संभाव्यता वितरण के बीच संबंध: Difference between revisions
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
चर को किसी भी सकारात्मक वास्तविक स्थिरांक से गुणा करने पर मूल वितरण का एक स्केलिंग प्राप्त होता है। | चर को किसी भी सकारात्मक वास्तविक स्थिरांक से गुणा करने पर मूल वितरण का एक स्केलिंग प्राप्त होता है। | ||
कुछ स्व-प्रतिकृति हैं, जिसका अर्थ है कि स्केलिंग वितरण के समान परिवार का उत्पादन करती है, | कुछ स्व-प्रतिकृति हैं, जिसका अर्थ है कि स्केलिंग वितरण के समान परिवार का उत्पादन करती है, चूंकि एक अलग पैरामीटर के साथ: | ||
[[सामान्य वितरण]], गामा वितरण, कॉची वितरण, घातीय वितरण, [[एरलांग वितरण]], वीबुल वितरण, [[रसद वितरण]], [[त्रुटि वितरण]], Power_law#Power-law_probability_distributions|पावर-लॉ वितरण, [[रेले वितरण]]। | [[सामान्य वितरण]], गामा वितरण, कॉची वितरण, घातीय वितरण, [[एरलांग वितरण]], वीबुल वितरण, [[रसद वितरण]], [[त्रुटि वितरण]], Power_law#Power-law_probability_distributions|पावर-लॉ वितरण, [[रेले वितरण]]। | ||
उदाहरण: | उदाहरण: | ||
* | * यदि ''X'' आकार और दर मापदंडों (''α'', ''β'') के साथ एक गामा यादृच्छिक चर है, तो ''Y'' = ''aX'' मापदंडों के साथ एक गामा यादृच्छिक चर है (''α'',''β''/''a'')। | ||
* | * यदि ''X'' शेप और स्केल पैरामीटर्स (''k'', ''θ'') के साथ गामा रैंडम वेरिएबल है, तो ''Y'' = ''aX'' पैरामीटर्स वाला गामा रैंडम वेरिएबल है (''के'',''एθ'')। | ||
=== एक यादृच्छिक चर का रैखिक कार्य === | === एक यादृच्छिक चर का रैखिक कार्य === | ||
Line 46: | Line 46: | ||
=== एक यादृच्छिक चर का व्युत्क्रम === | === एक यादृच्छिक चर का व्युत्क्रम === | ||
यादृच्छिक चर X का व्युत्क्रम 1/X, निम्नलिखित | यादृच्छिक चर X का व्युत्क्रम 1/X, निम्नलिखित स्थितियों में X के वितरण के समान परिवार का सदस्य है: | ||
कौशी वितरण, [[एफ वितरण]], [[लॉग रसद वितरण]]। | कौशी वितरण, [[एफ वितरण]], [[लॉग रसद वितरण]]। | ||
Line 54: | Line 54: | ||
=== अन्य मामले === | === अन्य मामले === | ||
कुछ वितरण एक विशिष्ट परिवर्तन के | कुछ वितरण एक विशिष्ट परिवर्तन के अनुसार अपरिवर्तनीय हैं। | ||
उदाहरण: | उदाहरण: | ||
* | * यदि ''X'' एक बीटा (''α'', ''β'') यादृच्छिक चर है तो (1 - ''X'') एक बीटा (''β'', ''α'') है ) अनियमित परिवर्तनशील वस्तु। | ||
* यदि ''X'' एक द्विपद (''n'', ''p'') यादृच्छिक चर है तो (''n'' - ''X'') एक द्विपद (''n'', 1 - ''p'') यादृच्छिक चर। | * यदि ''X'' एक द्विपद (''n'', ''p'') यादृच्छिक चर है तो (''n'' - ''X'') एक द्विपद (''n'', 1 - ''p'') यादृच्छिक चर। | ||
* यदि ''X'' का संचयी वितरण फलन ''F'' है<sub>''X''</sub>, फिर संचयी बंटन F का व्युत्क्रम{{su|b=''X''|''p'' = −1}}(X) एक मानक 'वर्दी' (0,1) यादृच्छिक चर है | * यदि ''X'' का संचयी वितरण फलन ''F'' है<sub>''X''</sub>, फिर संचयी बंटन F का व्युत्क्रम{{su|b=''X''|''p'' = −1}}(X) एक मानक 'वर्दी' (0,1) यादृच्छिक चर है | ||
Line 76: | Line 76: | ||
<math display="block">Z = \sum_{i = 1}^{n} {X_i}.</math> | <math display="block">Z = \sum_{i = 1}^{n} {X_i}.</math> | ||
यदि इसका वितरण के समान परिवार से मूल चर के रूप में वितरण होता है, तो वितरण के उस परिवार को कनवल्शन के | यदि इसका वितरण के समान परिवार से मूल चर के रूप में वितरण होता है, तो वितरण के उस परिवार को कनवल्शन के अनुसार बंद कहा जाता है। | ||
इस | इस प्रकार के अविभाजित वितरण के उदाहरण हैं: सामान्य वितरण, [[पॉसों वितरण]], द्विपद वितरण (सामान्य सफलता की संभावना के साथ), नकारात्मक द्विपद वितरण (सामान्य सफलता की संभावना के साथ), गामा वितरण (सामान्य [[दर पैरामीटर]] के साथ), ची-स्क्वेर्ड वितरण | ची-स्क्वेर्ड वितरण , कॉची वितरण, [[हाइपरएक्सपोनेंशियल वितरण]]। | ||
'उदाहरण:<ref>{{cite web|last=Cook|first=John D.|title=वितरण संबंधों का आरेख|url=http://www.johndcook.com/distribution_chart.html}}</ref><ref>{{cite journal|last1=Dinov|first1=Ivo D.|last2=Siegrist|first2= Kyle |last3=Pearl|first3=Dennis |last4=Kalinin|first4=Alex|last5=Christou|first5=Nicolas| title=Probability Distributome: a web computational infrastructure for exploring the properties, interrelations, and applications of probability distributions| journal=Computational Statistics|volume=594|issue=2|doi=10.1007/s00180-015-0594-6|pmid=27158191|pmc=4856044|date=2015|pages= 249–271}}</ref> | 'उदाहरण:<ref>{{cite web|last=Cook|first=John D.|title=वितरण संबंधों का आरेख|url=http://www.johndcook.com/distribution_chart.html}}</ref><ref>{{cite journal|last1=Dinov|first1=Ivo D.|last2=Siegrist|first2= Kyle |last3=Pearl|first3=Dennis |last4=Kalinin|first4=Alex|last5=Christou|first5=Nicolas| title=Probability Distributome: a web computational infrastructure for exploring the properties, interrelations, and applications of probability distributions| journal=Computational Statistics|volume=594|issue=2|doi=10.1007/s00180-015-0594-6|pmid=27158191|pmc=4856044|date=2015|pages= 249–271}}</ref> | ||
**यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> पोइसन रैंडम वेरिएबल हैं जिसका | **यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> पोइसन रैंडम वेरिएबल हैं जिसका अर्थ ''μ'' है<sub>1</sub> और μ<sub>2</sub> क्रमशः, फिर X<sub>1</sub> + एक्स<sub>2</sub> अर्थ ''μ'' के साथ एक प्वासों यादृच्छिक चर है<sub>1</sub> + म<sub>2</sub>. | ||
** गामा का योग (''α''<sub>''i''</sub>, b) यादृच्छिक चर में एक 'गामा' (Sa<sub>''i''</sub>, बी) वितरण। | ** गामा का योग (''α''<sub>''i''</sub>, b) यादृच्छिक चर में एक 'गामा' (Sa<sub>''i''</sub>, बी) वितरण। | ||
**यदि एक्स<sub>1</sub> कॉची है (''μ''<sub>1</sub>, पी<sub>1</sub>) यादृच्छिक चर और X<sub>2</sub> एक कॉची है (μ<sub>2</sub>, पी<sub>2</sub>), फिर एक्स<sub>1</sub> + एक्स<sub>2</sub> कॉची है (''μ''<sub>1</sub> + म<sub>2</sub>, पी<sub>1</sub> + पी<sub>2</sub>) अनियमित परिवर्तनशील वस्तु। | **यदि एक्स<sub>1</sub> कॉची है (''μ''<sub>1</sub>, पी<sub>1</sub>) यादृच्छिक चर और X<sub>2</sub> एक कॉची है (μ<sub>2</sub>, पी<sub>2</sub>), फिर एक्स<sub>1</sub> + एक्स<sub>2</sub> कॉची है (''μ''<sub>1</sub> + म<sub>2</sub>, पी<sub>1</sub> + पी<sub>2</sub>) अनियमित परिवर्तनशील वस्तु। | ||
Line 88: | Line 88: | ||
** एन ची-स्क्वायर (1) रैंडम वेरिएबल्स का योग एन डिग्री ऑफ फ्रीडम के साथ ची-स्क्वायर वितरण है। | ** एन ची-स्क्वायर (1) रैंडम वेरिएबल्स का योग एन डिग्री ऑफ फ्रीडम के साथ ची-स्क्वायर वितरण है। | ||
कनवल्शन के | कनवल्शन के अनुसार अन्य वितरण बंद नहीं हैं, किन्तु उनके योग का एक ज्ञात वितरण है: | ||
* एन 'बर्नौली' (पी) यादृच्छिक चर का योग एक 'द्विपद' (एन, पी) यादृच्छिक चर है। | * एन 'बर्नौली' (पी) यादृच्छिक चर का योग एक 'द्विपद' (एन, पी) यादृच्छिक चर है। | ||
* n 'ज्यामितीय' यादृच्छिक चर का योग सफलता p की संभावना के साथ पैरामीटर n और p के साथ एक 'ऋणात्मक द्विपद' यादृच्छिक चर है। | * n 'ज्यामितीय' यादृच्छिक चर का योग सफलता p की संभावना के साथ पैरामीटर n और p के साथ एक 'ऋणात्मक द्विपद' यादृच्छिक चर है। | ||
Line 108: | Line 108: | ||
उदाहरण: | उदाहरण: | ||
* | * यदि ''एक्स''<sub>1</sub> और एक्स<sub>2</sub> सफलता की संभावना ''पी'' के साथ स्वतंत्र ज्यामितीय यादृच्छिक चर हैं<sub>1</sub> और पी<sub>2</sub> क्रमशः, फिर न्यूनतम (एक्स<sub>1</sub>, एक्स<sub>2</sub>) सफलता p = p की प्रायिकता वाला एक ज्यामितीय यादृच्छिक चर है<sub>1</sub> + पी<sub>2</sub> - पी<sub>1</sub> p<sub>2</sub>. विफलता की संभावना के रूप में व्यक्त किए जाने पर संबंध सरल होता है: q = q<sub>1</sub> q<sub>2</sub>. | ||
*यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> दर ''μ'' के साथ स्वतंत्र चरघातांकी यादृच्छिक चर हैं<sub>1</sub> और μ<sub>2</sub> क्रमशः, फिर न्यूनतम (एक्स<sub>1</sub>, एक्स<sub>2</sub>) दर μ = μ के साथ एक घातीय यादृच्छिक चर है<sub>1</sub> + म<sub>2</sub>. | *यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> दर ''μ'' के साथ स्वतंत्र चरघातांकी यादृच्छिक चर हैं<sub>1</sub> और μ<sub>2</sub> क्रमशः, फिर न्यूनतम (एक्स<sub>1</sub>, एक्स<sub>2</sub>) दर μ = μ के साथ एक घातीय यादृच्छिक चर है<sub>1</sub> + म<sub>2</sub>. | ||
Line 119: | Line 119: | ||
*यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> ''ν'' के साथ स्वतंत्र ची-स्क्वायर यादृच्छिक चर हैं<sub>1</sub> और n<sub>2</sub> क्रमशः स्वतंत्रता की डिग्री, फिर (एक्स<sub>1</sub>/एन<sub>1</sub>)/(एक्स<sub>2</sub>/एन<sub>2</sub>) एक ''F''(''ν'' है<sub>1</sub>, एन<sub>2</sub>) अनियमित परिवर्तनशील वस्तु। | *यदि एक्स<sub>1</sub> और एक्स<sub>2</sub> ''ν'' के साथ स्वतंत्र ची-स्क्वायर यादृच्छिक चर हैं<sub>1</sub> और n<sub>2</sub> क्रमशः स्वतंत्रता की डिग्री, फिर (एक्स<sub>1</sub>/एन<sub>1</sub>)/(एक्स<sub>2</sub>/एन<sub>2</sub>) एक ''F''(''ν'' है<sub>1</sub>, एन<sub>2</sub>) अनियमित परिवर्तनशील वस्तु। | ||
* यदि X एक 'मानक सामान्य' यादृच्छिक चर है और U स्वतंत्रता की ν डिग्री के साथ एक स्वतंत्र 'ची-वर्ग' यादृच्छिक चर है, तो <math>\frac{X}{\sqrt{(U/\nu)}} </math> विद्यार्थी का ''t''(''ν'') यादृच्छिक चर है। | * यदि X एक 'मानक सामान्य' यादृच्छिक चर है और U स्वतंत्रता की ν डिग्री के साथ एक स्वतंत्र 'ची-वर्ग' यादृच्छिक चर है, तो <math>\frac{X}{\sqrt{(U/\nu)}} </math> विद्यार्थी का ''t''(''ν'') यादृच्छिक चर है। | ||
* | * यदि ''एक्स''<sub>1</sub> एक गामा है (''α''<sub>1</sub>, 1) यादृच्छिक चर और X<sub>2</sub> एक स्वतंत्र गामा है (α<sub>2</sub>, 1) यादृच्छिक चर फिर X<sub>1</sub>/(एक्स<sub>1</sub> + एक्स<sub>2</sub>) एक बीटा है<sub>1</sub>, ए<sub>2</sub>) अनियमित परिवर्तनशील वस्तु। अधिक सामान्यतः, यदि X<sub>1</sub> एक गामा है (α<sub>1</sub>, बी<sub>1</sub>) यादृच्छिक चर और X<sub>2</sub> एक स्वतंत्र गामा है (α<sub>2</sub>, बी<sub>2</sub>) यादृच्छिक चर फिर β<sub>2</sub> X<sub>1</sub>/(बी<sub>2</sub> X<sub>1</sub> + ख<sub>1</sub> X<sub>2</sub>) एक बीटा है (ए<sub>1</sub>, ए<sub>2</sub>) अनियमित परिवर्तनशील वस्तु। | ||
* यदि X और Y माध्य μ के साथ स्वतंत्र 'घातीय' यादृच्छिक चर हैं, तो X − Y माध्य 0 और पैमाने μ के साथ एक '[[लाप्लास वितरण]]' यादृच्छिक चर है। | * यदि X और Y माध्य μ के साथ स्वतंत्र 'घातीय' यादृच्छिक चर हैं, तो X − Y माध्य 0 और पैमाने μ के साथ एक '[[लाप्लास वितरण]]' यादृच्छिक चर है। | ||
* | *यदि एक्स<sub>i</sub> स्वतंत्र बर्नौली यादृच्छिक चर हैं तो उनका [[समता समारोह]] (एक्सओआर) [[पाइलिंग-अप लेम्मा]] के माध्यम से वर्णित बर्नौली वैरिएबल है। | ||
{{Crossreference|(See also [[ratio distribution]].)}} | {{Crossreference|(See also [[ratio distribution]].)}} | ||
Line 132: | Line 132: | ||
'आईआईडी यादृच्छिक चर का संयोजन:' | 'आईआईडी यादृच्छिक चर का संयोजन:' | ||
* कुछ शर्तों को देखते हुए, पर्याप्त संख्या में iid यादृच्छिक चर का योग (इसलिए औसत), प्रत्येक परिमित माध्य और विचरण के साथ, | * कुछ शर्तों को देखते हुए, पर्याप्त संख्या में iid यादृच्छिक चर का योग (इसलिए औसत), प्रत्येक परिमित माध्य और विचरण के साथ, अधिकतर सामान्य रूप से वितरित किया जाएगा। यह [[केंद्रीय सीमा प्रमेय]] (CLT) है। | ||
'वितरण पैरामीट्रिजेशन का विशेष मामला:' | 'वितरण पैरामीट्रिजेशन का विशेष मामला:' | ||
* एक्स एक 'हाइपरज्यामितीय' (एम, एन, एन) यादृच्छिक चर है। यदि n और m N की | * एक्स एक 'हाइपरज्यामितीय' (एम, एन, एन) यादृच्छिक चर है। यदि n और m N की समानता में बड़े हैं, और p = m/N 0 या 1 के निकट नहीं है, तो X का अधिकतर एक 'द्विपद' (n, p) वितरण है। | ||
* X पैरामीटर्स (n, α, β) के साथ एक 'बीटा-द्विपद' यादृच्छिक चर है। चलो पी = α/(α + β) और मान लीजिए α + β बड़ा है, तो एक्स | * X पैरामीटर्स (n, α, β) के साथ एक 'बीटा-द्विपद' यादृच्छिक चर है। चलो पी = α/(α + β) और मान लीजिए α + β बड़ा है, तो एक्स अधिकतर एक 'द्विपद' (एन, पी) वितरण है। | ||
* यदि एक्स एक 'द्विपद' (एन, पी) यादृच्छिक चर है और यदि एन बड़ा है और एनपी छोटा है तो एक्स में | * यदि एक्स एक 'द्विपद' (एन, पी) यादृच्छिक चर है और यदि एन बड़ा है और एनपी छोटा है तो एक्स में अधिकतर 'पॉइसन' (एनपी) वितरण होता है। | ||
* यदि X एक 'नकारात्मक द्विपद' यादृच्छिक चर है जिसमें r बड़ा है, P 1 के पास है, और r(1 − P) = λ है, तो X का माध्य λ के साथ | * यदि X एक 'नकारात्मक द्विपद' यादृच्छिक चर है जिसमें r बड़ा है, P 1 के पास है, और r(1 − P) = λ है, तो X का माध्य λ के साथ अधिकतर 'पॉइसन' वितरण है। | ||
सीएलटी के परिणाम: | सीएलटी के परिणाम: | ||
* यदि X बड़े माध्य वाला एक 'प्वाइसन' यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) | * यदि X बड़े माध्य वाला एक 'प्वाइसन' यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/2 ≤ Y ≤ k + 1/2) के समान है जहाँ Y X के समान माध्य और विचरण वाला एक 'सामान्य' वितरण है। | ||
* यदि X बड़ा np और n(1 − p) वाला एक 'द्विपद'(n, p) यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) | * यदि X बड़ा np और n(1 − p) वाला एक 'द्विपद'(n, p) यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/) के समान है। 2 ≤ Y ≤ k + 1/2) जहां Y एक 'सामान्य' यादृच्छिक चर है जिसका समान माध्य और एक्स के समान प्रसरण है, अर्थात np और np(1 − p)। | ||
* यदि X एक 'बीटा' रैंडम वेरिएबल है जिसका पैरामीटर α और β | * यदि X एक 'बीटा' रैंडम वेरिएबल है जिसका पैरामीटर α और β समान और बड़ा है, तो X का अधिकतर समान माध्य और भिन्नता वाला 'सामान्य' वितरण है, i। इ। माध्य α/(α + β) और विचरण αβ/((α + β)<sup>2</sup>(α + β + 1))। | ||
* यदि X एक 'गामा' (α, β) यादृच्छिक चर है और आकार पैरामीटर α स्केल पैरामीटर β के सापेक्ष बड़ा है, तो X में | * यदि X एक 'गामा' (α, β) यादृच्छिक चर है और आकार पैरामीटर α स्केल पैरामीटर β के सापेक्ष बड़ा है, तो X में अधिकतर समान माध्य और विचरण वाला 'सामान्य' यादृच्छिक चर होता है। | ||
* यदि X एक 'विद्यार्थी का t' यादृच्छिक चर है जिसमें बड़ी संख्या में स्वतंत्रता ν की डिग्री है तो X का | * यदि X एक 'विद्यार्थी का t' यादृच्छिक चर है जिसमें बड़ी संख्या में स्वतंत्रता ν की डिग्री है तो X का अधिकतर 'मानक सामान्य' वितरण है। | ||
* यदि X एक 'F'(ν, ω) यादृच्छिक चर है जिसमें ω बड़ा है, तो νX को स्वतंत्रता की ν डिग्री के साथ एक 'ची-वर्ग' यादृच्छिक चर के रूप में वितरित किया जाता है। | * यदि X एक 'F'(ν, ω) यादृच्छिक चर है जिसमें ω बड़ा है, तो νX को स्वतंत्रता की ν डिग्री के साथ एक 'ची-वर्ग' यादृच्छिक चर के रूप में वितरित किया जाता है। | ||
Line 155: | Line 155: | ||
उदाहरण: | उदाहरण: | ||
* | * यदि ''एक्स'' | ''एन'' एक द्विपद (''एन'',''पी'') यादृच्छिक चर है, जहां पैरामीटर ''एन'' नकारात्मक-द्विपद (''एम'', ''आर') के साथ एक यादृच्छिक चर है ') वितरण, तो ''X'' एक ऋणात्मक द्विपद (''m'', ''r''/(''p'' + ''qr'')) के रूप में वितरित किया जाता है। | ||
* | * यदि ''एक्स'' | ''एन'' एक द्विपद (''एन'',''पी'') यादृच्छिक चर है, जहां पैरामीटर ''एन'' प्वासों(''μ'') वितरण के साथ एक यादृच्छिक चर है, फिर ''एक्स '' को पोइसन (''μp'') के रूप में वितरित किया जाता है। | ||
* | * यदि ''एक्स'' | ''μ'' एक प्वासों(''μ'') यादृच्छिक चर है और पैरामीटर ''μ'' गामा(''m'', ''θ'') वितरण के साथ यादृच्छिक चर है (जहाँ ''θ'' पैमाना पैरामीटर है), तो ''X'' को ऋणात्मक-द्विपद (''m'', ''θ''/(1 + ''θ'')) के रूप में वितरित किया जाता है, जिसे कभी-कभी [[गामा-पोइसन वितरण]] कहा जाता है। | ||
कुछ वितरणों को विशेष रूप से यौगिक नाम दिया गया है: | कुछ वितरणों को विशेष रूप से यौगिक नाम दिया गया है: |
Revision as of 12:08, 28 March 2023
संभाव्यता सिद्धांत और सांख्यिकी में, संभाव्यता वितरण के बीच कई संबंध हैं। इन संबंधों को निम्नलिखित समूहों में वर्गीकृत किया जा सकता है:
- एक वितरण एक व्यापक पैरामीटर स्थान के साथ दूसरे का एक विशेष मामला है
- रूपांतरण (एक यादृच्छिक चर का कार्य);
- संयोजन (कई चर का कार्य);
- सन्निकटन (सीमा) संबंध;
- यौगिक संबंध (बायेसियन अनुमान के लिए उपयोगी);
- द्वैत (गणित)[clarification needed];
- संयुग्मी प्राथमिकताएँ।
वितरण पैरामीट्रिजेशन का विशेष मामला
- प्राचलों n = 1 और p के साथ एक द्विपद बंटन, प्राचल p के साथ एक बरनौली बंटन है।
- प्राचलों n = 1 और p के साथ एक ऋणात्मक द्विपद बंटन, प्राचल p के साथ एक ज्यामितीय बंटन है।
- आकार पैरामीटर α = 1 और दर पैरामीटर β के साथ एक गामा वितरण दर पैरामीटर β के साथ एक घातीय वितरण है।
- आकार पैरामीटर α = v/2 और दर पैरामीटर β = 1/2 के साथ एक गामा वितरण स्वतंत्रता की ν डिग्री (सांख्यिकी) के साथ एक ची-वर्ग वितरण है।
- स्वतंत्रता की 2 डिग्री (k = 2) के साथ एक ची-वर्ग वितरण 2 के माध्य मान (दर λ = 1/2) के साथ एक घातीय वितरण है।
- आकार पैरामीटर k = 1 और दर पैरामीटर β के साथ एक वेइबुल वितरण दर पैरामीटर β के साथ एक घातीय वितरण है।
- आकृति पैरामीटर α = β = 1 के साथ एक बीटा वितरण वास्तविक संख्या 0 से 1 पर निरंतर समान वितरण है।
- पैरामीटर n और आकार पैरामीटर α = β = 1 के साथ एक [[बीटा-द्विपद वितरण]] पूर्णांक 0 से n पर एक असतत समान वितरण है।
- स्वतंत्रता की एक डिग्री (v = 1) के साथ एक छात्र का टी-वितरण स्थान पैरामीटर x = 0 और स्केल पैरामीटर γ = 1 के साथ एक कॉची वितरण है।
- मापदंडों c = 1 और k (और स्केल λ) के साथ एक Burr वितरण आकार k (और स्केल λ) के साथ एक लोमैक्स वितरण है।
एक चर का रूपांतरण
एक यादृच्छिक चर का गुणक
चर को किसी भी सकारात्मक वास्तविक स्थिरांक से गुणा करने पर मूल वितरण का एक स्केलिंग प्राप्त होता है। कुछ स्व-प्रतिकृति हैं, जिसका अर्थ है कि स्केलिंग वितरण के समान परिवार का उत्पादन करती है, चूंकि एक अलग पैरामीटर के साथ: सामान्य वितरण, गामा वितरण, कॉची वितरण, घातीय वितरण, एरलांग वितरण, वीबुल वितरण, रसद वितरण, त्रुटि वितरण, Power_law#Power-law_probability_distributions|पावर-लॉ वितरण, रेले वितरण।
उदाहरण:
- यदि X आकार और दर मापदंडों (α, β) के साथ एक गामा यादृच्छिक चर है, तो Y = aX मापदंडों के साथ एक गामा यादृच्छिक चर है (α,β/a)।
- यदि X शेप और स्केल पैरामीटर्स (k, θ) के साथ गामा रैंडम वेरिएबल है, तो Y = aX पैरामीटर्स वाला गामा रैंडम वेरिएबल है (के,एθ)।
एक यादृच्छिक चर का रैखिक कार्य
एफ़िन ट्रांसफ़ॉर्म ax + b से मूल वितरण का 'रिलोकेशन और स्केलिंग' प्राप्त होता है। निम्नलिखित स्व-प्रतिकृति हैं: सामान्य वितरण, कॉची वितरण, लॉजिस्टिक वितरण, त्रुटि वितरण, Power_law#Power-law_probability_distributions, Rayleigh वितरण।
'उदाहरण: '
- यदि Z पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = m, σ2 = एस2), तो X = aZ + b पैरामीटर के साथ एक सामान्य यादृच्छिक चर है (μ = am + b, σ2 = ए2एस2).
एक यादृच्छिक चर का व्युत्क्रम
यादृच्छिक चर X का व्युत्क्रम 1/X, निम्नलिखित स्थितियों में X के वितरण के समान परिवार का सदस्य है: कौशी वितरण, एफ वितरण, लॉग रसद वितरण।
'उदाहरण: '
- यदि X एक कौशी (μ, σ) यादृच्छिक चर है, तो 1/X एक कौशी (μ/C, σ/C) यादृच्छिक चर है जहाँ C = μ2 + पृ2</उप>।
- यदि एक्स एक एफ है (ν1, एन2) यादृच्छिक चर तब 1/X एक F(ν) है2, एन1) अनियमित परिवर्तनशील वस्तु।
अन्य मामले
कुछ वितरण एक विशिष्ट परिवर्तन के अनुसार अपरिवर्तनीय हैं।
उदाहरण:
- यदि X एक बीटा (α, β) यादृच्छिक चर है तो (1 - X) एक बीटा (β, α) है ) अनियमित परिवर्तनशील वस्तु।
- यदि X एक द्विपद (n, p) यादृच्छिक चर है तो (n - X) एक द्विपद (n, 1 - p) यादृच्छिक चर।
- यदि X का संचयी वितरण फलन F हैX, फिर संचयी बंटन F का व्युत्क्रम
X(X) एक मानक 'वर्दी' (0,1) यादृच्छिक चर है - यदि X एक 'सामान्य' है (μ, σ2) यादृच्छिक चर फिर ईX एक 'लॉगनॉर्मल' है (μ, p2) यादृच्छिक चर।
- इसके विपरीत, यदि X एक असामान्य (μ, σ2) यादृच्छिक चर तो लॉग एक्स एक सामान्य है (μ, p2) यादृच्छिक चर।
- यदि X माध्य β के साथ एक 'चरघातांकी' यादृच्छिक चर है, तो X1/γ एक 'वीबुल' (γ, β) यादृच्छिक चर है।
- एक 'मानक सामान्य' यादृच्छिक चर के वर्ग में स्वतंत्रता की एक डिग्री के साथ 'ची-वर्ग' वितरण होता है।
- यदि X एक 'विद्यार्थी का t-बंटन|छात्र का t' स्वतंत्रता की ν डिग्री वाला यादृच्छिक चर है, तो X2 एक F (1,ν) यादृच्छिक चर है।
- यदि X मीन 0 और स्केल λ के साथ एक डबल एक्सपोनेंशियल रैंडम वेरिएबल है, तो |X| माध्य λ वाला एक चरघातांकी यादृच्छिक चर है।
- एक ज्यामितीय यादृच्छिक चर एक घातीय यादृच्छिक चर का तल और छत कार्य है।
- एक आयताकार वितरण यादृच्छिक चर एक समान यादृच्छिक चर का तल है।
- एक पारस्परिक वितरण यादृच्छिक चर एक समान यादृच्छिक चर का घातांक है।
कई चर के कार्य
चर का योग
स्वतंत्र यादृच्छिक चर के योग का वितरण उनके वितरण के संभाव्यता वितरण का रूपांतरण है। कल्पना करना का योग है स्वतंत्र यादृच्छिक चर संभाव्यता द्रव्यमान समारोह के साथ प्रत्येक . तब
इस प्रकार के अविभाजित वितरण के उदाहरण हैं: सामान्य वितरण, पॉसों वितरण, द्विपद वितरण (सामान्य सफलता की संभावना के साथ), नकारात्मक द्विपद वितरण (सामान्य सफलता की संभावना के साथ), गामा वितरण (सामान्य दर पैरामीटर के साथ), ची-स्क्वेर्ड वितरण | ची-स्क्वेर्ड वितरण , कॉची वितरण, हाइपरएक्सपोनेंशियल वितरण।
- यदि एक्स1 और एक्स2 पोइसन रैंडम वेरिएबल हैं जिसका अर्थ μ है1 और μ2 क्रमशः, फिर X1 + एक्स2 अर्थ μ के साथ एक प्वासों यादृच्छिक चर है1 + म2.
- गामा का योग (αi, b) यादृच्छिक चर में एक 'गामा' (Sai, बी) वितरण।
- यदि एक्स1 कॉची है (μ1, पी1) यादृच्छिक चर और X2 एक कॉची है (μ2, पी2), फिर एक्स1 + एक्स2 कॉची है (μ1 + म2, पी1 + पी2) अनियमित परिवर्तनशील वस्तु।
- यदि एक्स1 और एक्स2 ν के साथ ची-वर्ग यादृच्छिक चर हैं1 और n2 क्रमशः स्वतंत्रता की डिग्री, फिर X1 + एक्स2 ν के साथ एक ची-वर्ग यादृच्छिक चर है1 + एन2 स्वतंत्रता की कोटियां।
- यदि एक्स1 सामान्य है (μ1, पी2
1) यादृच्छिक चर और X2 सामान्य है (एम2, पी2
2) यादृच्छिक चर, फिर X1 + एक्स2 सामान्य है (μ1 + म2, पी2
1 + प2
2) अनियमित परिवर्तनशील वस्तु। - एन ची-स्क्वायर (1) रैंडम वेरिएबल्स का योग एन डिग्री ऑफ फ्रीडम के साथ ची-स्क्वायर वितरण है।
कनवल्शन के अनुसार अन्य वितरण बंद नहीं हैं, किन्तु उनके योग का एक ज्ञात वितरण है:
- एन 'बर्नौली' (पी) यादृच्छिक चर का योग एक 'द्विपद' (एन, पी) यादृच्छिक चर है।
- n 'ज्यामितीय' यादृच्छिक चर का योग सफलता p की संभावना के साथ पैरामीटर n और p के साथ एक 'ऋणात्मक द्विपद' यादृच्छिक चर है।
- n 'घातीय' (β) यादृच्छिक चर का योग एक 'गामा' (n, β) यादृच्छिक चर है। चूँकि n एक पूर्णांक है, गामा बंटन भी एक 'Erlang बंटन' है।
- एन 'मानक सामान्य' यादृच्छिक चर के वर्गों के योग में स्वतंत्रता की एन डिग्री के साथ 'ची-वर्ग' वितरण होता है।
चर का उत्पाद
स्वतंत्र यादृच्छिक चर X और Y का उत्पाद वितरण के उसी परिवार से संबंधित हो सकता है जैसे X और Y: बर्नौली वितरण और लॉग-सामान्य वितरण।
'उदाहरण: '
- यदि एक्स1 और एक्स2 पैरामीटर के साथ स्वतंत्र लॉग-सामान्य यादृच्छिक चर हैं (μ1, पी2
1) और (μ2, पी2
2) क्रमशः, फिर X1 X2 मापदंडों के साथ एक लॉग-सामान्य यादृच्छिक चर है (μ1 + म2, पी2
1 + प2
2).
न्यूनतम और अधिकतम स्वतंत्र यादृच्छिक चर
कुछ वितरणों के लिए, कई स्वतंत्र यादृच्छिक चर का न्यूनतम मान एक ही परिवार का सदस्य है, विभिन्न मापदंडों के साथ: बरनौली वितरण, ज्यामितीय वितरण, घातीय वितरण, चरम मूल्य वितरण, परेटो वितरण, रेले वितरण, वीबुल वितरण।
उदाहरण:
- यदि एक्स1 और एक्स2 सफलता की संभावना पी के साथ स्वतंत्र ज्यामितीय यादृच्छिक चर हैं1 और पी2 क्रमशः, फिर न्यूनतम (एक्स1, एक्स2) सफलता p = p की प्रायिकता वाला एक ज्यामितीय यादृच्छिक चर है1 + पी2 - पी1 p2. विफलता की संभावना के रूप में व्यक्त किए जाने पर संबंध सरल होता है: q = q1 q2.
- यदि एक्स1 और एक्स2 दर μ के साथ स्वतंत्र चरघातांकी यादृच्छिक चर हैं1 और μ2 क्रमशः, फिर न्यूनतम (एक्स1, एक्स2) दर μ = μ के साथ एक घातीय यादृच्छिक चर है1 + म2.
इसी प्रकार, वितरण जिसके लिए वितरण के एक ही परिवार के सदस्य कई स्वतंत्र यादृच्छिक चर का अधिकतम मूल्य सम्मलित है: Bernoulli वितरण, बिजली कानून वितरण।
अन्य
- यदि X और Y स्वतंत्र 'मानक सामान्य' यादृच्छिक चर हैं, तो X/Y एक 'कॉची' (0,1) यादृच्छिक चर है।
- यदि एक्स1 और एक्स2 ν के साथ स्वतंत्र ची-स्क्वायर यादृच्छिक चर हैं1 और n2 क्रमशः स्वतंत्रता की डिग्री, फिर (एक्स1/एन1)/(एक्स2/एन2) एक F(ν है1, एन2) अनियमित परिवर्तनशील वस्तु।
- यदि X एक 'मानक सामान्य' यादृच्छिक चर है और U स्वतंत्रता की ν डिग्री के साथ एक स्वतंत्र 'ची-वर्ग' यादृच्छिक चर है, तो विद्यार्थी का t(ν) यादृच्छिक चर है।
- यदि एक्स1 एक गामा है (α1, 1) यादृच्छिक चर और X2 एक स्वतंत्र गामा है (α2, 1) यादृच्छिक चर फिर X1/(एक्स1 + एक्स2) एक बीटा है1, ए2) अनियमित परिवर्तनशील वस्तु। अधिक सामान्यतः, यदि X1 एक गामा है (α1, बी1) यादृच्छिक चर और X2 एक स्वतंत्र गामा है (α2, बी2) यादृच्छिक चर फिर β2 X1/(बी2 X1 + ख1 X2) एक बीटा है (ए1, ए2) अनियमित परिवर्तनशील वस्तु।
- यदि X और Y माध्य μ के साथ स्वतंत्र 'घातीय' यादृच्छिक चर हैं, तो X − Y माध्य 0 और पैमाने μ के साथ एक 'लाप्लास वितरण' यादृच्छिक चर है।
- यदि एक्सi स्वतंत्र बर्नौली यादृच्छिक चर हैं तो उनका समता समारोह (एक्सओआर) पाइलिंग-अप लेम्मा के माध्यम से वर्णित बर्नौली वैरिएबल है।
अनुमानित (सीमा) संबंध
अनुमानित या सीमा संबंध का अर्थ है
- या तो iid रैंडम वेरिएबल्स की अनंत संख्या का संयोजन कुछ वितरण की ओर प्रवृत्त होता है,
- या वह सीमा जब कोई पैरामीटर किसी मान की ओर प्रवृत्त होता है तो भिन्न वितरण की ओर अग्रसर होता है।
'आईआईडी यादृच्छिक चर का संयोजन:'
- कुछ शर्तों को देखते हुए, पर्याप्त संख्या में iid यादृच्छिक चर का योग (इसलिए औसत), प्रत्येक परिमित माध्य और विचरण के साथ, अधिकतर सामान्य रूप से वितरित किया जाएगा। यह केंद्रीय सीमा प्रमेय (CLT) है।
'वितरण पैरामीट्रिजेशन का विशेष मामला:'
- एक्स एक 'हाइपरज्यामितीय' (एम, एन, एन) यादृच्छिक चर है। यदि n और m N की समानता में बड़े हैं, और p = m/N 0 या 1 के निकट नहीं है, तो X का अधिकतर एक 'द्विपद' (n, p) वितरण है।
- X पैरामीटर्स (n, α, β) के साथ एक 'बीटा-द्विपद' यादृच्छिक चर है। चलो पी = α/(α + β) और मान लीजिए α + β बड़ा है, तो एक्स अधिकतर एक 'द्विपद' (एन, पी) वितरण है।
- यदि एक्स एक 'द्विपद' (एन, पी) यादृच्छिक चर है और यदि एन बड़ा है और एनपी छोटा है तो एक्स में अधिकतर 'पॉइसन' (एनपी) वितरण होता है।
- यदि X एक 'नकारात्मक द्विपद' यादृच्छिक चर है जिसमें r बड़ा है, P 1 के पास है, और r(1 − P) = λ है, तो X का माध्य λ के साथ अधिकतर 'पॉइसन' वितरण है।
सीएलटी के परिणाम:
- यदि X बड़े माध्य वाला एक 'प्वाइसन' यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/2 ≤ Y ≤ k + 1/2) के समान है जहाँ Y X के समान माध्य और विचरण वाला एक 'सामान्य' वितरण है।
- यदि X बड़ा np और n(1 − p) वाला एक 'द्विपद'(n, p) यादृच्छिक चर है, तो पूर्णांक j और k के लिए, P(j ≤ X ≤ k) अधिकतर P(j − 1/) के समान है। 2 ≤ Y ≤ k + 1/2) जहां Y एक 'सामान्य' यादृच्छिक चर है जिसका समान माध्य और एक्स के समान प्रसरण है, अर्थात np और np(1 − p)।
- यदि X एक 'बीटा' रैंडम वेरिएबल है जिसका पैरामीटर α और β समान और बड़ा है, तो X का अधिकतर समान माध्य और भिन्नता वाला 'सामान्य' वितरण है, i। इ। माध्य α/(α + β) और विचरण αβ/((α + β)2(α + β + 1))।
- यदि X एक 'गामा' (α, β) यादृच्छिक चर है और आकार पैरामीटर α स्केल पैरामीटर β के सापेक्ष बड़ा है, तो X में अधिकतर समान माध्य और विचरण वाला 'सामान्य' यादृच्छिक चर होता है।
- यदि X एक 'विद्यार्थी का t' यादृच्छिक चर है जिसमें बड़ी संख्या में स्वतंत्रता ν की डिग्री है तो X का अधिकतर 'मानक सामान्य' वितरण है।
- यदि X एक 'F'(ν, ω) यादृच्छिक चर है जिसमें ω बड़ा है, तो νX को स्वतंत्रता की ν डिग्री के साथ एक 'ची-वर्ग' यादृच्छिक चर के रूप में वितरित किया जाता है।
यौगिक (या बायेसियन) संबंध
जब वितरण के एक या एक से अधिक पैरामीटर यादृच्छिक चर होते हैं, तो यौगिक संभाव्यता वितरण वितरण चर का सीमांत वितरण होता है।
उदाहरण:
- यदि एक्स | एन एक द्विपद (एन,पी) यादृच्छिक चर है, जहां पैरामीटर एन नकारात्मक-द्विपद (एम, आर') के साथ एक यादृच्छिक चर है ') वितरण, तो X एक ऋणात्मक द्विपद (m, r/(p + qr)) के रूप में वितरित किया जाता है।
- यदि एक्स | एन एक द्विपद (एन,पी) यादृच्छिक चर है, जहां पैरामीटर एन प्वासों(μ) वितरण के साथ एक यादृच्छिक चर है, फिर एक्स को पोइसन (μp) के रूप में वितरित किया जाता है।
- यदि एक्स | μ एक प्वासों(μ) यादृच्छिक चर है और पैरामीटर μ गामा(m, θ) वितरण के साथ यादृच्छिक चर है (जहाँ θ पैमाना पैरामीटर है), तो X को ऋणात्मक-द्विपद (m, θ/(1 + θ)) के रूप में वितरित किया जाता है, जिसे कभी-कभी गामा-पोइसन वितरण कहा जाता है।
कुछ वितरणों को विशेष रूप से यौगिक नाम दिया गया है: बीटा-द्विपद वितरण, बीटा नकारात्मक द्विपद वितरण, गामा-सामान्य वितरण।
उदाहरण:
- यदि X एक द्विपद(n,p) यादृच्छिक चर है, और पैरामीटर p बीटा(α, β) वितरण के साथ एक यादृच्छिक चर है, तब X को बीटा-द्विपद(α,β,n) के रूप में वितरित किया जाता है।
- यदि X एक नकारात्मक-द्विपद(r,p) यादृच्छिक चर है, और पैरामीटर p बीटा(α, के साथ एक यादृच्छिक चर है β) वितरण, फिर X को बीटा ऋणात्मक द्विपद वितरण(r,α,β) के रूप में वितरित किया जाता है।
यह भी देखें
- केंद्रीय सीमा प्रमेय
- यौगिक संभाव्यता वितरण
- संभाव्यता वितरण के संकल्पों की सूची
संदर्भ
- ↑ LEEMIS, Lawrence M.; Jacquelyn T. MCQUESTON (February 2008). "यूनीवेरिएट वितरण संबंध" (PDF). American Statistician. 62 (1): 45–53. doi:10.1198/000313008x270448. S2CID 9367367.
- ↑ Swat, MJ; Grenon, P; Wimalaratne, S (2016). "ProbOnto: ontology and knowledge base of probability distributions". Bioinformatics. 32 (17): 2719–21. doi:10.1093/bioinformatics/btw170. PMC 5013898. PMID 27153608.
- ↑ Cook, John D. "वितरण संबंधों का आरेख".
- ↑ Dinov, Ivo D.; Siegrist, Kyle; Pearl, Dennis; Kalinin, Alex; Christou, Nicolas (2015). "Probability Distributome: a web computational infrastructure for exploring the properties, interrelations, and applications of probability distributions". Computational Statistics. 594 (2): 249–271. doi:10.1007/s00180-015-0594-6. PMC 4856044. PMID 27158191.
बाहरी संबंध
- Interactive graphic: Univariate Distribution Relationships
- ProbOnto - Ontology and knowledge base of probability distributions: ProbOnto
- Probability Distributome project includes calculators, simulators, experiments, and navigators for inter-distributional refashions and distribution meta-data.