद समीकरणों की किसी प्रणाली के सभी समाधान शामिल हैं। चूंकि ऐसा कोई V भी सामान्य अर्थों में बंद सेट है, लेकिन इसके विपरीत नहीं, ज़रिस्की टोपोलॉजी सामान्य से सख्ती से कमजोर है।
गुण
चलो τ1 और टी2 सेट X पर दो टोपोलॉजी हो। तब निम्नलिखित कथन समतुल्य हैं:
- τ1 ⊆ टी2
- पहचान फ़ंक्शन आईडीX : (एक्स, वॉल्यूम2) → (एक्स, टी1) एक सतत नक्शा (टोपोलॉजी) है।
- पहचान मानचित्र आईडीX : (एक्स, वॉल्यूम1) → (एक्स, टी2) एक खुला नक्शा है|दृढ़ता से/अपेक्षाकृत खुला नक्शा।
(पहचान मानचित्र आईडीX विशेषण कार्य है और इसलिए यह दृढ़ता से खुला है अगर और केवल अगर यह अपेक्षाकृत खुला है।)
उपरोक्त समतुल्य कथनों के दो तात्कालिक परिणाम हैं
- एक सतत मानचित्र f : X → Y निरंतर बना रहता है यदि Y पर टोपोलॉजी मोटे हो जाते हैं या X पर टोपोलॉजी महीन हो जाती है।
- एक खुला (प्रतिक्रिया बंद) मानचित्र f : X → Y खुला रहता है (उत्तर बंद)। यदि Y पर टोपोलॉजी महीन हो जाती है या X मोटे पर टोपोलॉजी हो जाती है।
आस-पड़ोस के ठिकानों का उपयोग करके कोई भी टोपोलॉजी की तुलना कर सकता है। चलो τ1 और टी2 सेट एक्स पर दो टोपोलॉजी बनें और बी देंi(x) टोपोलॉजी τ के लिए स्थानीय आधार होi x ∈ X पर i = 1,2 के लिए। फिर τ1 ⊆ टी2 अगर और केवल अगर सभी x ∈ X के लिए, प्रत्येक खुला सेट U1 बी में1(x) में कुछ खुला समुच्चय U है2 बी में2(एक्स)। सहजता से, यह समझ में आता है: श्रेष्ठ टोपोलॉजी में छोटे पड़ोस होने चाहिए।
टोपोलॉजी का जाल
एक सेट एक्स पर सभी टोपोलॉजी का सेट आंशिक ऑर्डरिंग रिलेशन ⊆ के साथ मिलकर पूर्ण जाली बनाता है जो मनमाना चौराहों के तहत भी बंद है। यही है, एक्स पर टोपोलॉजी के किसी भी संग्रह में एक मिल (या इन्फिनिमम) और जॉइन (या अंतिम) होता है। टोपोलॉजी के संग्रह का मिलन उन टोपोलॉजी का प्रतिच्छेदन (सेट थ्योरी) है। हालाँकि, जुड़ना आम तौर पर उन टोपोलॉजी का संघ (सेट सिद्धांत) नहीं है (दो टोपोलॉजी का संघ टोपोलॉजी नहीं होना चाहिए) बल्कि टोपोलॉजी संघ को उप-आधार बनाता है।
प्रत्येक पूर्ण जाली भी बंधी हुई जाली होती है, जिसका अर्थ है कि इसमें सब बेस बड़ा तत्व और सबसे कम तत्व होता है। टोपोलॉजी के मामले में, सबसे बड़ा तत्व असतत टोपोलॉजी है और सबसे छोटा तत्व तुच्छ टोपोलॉजी है।
टिप्पणियाँ
यह भी देखें
- प्रारंभिक टोपोलॉजी, उस सेट से मैपिंग के परिवार को निरंतर बनाने के लिए सेट पर सबसे मोटे टोपोलॉजी
- अंतिम टोपोलॉजी , उस सेट में मैपिंग के परिवार को निरंतर बनाने के लिए सेट पर बेहतरीन टोपोलॉजी
संदर्भ
- ↑ Munkres, James R. (2000). Topology (2nd ed.). Saddle River, NJ: Prentice Hall. pp. 77–78. ISBN 0-13-181629-2.