वैन डेर वाल्स त्रिज्या: Difference between revisions
No edit summary |
No edit summary |
||
Line 64: | Line 64: | ||
{| class="wikitable floatright" align=right | {| class="wikitable floatright" align=right | ||
|- | |- | ||
! | ! गैस | ||
! ''d'' ([[Ångström|Å]]) | ! ''d'' ([[Ångström|Å]]) | ||
! ''b'' (cm{{sup|3}}mol{{sup|–1}}) | ! ''b'' (cm{{sup|3}}mol{{sup|–1}}) | ||
Line 70: | Line 70: | ||
! ''r''{{sub|w}} (Å) | ! ''r''{{sub|w}} (Å) | ||
|- | |- | ||
| [[Hydrogen]] | | [[Hydrogen|हाइड्रोजन]] | ||
| 0.74611 | | 0.74611 | ||
| align=center | 26.61 | | align=center | 26.61 | ||
Line 76: | Line 76: | ||
| 2.02 | | 2.02 | ||
|- | |- | ||
| [[Nitrogen]] | | [[Nitrogen|नाइट्रोजन]] | ||
| 1.0975 | | 1.0975 | ||
| align=center | 39.13 | | align=center | 39.13 | ||
Line 82: | Line 82: | ||
| 2.25 | | 2.25 | ||
|- | |- | ||
| [[Oxygen]] | | [[Oxygen|ऑक्सीजन]] | ||
| 1.208 | | 1.208 | ||
| align=center | 31.83 | | align=center | 31.83 | ||
Line 88: | Line 88: | ||
| 2.06 | | 2.06 | ||
|- | |- | ||
| [[Chlorine]] | | [[Chlorine|क्लोरीन]] | ||
| 1.988 | | 1.988 | ||
| align=center | 56.22 | | align=center | 56.22 | ||
Line 96: | Line 96: | ||
| colspan=5 | <small>van der Waals radii ''r''{{sub|w}} in Å (or in 100 picometers) calculated from the [[van der Waals constant]]s<br/>of some diatomic gases. Values of ''d'' and ''b'' from Weast (1981).</small> | | colspan=5 | <small>van der Waals radii ''r''{{sub|w}} in Å (or in 100 picometers) calculated from the [[van der Waals constant]]s<br/>of some diatomic gases. Values of ''d'' and ''b'' from Weast (1981).</small> | ||
|} | |} | ||
वैन | वैन दे वाल्स स्थिरांक b द्वारा एक एटम या अणु का वैन दे वाल्स आयतन गैसों पर आधारित प्रयोगात्मक डेटा से निर्धारित किया जा सकता है। | ||
[[हीलियम]] के लिए,<ref name="CRC">{{RubberBible62nd}}, p. D-166.</ref> बी = 23.7 सेमी{{sup|3}}/मोल | [[हीलियम]] के लिए,<ref name="CRC">{{RubberBible62nd}}, p. D-166.</ref> बी = 23.7 सेमी{{sup|3}}/मोल होता है। हीलियम एक [[मोनोएटोमिक गैस]] है, और हीलियम के प्रत्येक मोल में होता है {{val|6.022|e=23}} परमाणु (अवोगाद्रो स्थिरांक, N{{sub|A}}): | ||
<math display="block">V_{\rm w} = {b\over{N_{\rm A}}}</math> | <math display="block">V_{\rm w} = {b\over{N_{\rm A}}}</math> | ||
इसलिए, एकल परमाणु | इसलिए, एकल परमाणु का वैन डेर वाल्स आयतन V{{sub|w}} = 39.36 A{{sup|3}} होता है, जो r{{sub|w}} = 2.11 Å (≈ 200 पिकोमीटर) को बराबर होता है । इस विधि को द्वातारा द्वीअणु गैसों तक फैलाया जा सकता है जहाँ धराई को {{math|2''r''{{sub|w}}}} और अंतर-नाभिकीय दूरी को {{mvar|d}}. के रूप में एक रॉड के रूप में अनुमानित किया जा सकता है। बीजगणित कठिन होता है, लेकिन रिश्ता | ||
इस विधि को | |||
बीजगणित | |||
<math display="block">V_{\rm w} = {4\over 3}\pi r_{\rm w}^3 + \pi r_{\rm w}^2d</math> | <math display="block">V_{\rm w} = {4\over 3}\pi r_{\rm w}^3 + \pi r_{\rm w}^2d</math> | ||
[[घन कार्य]] | [[घन कार्य|घन कार्यों]] के लिए सामान्य तरीकों से हल किया जा सकता है। | ||
=== क्रिस्टलोग्राफिक माप === | === क्रिस्टलोग्राफिक माप === | ||
Line 114: | Line 112: | ||
बॉन्डी के कुछ आंकड़े इस आलेख के शीर्ष पर तालिका में दिए गए हैं, और वे तत्वों के वैन डेर वाल्स रेडी के लिए सबसे व्यापक रूप से उपयोग किए जाने वाले सर्वसम्मति मूल्य बने हुए हैं। | बॉन्डी के कुछ आंकड़े इस आलेख के शीर्ष पर तालिका में दिए गए हैं, और वे तत्वों के वैन डेर वाल्स रेडी के लिए सबसे व्यापक रूप से उपयोग किए जाने वाले सर्वसम्मति मूल्य बने हुए हैं। | ||
स्कॉट रोलैंड और रॉबिन टेलर ने हाल ही के क्रिस्टलोग्राफिक डेटा के आलोक में इन 1964 के आंकड़ों की फिर से जांच की: कुल मिलाकर, समझौता बहुत अच्छा था, हालांकि वे बॉन्डी के विपरीत [[हाइड्रोजन]] के वैन डेर वाल्स त्रिज्या के लिए 1.09 Å के मान की सिफारिश करते हैं। 1.20 ए.<ref name="RowlandRS1996"/>सैंटियागो अल्वारेज़ द्वारा किए गए [[कैम्ब्रिज स्ट्रक्चरल डेटाबेस]] का एक और हालिया विश्लेषण, 93 स्वाभाविक रूप से होने वाले तत्वों के लिए मूल्यों का एक नया सेट प्रदान करता है।<ref name="Alvarez2013">{{cite journal | first = Santiago | last = Alvareza | year =2013 | title = वैन डेर वाल्स प्रदेशों की एक नक्शानवीसी| journal = [[Dalton Trans.]] | volume = 42 | issue = 24 | pages = 8617–36 | doi= 10.1039/C3DT50599E| pmid = 23632803 | doi-access = free }}</ref> | स्कॉट रोलैंड और रॉबिन टेलर ने हाल ही के क्रिस्टलोग्राफिक डेटा के आलोक में इन 1964 के आंकड़ों की फिर से जांच की: कुल मिलाकर, समझौता बहुत अच्छा था, हालांकि वे बॉन्डी के विपरीत [[हाइड्रोजन]] के वैन डेर वाल्स त्रिज्या के लिए 1.09 Å के मान की सिफारिश करते हैं। 1.20 ए.<ref name="RowlandRS1996"/>सैंटियागो अल्वारेज़ द्वारा किए गए [[कैम्ब्रिज स्ट्रक्चरल डेटाबेस]] का एक और हालिया विश्लेषण, 93 स्वाभाविक रूप से होने वाले तत्वों के लिए मूल्यों का एक नया सेट प्रदान करता है।<ref name="Alvarez2013">{{cite journal | first = Santiago | last = Alvareza | year =2013 | title = वैन डेर वाल्स प्रदेशों की एक नक्शानवीसी| journal = [[Dalton Trans.]] | volume = 42 | issue = 24 | pages = 8617–36 | doi= 10.1039/C3DT50599E| pmid = 23632803 | doi-access = free }}</ref> | ||
क्रिस्टलोग्राफिक डेटा (यहाँ [[न्यूट्रॉन विवर्तन]]) के | |||
एक सामान्य उदाहरण मोटा होने के कारण ठीक तरह से समझाया जाता है कि क्रिस्टलोग्राफिक डेटा (यहाँ [[न्यूट्रॉन विवर्तन]]) का उपयोग करते हुए हैलियम के ठोस रूप के मामले को विचार किया जाए, जहां एटमों को केवल वैन देर वाल्स बलों ([[सहसंयोजक बंधन]] या धात्विक बंधों के बजाय) द्वारा एक साथ बाँधा रखा जाता है और इसलिए नाबी की दोगुनी तुलना में नाबी-एटम की दूरी को बराबर माना जा सकता है। 1.1 के तापमान और 66 एटम के दबाव पर ठोस हीलियम की घनत्व {{val|0.214|(6)|u=g/cm3}} है, को बताता है। वैन देर वाल्स आयतनघट निम्नलिखित से दिया जाता है।<ref name="Henshaw1958">{{cite journal | first = D.G. | last = Henshaw | year = 1958 | title = न्यूट्रॉन विवर्तन द्वारा ठोस हीलियम की संरचना| journal = [[Physical Review]] | volume = 109 | issue = 2 | pages = 328–330 | doi = 10.1103/PhysRev.109.328|bibcode = 1958PhRv..109..328H }}</ref> | |||
<math display="block">V_{\rm w} = \frac{\pi V_{\rm m}}{N_{\rm A}\sqrt{18}}</math> | <math display="block">V_{\rm w} = \frac{\pi V_{\rm m}}{N_{\rm A}\sqrt{18}}</math> | ||
जहां π/√18 का कारक [[गोले की पैकिंग]] से उत्पन्न होता है: V{{sub|w}} = {{val|2.30|e=-29|u=m3}} = 23.0 ए{{sup|3}}, एक वैन डेर वाल्स त्रिज्या आर के अनुरूप{{sub|w}} = 1.76 ए. | जहां π/√18 का कारक [[गोले की पैकिंग]] से उत्पन्न होता है: V{{sub|w}} = {{val|2.30|e=-29|u=m3}} = 23.0 ए{{sup|3}}, एक वैन डेर वाल्स त्रिज्या आर के अनुरूप{{sub|w}} = 1.76 ए. | ||
Line 124: | Line 121: | ||
दाढ़ अपवर्तकता {{mvar|A}गैस का } उसके अपवर्तनांक से संबंधित है {{mvar|n}} लोरेंत्ज़-लॉरेंज समीकरण द्वारा: | दाढ़ अपवर्तकता {{mvar|A}गैस का } उसके अपवर्तनांक से संबंधित है {{mvar|n}} लोरेंत्ज़-लॉरेंज समीकरण द्वारा: | ||
<math display="block">A = \frac{R T (n^2 - 1)}{3p}</math> | <math display="block">A = \frac{R T (n^2 - 1)}{3p}</math> | ||
वास्तव में अगर हेलियम के एटम को केवल वां दे वाल्स बलों से जुड़ा माना जाए तो नाभिकीय वक्रता n = 1.0000350 है जो 0 °C और 101.325 kPa पर होती है।<ref>Kaye & Laby Tables, [http://www.kayelaby.npl.co.uk/general_physics/2_5/2_5_7.html Refractive index of gases].</ref> इसका मोलार वक्रत्ता A = {{val|5.23|e=-7|u=m3/mol}} होता है।अवोगैड्रो कोण्स्टेंट से विभाजित करने से V{{sub|w}} = {{val|8.685|e=-31|u=m3}} = 0.8685 ए{{sup|3}}, जो r{{sub|w}} = 0.59 के बराबर होता है। | |||
=== ध्रुवीकरण === | === ध्रुवीकरण === | ||
गैस की | एक गैस की ध्रुवीयता α इसकी [[विद्युत संवेदनशीलता]] χ {{sub|e}} से रिश्तेदार होती है जो सम्बन्ध निम्न रूप से होता है: | ||
<math display="block">\alpha = {\varepsilon_0 k_{\rm B}T\over p}\chi_{\rm e}</math> | <math display="block">\alpha = {\varepsilon_0 k_{\rm B}T\over p}\chi_{\rm e}</math> | ||
परमानु के उत्थान क्षमता ε{{sub|r}}को उसकी विद्युतवर्धित क्षमता χ{{sub|e}} से जोड़ा जाता है ''χ''<sub>e</sub> = ''ε''<sub>r</sub> − 1 के सम्बन्ध से निर्धारित किया जाता है। हीलियम की विद्युतवर्धित क्षमता χ{{sub|e}} = {{val|7|e=-5}} 0 °C और 101.325 kPa पर होती है,<ref>Kaye & Laby Tables, [http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_5.html Dielectric Properties of Materials].</ref> जो परमानु के उत्थान क्षमता α = {{val|2.307|e=-41|u=C⋅m<sup>2</sup>/V}}. | |||
हीलियम χ | |||
ध्रुवीकरणीयता वैन डेर वाल्स आयतन के संबंध से संबंधित है | ध्रुवीकरणीयता वैन डेर वाल्स आयतन के संबंध से संबंधित है | ||
<math display="block">V_{\rm w} = {1\over{4\pi\varepsilon_0}}\alpha ,</math> | <math display="block">V_{\rm w} = {1\over{4\pi\varepsilon_0}}\alpha ,</math> |
Revision as of 15:28, 2 April 2023
तत्व | रेडियस (Å) |
---|---|
हाइड्रोजन | 1.2 (1.09)[1] |
कार्बन | 1.7 |
नाइट्रोजन | 1.55 |
ऑक्सीजन | 1.52 |
एक अधातु तत्त्व | 1.47 |
फास्फोरस | 1.8 |
गंधक | 1.8 |
क्लोरीन | 1.75 |
ताँबा | 1.4 |
वैन डेर वाल्स रेडी से लिया जाता हैबौंडी का संकलन (1964).[2] अन्य स्रोतों से मूल्य हो सकता है महत्वपूर्ण रूप से भिन्न (पाठ देखें) |
Types of radii |
---|
वैन डेर वाल्स त्रिज्या, rw,एक परमाणु की वास्तविक आकार को दर्शाने वाले एक कठोर गोला का त्रिज्या होता है जो दूसरे परमाणु के सबसे करीबी पहुंच की दूरी को दर्शाता है। यह 1910 के नोबेल पुरस्कार के विजेता जोहान्स डिडेरिक वैन डेर वाल्स के नाम पर रखा गया है, क्योंकि उन्होंने सबसे पहले यह समझा था कि परमाणु सिर्फ एक बिंदु (ज्यामिति) नहीं होते और वैन डेर वाल्स समीकरण के माध्यम से उनके आकार के भौतिक परिणामों को प्रदर्शित किया था। .
वैन डेर वाल्स वॉल्यूम
वैन डेर वाल्स वॉल्यूम, वीw, जिसे परमाणु आयतन या आणविक आयतन भी कहा जाता है, वान देर वाल्स त्रिज्या से सीधे संबंधित अणु गुणधर्म है। यह एकल परमाणु (या आणु) द्वारा "अधिकृत" आयतित आयतन होता है। वान देर वाल्स आयतन की गणना वान देर वाल्स त्रिज्याओं (और आणुओं के लिए, आणु-आणु दूरियों और कोणों को जानते हुए) के जाने से की जा सकती है। एकल परमाणु के लिए, यह एक गोला है जिसका त्रिज्या वान देर वाल्स त्रिज्या होता है:
एक परमाणु या अणु की वैन डेर वाल्स मात्रा भी गैसों पर प्रयोगात्मक माप द्वारा निर्धारित की जा सकती है, विशेष रूप से वैन डेर वाल्स स्थिरांक बी, ध्रुवीकरण α, या दाढ़ अपवर्तकता ए से।तीनों मामलों में, माप मैक्रोस्कोपिक नमूनों पर किए जाते हैं और परिणामों को तिल (इकाई) मात्रा के रूप में व्यक्त करना सामान्य है।एकल परमाणु या अणु के वैन डेर वाल्स आयतन का पता लगाने के लिए, अवोगाद्रो स्थिरांक NA द्वारा विभाजित करना आवश्यक है.
दाढ़ वैन डेर वाल्स मात्रा पदार्थ की दाढ़ मात्रा के साथ भ्रमित नहीं होना चाहिए। सामान्य तौर पर, सामान्य प्रयोगशाला तापमान और दबावों पर, गैस के परमाणु या अणु केवल लगभग घेरते हैं 1⁄1000 गैस का आयतन, शेष खाली स्थान है। इसलिए दाढ़ वैन डेर वाल्स आयतन, जो केवल परमाणुओं या अणुओं द्वारा घेरे गए आयतन की गणना करता है, आमतौर पर लगभग होता है 1000 मानक तापमान और दबाव पर गैस के मोलर आयतन से कई गुना कम।
वैन डेर वाल्स रेडी की तालिका
Group → | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
↓ Period | |||||||||||||||||||||
1 | H 110[1] or 120 |
He140 | |||||||||||||||||||
2 | Li182 | Be153[3] | B 192[3] | C 170 | N 155 | O 152 | F 147 | Ne154 | |||||||||||||
3 | Na227 | Mg173 | Al184[3] | Si210 | P 180 | S 180 | Cl175 | Ar188 | |||||||||||||
4 | K 275 | Ca231[3] | Sc211[3] | Ti | V | Cr | Mn | Fe | Co | Ni163 | Cu140 | Zn139 | Ga187 | Ge211[3] | As185 | Se190 | Br185 | Kr202 | |||
5 | Rb303[3] | Sr249[3] | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd163 | Ag172 | Cd158 | In193 | Sn217 | Sb206[3] | Te206 | I 198 | Xe216 | |||
6 | Cs343[3] | Ba268[3] | Lu | Hf | Ta | W | Re | Os | Ir | Pt175 | Au166 | Hg155 | Tl196 | Pb202 | Bi207[3] | Po197[3] | At202[3] | Rn220[3] | |||
7 | Fr348[3] | Ra283[3] | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||
La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | ||||||||
Ac | Th | Pa | U 186 | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | ||||||||
Legend | |||||||||||||||||||||
Values for the van der Waals radii are in picometers (pm or 1×10−12 m) | |||||||||||||||||||||
The shade of the box ranges from red to yellow as the radius increases; Gray indicate a lack of data. | |||||||||||||||||||||
Unless indicated otherwise, the data is from Mathematica's ElementData function from Wolfram Research, Inc.[4] | |||||||||||||||||||||
Primordial [[Trace radioisotope|From decay]] Synthetic Border shows natural occurrence of the element |
निर्धारण के तरीके
वान देर वाल्स त्रिज्या घनत्व को गैसों की यांत्रिकी गुणों (मूल विधि), महत्वपूर्ण बिंदु (थर्मोडायनामिक्स) से, क्रिस्टल में असंबद्ध परमाणुओं के जोड़े के बीच परमाणु रिक्ति के माप से या विद्युत या ऑप्टिकल गुणों (ध्रुवीकरण) के माप से निर्धारित किया जा सकता है। और दाढ़ अपवर्तकता)। इन विभिन्न विधियों से पाये गए वान देर वाल्स त्रिज्या के मान समान होते हैं (1–2 Å, 100–200 पिसोमेट्रे) लेकिन एक दूसरे से बिल्कुल एक जैसे नहीं होते। वैन डेर वाल्स रेडी के सारणीबद्ध मूल्यों को कई अलग-अलग प्रायोगिक मूल्यों के भारित माध्य से प्राप्त किया जाता है, और इसी कारण से, एक ही अणु के वान देर वाल्स त्रिज्या के लिए अलग-अलग सारणियों में अलग-अलग मान होते हैं। वास्तव में, सभी परिस्थितियों में अणु का वान देर वाल्स त्रिज्या एक निश्चित गुण नहीं होता है: बल्कि, यह उस विशिष्ट रासायनिक पर्यावरण के साथ अणु के विशिष्ट रूप में परिवर्तित होता है।[2]
राज्य का वैन डेर वाल्स समीकरण
वान देर वाल्स अधिसूचना स्थिति संगति आवेदन आदर्श गैस कानून का सबसे सरल और सबसे अच्छी तरह से जाना गया संशोधन है
वैन डेर वाल्स समीकरण का भी एक सूक्ष्मतावधान होता है: एक दूसरे से जुड़े हुए अणु। एक बहुत ही छोटी दूरी पर इंतजाम तीव्रता से विरोधात्मक होता है, मध्यम दूरी पर थोड़ा आकर्षक होता है, और लंबी दूरी पर अदृश्य हो जाता है। आकर्षक और विरोधात्मक बलों को ध्यान में रखते हुए आदर्श गैस के समीकरण में सुधार करना आवश्यक होता है। उदाहरण के लिए, अणुओं के बीच मिलती जुलती घुसपैठ के परिणामस्वरूप होने वाली मुतुअल विरोधात्मकता, हर अणु के चारों ओर एक निश्चित मात्रा के जगह छोड़ देने का प्रभाव डालती है। इस प्रकार, एक मोलेक्यूल अपने आसामी गति को करते हुए, कुछ जगहों पर दूसरी मोलेक्यूलों को घेरने के लिए उपलब्ध नहीं होती है। वस्तु के समष्टि में इस जगह का आंशिक आवरण (nb) उससे कम कर दिया जाना चाहिए, इस प्रकार :(V - nb).वैन डेर वाल्स बल समीकरण में एक और शब्द जो प्रविष्ट किया जाता है , अल्प आकर्षणीय बलों का वर्णन करता है, जो मोलेक्यूलों के बीच में कमजोर आकर्षणीय बल के रूप में जाना जाता है। यह बल न बढ़ता है न कम होता है, जब एन बढ़ता है या वी घटता है और मोलेक्यूल एक दूसरे के पास जगह बनाने के लिए अधिक भीड़ होती है।
गैस | d (Å) | b (cm3mol–1) | Vw (Å3) | rw (Å) |
---|---|---|---|---|
हाइड्रोजन | 0.74611 | 26.61 | 44.19 | 2.02 |
नाइट्रोजन | 1.0975 | 39.13 | 64.98 | 2.25 |
ऑक्सीजन | 1.208 | 31.83 | 52.86 | 2.06 |
क्लोरीन | 1.988 | 56.22 | 93.36 | 2.39 |
van der Waals radii rw in Å (or in 100 picometers) calculated from the van der Waals constants of some diatomic gases. Values of d and b from Weast (1981). |
वैन दे वाल्स स्थिरांक b द्वारा एक एटम या अणु का वैन दे वाल्स आयतन गैसों पर आधारित प्रयोगात्मक डेटा से निर्धारित किया जा सकता है।
हीलियम के लिए,[5] बी = 23.7 सेमी3/मोल होता है। हीलियम एक मोनोएटोमिक गैस है, और हीलियम के प्रत्येक मोल में होता है 6.022×1023 परमाणु (अवोगाद्रो स्थिरांक, NA):
क्रिस्टलोग्राफिक माप
आणविक क्रिस्टल में अणु रासायनिक बंधों के बजाय वैन डेर वाल्स बलों द्वारा एक साथ बंधे होते हैं। सिद्धांत रूप में, विभिन्न अणुओं से संबंधित दो परमाणु एक दूसरे के निकट आ सकते हैं जो उनके वैन डेर वाल्स रेडी के योग द्वारा दिया जाता है। आणविक क्रिस्टल की बड़ी संख्या में संरचनाओं की जांच करके, प्रत्येक प्रकार के परमाणु के लिए एक न्यूनतम त्रिज्या का पता लगाना संभव है, ताकि अन्य गैर-बंधित परमाणु किसी भी करीब का अतिक्रमण न करें। इस दृष्टिकोण का पहली बार उपयोग लिनस पॉलिंग ने अपने सेमिनल वर्क द नेचर ऑफ द केमिकल बॉन्ड में किया था।[6] अर्नोल्ड बॉन्डी ने भी इस प्रकार का एक अध्ययन किया, जो 1964 में प्रकाशित हुआ,[2]हालांकि उन्होंने अपने अंतिम अनुमानों पर आने में वैन डेर वाल्स त्रिज्या के निर्धारण के अन्य तरीकों पर भी विचार किया। बॉन्डी के कुछ आंकड़े इस आलेख के शीर्ष पर तालिका में दिए गए हैं, और वे तत्वों के वैन डेर वाल्स रेडी के लिए सबसे व्यापक रूप से उपयोग किए जाने वाले सर्वसम्मति मूल्य बने हुए हैं। स्कॉट रोलैंड और रॉबिन टेलर ने हाल ही के क्रिस्टलोग्राफिक डेटा के आलोक में इन 1964 के आंकड़ों की फिर से जांच की: कुल मिलाकर, समझौता बहुत अच्छा था, हालांकि वे बॉन्डी के विपरीत हाइड्रोजन के वैन डेर वाल्स त्रिज्या के लिए 1.09 Å के मान की सिफारिश करते हैं। 1.20 ए.[1]सैंटियागो अल्वारेज़ द्वारा किए गए कैम्ब्रिज स्ट्रक्चरल डेटाबेस का एक और हालिया विश्लेषण, 93 स्वाभाविक रूप से होने वाले तत्वों के लिए मूल्यों का एक नया सेट प्रदान करता है।[7]
एक सामान्य उदाहरण मोटा होने के कारण ठीक तरह से समझाया जाता है कि क्रिस्टलोग्राफिक डेटा (यहाँ न्यूट्रॉन विवर्तन) का उपयोग करते हुए हैलियम के ठोस रूप के मामले को विचार किया जाए, जहां एटमों को केवल वैन देर वाल्स बलों (सहसंयोजक बंधन या धात्विक बंधों के बजाय) द्वारा एक साथ बाँधा रखा जाता है और इसलिए नाबी की दोगुनी तुलना में नाबी-एटम की दूरी को बराबर माना जा सकता है। 1.1 के तापमान और 66 एटम के दबाव पर ठोस हीलियम की घनत्व 0.214(6) g/cm3 है, को बताता है। वैन देर वाल्स आयतनघट निम्नलिखित से दिया जाता है।[8]
दाढ़ अपवर्तकता
दाढ़ अपवर्तकता {{mvar|A}गैस का } उसके अपवर्तनांक से संबंधित है n लोरेंत्ज़-लॉरेंज समीकरण द्वारा:
ध्रुवीकरण
एक गैस की ध्रुवीयता α इसकी विद्युत संवेदनशीलता χ e से रिश्तेदार होती है जो सम्बन्ध निम्न रूप से होता है:
जब परमाणु ध्रुवीकरण को आयतन की इकाइयों जैसे Å में उद्धृत किया जाता है3, जैसा कि अक्सर होता है, यह वैन डेर वाल्स आयतन के बराबर होता है। हालाँकि, परमाणु ध्रुवीकरण शब्द को पसंद किया जाता है क्योंकि ध्रुवीकरण एक सटीक परिभाषित (और औसत दर्जे का) भौतिक मात्रा है, जबकि वैन डेर वाल्स वॉल्यूम में माप की विधि के आधार पर कई परिभाषाएँ हो सकती हैं।
यह भी देखें
- तत्वों की परमाणु त्रिज्या (डेटा पृष्ठ)
- वैन डेर वाल्स बल
- वैन डेर वाल्स अणु
- वैन डेर वाल्स स्ट्रेन
- वैन डेर वाल्स सतह
संदर्भ
- ↑ 1.0 1.1 1.2 Rowland RS, Taylor R (1996). "Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii". J. Phys. Chem. 100 (18): 7384–7391. doi:10.1021/jp953141+.
- ↑ 2.0 2.1 2.2 Bondi, A. (1964). "van der Waals Volumes and Radii". J. Phys. Chem. 68 (3): 441–451. doi:10.1021/j100785a001.
- ↑ 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G. (2009). "Consistent van der Waals Radii for the Whole Main Group". The Journal of Physical Chemistry A. 113 (19): 5806–5812. doi:10.1021/jp8111556. PMC 3658832.
- ↑ "van der Waals Radius of the elements". Wolfram.
- ↑ Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0462-8., p. D-166.
- ↑ Pauling, Linus (1945). रासायनिक बंधन की प्रकृति. Ithaca, NY: Cornell University Press. ISBN 978-0-8014-0333-0.
- ↑ Alvareza, Santiago (2013). "वैन डेर वाल्स प्रदेशों की एक नक्शानवीसी". Dalton Trans. 42 (24): 8617–36. doi:10.1039/C3DT50599E. PMID 23632803.
- ↑ Henshaw, D.G. (1958). "न्यूट्रॉन विवर्तन द्वारा ठोस हीलियम की संरचना". Physical Review. 109 (2): 328–330. Bibcode:1958PhRv..109..328H. doi:10.1103/PhysRev.109.328.
- ↑ Kaye & Laby Tables, Refractive index of gases.
- ↑ Kaye & Laby Tables, Dielectric Properties of Materials.
अग्रिम पठन
- Huheey, James E.; Keiter, Ellen A.; Keiter, Richard L. (1997). Inorganic Chemistry: Principles of Structure and Reactivity (4th ed.). New York: Prentice Hall. ISBN 978-0-06-042995-9.
बाहरी संबंध
- van der Waals Radius of the elements at PeriodicTable.com
- van der Waals Radius – Periodicity at WebElements.com