क्यू-पोछाम्मेर सिंबल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:
साधारण पोचहैमर चिह्न के विपरीत, क्यू-पोचममेर चिह्न को एक अनंत उत्पाद में  विस्तारित किया जा सकता है:
साधारण पोचहैमर चिह्न के विपरीत, क्यू-पोचममेर चिह्न को एक अनंत उत्पाद में  विस्तारित किया जा सकता है:
<math display="block">(a;q)_\infty = \prod_{k=0}^{\infty} (1-aq^k).</math>
<math display="block">(a;q)_\infty = \prod_{k=0}^{\infty} (1-aq^k).</math>
यह यूनिट डिस्क के अंदर q के लिए एक [[विश्लेषणात्मक कार्य]] है, और इसे q में एक [[औपचारिक शक्ति श्रृंखला]] के रूप में भी माना जा सकता है। विशेष मामला
यह यूनिट डिस्क के अंदर क्यू के लिए एक [[विश्लेषणात्मक कार्य]] है, और इसे क्यू में एक [[औपचारिक शक्ति श्रृंखला]] के रूप में भी माना जा सकता है। विशेष मामला
<math display="block">\phi(q) = (q;q)_\infty=\prod_{k=1}^\infty (1-q^k)</math>
<math display="block">\phi(q) = (q;q)_\infty=\prod_{k=1}^\infty (1-q^k)</math>
यूलर के कार्य के रूप में जाना जाता है, और संयोजक, [[संख्या सिद्धांत]] और [[मॉड्यूलर रूप]] के सिद्धांत में महत्वपूर्ण है।
यूलर के कार्य के रूप में जाना जाता है, और संयोजक, [[संख्या सिद्धांत]] और [[मॉड्यूलर रूप]] के सिद्धांत में महत्वपूर्ण है।
Line 51: Line 51:
                     = \sum_{k=0}^\infty \left(q^{k\choose 2} \prod_{j=1}^k \frac{1}{1-q^j}\right) a^k
                     = \sum_{k=0}^\infty \left(q^{k\choose 2} \prod_{j=1}^k \frac{1}{1-q^j}\right) a^k
                     = \sum_{k=0}^\infty \frac{q^{k\choose 2}}{(q;q)_k} a^k</math>
                     = \sum_{k=0}^\infty \frac{q^{k\choose 2}}{(q;q)_k} a^k</math>
उपरोक्त खंड में भी वर्णित है।फलन का व्युत्क्रम <math>(q)_{\infty} := (q; q)_{\infty}</math> उसी तरह से, [[विभाजन समारोह (संख्या सिद्धांत)|विभाजन फ़ंक्शन(संख्या सिद्धांत)]] <math>p(n)</math> के लिए जनरेटिंग कार्य के रूप में उत्पन्न होता है, , जिसे नीचे दिए गए दूसरे दो q-श्रृंखला विस्तारों द्वारा भी विस्तारित किया गया है:<ref>{{cite web|last1=Berndt|first1=B. C.|title=What is a q-series?|url=http://www.math.uiuc.edu/~berndt/articles/q.pdf}}</ref>
उपरोक्त खंड में भी वर्णित है।फलन का व्युत्क्रम <math>(q)_{\infty} := (q; q)_{\infty}</math> उसी तरह से, [[विभाजन समारोह (संख्या सिद्धांत)|विभाजन फ़ंक्शन(संख्या सिद्धांत)]] <math>p(n)</math> के लिए जनरेटिंग कार्य के रूप में उत्पन्न होता है, , जिसे नीचे दिए गए दूसरे दो क्यू-श्रृंखला विस्तारों द्वारा भी विस्तारित किया गया है:<ref>{{cite web|last1=Berndt|first1=B. C.|title=What is a q-series?|url=http://www.math.uiuc.edu/~berndt/articles/q.pdf}}</ref>
<math display="block">\frac{1}{(q; q)_{\infty}} = \sum_{n \geq 0} p(n) q^n = \sum_{n \geq 0} \frac{q^n}{(q; q)_n} = \sum_{n \geq 0} \frac{q^{n^2}}{(q; q)_n^2}. </math>
<math display="block">\frac{1}{(q; q)_{\infty}} = \sum_{n \geq 0} p(n) q^n = \sum_{n \geq 0} \frac{q^n}{(q; q)_n} = \sum_{n \geq 0} \frac{q^{n^2}}{(q; q)_n^2}. </math>
q-बाइनोमियल उद्धरण खुद एक थोड़ी और विस्तृत संख्यात्मक तर्क के द्वारा उठाया जा सकता है जो एक इसी प्रकार का स्वाद रखता है (अगले उपखण्ड में दिए गए विस्तारों को देखें)।
क्यू-बाइनोमियल उद्धरण खुद एक थोड़ी और विस्तृत संख्यात्मक तर्क के द्वारा उठाया जा सकता है जो एक इसी प्रकार का स्वाद रखता है (अगले उपखण्ड में दिए गए विस्तारों को देखें)।


इसी तरह,<math display="block">(q; q)_{\infty} = 1 - \sum_{n \geq 0} q^{n+1}(q; q)_n = \sum_{n \geq 0} q^{\frac{n(n+1)}{2}}\frac{(-1)^n}{(q; q)_n}.</math>
इसी तरह,<math display="block">(q; q)_{\infty} = 1 - \sum_{n \geq 0} q^{n+1}(q; q)_n = \sum_{n \geq 0} q^{\frac{n(n+1)}{2}}\frac{(-1)^n}{(q; q)_n}.</math>
Line 60: Line 60:
== एकाधिक तर्क सम्मेलन ==
== एकाधिक तर्क सम्मेलन ==


चूंकि q-पोचहैमर चिह्नों से संबंधित पहचान में अक्सर कई चिह्नों के उत्पाद शामिल होते हैं, मानक सम्मेलन एक उत्पाद को कई तर्कों के एकल चिह्न के रूप में लिखना है:
चूंकि क्यू-पोचहैमर चिह्नों से संबंधित उद्धरण अक्सर कई प्रतीकों के उत्पादों को शामिल करते हैं, इसलिए मानक अनुशासन एक उपकरण के रूप में एक उत्पाद को कई तर्कों का एक एकल प्रतीक लिखना है::
<math display="block">(a_1,a_2,\ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n \ldots (a_m;q)_n.</math>
<math display="block">(a_1,a_2,\ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n \ldots (a_m;q)_n.</math>


Line 66: Line 66:
== क्यू-श्रृंखला ==
== क्यू-श्रृंखला ==


एक क्यू-श्रृंखला एक [[श्रृंखला (गणित)]] है जिसमें गुणांक क्यू के कार्य होते हैं, आमतौर पर अभिव्यक्ति <math>(a; q)_{n}</math>.<ref>Bruce C. Berndt, [http://www.math.uiuc.edu/~berndt/articles/q.pdf What is a ''q''-series?], in Ramanujan Rediscovered: Proceedings of a Conference on Elliptic Functions, Partitions, and q-Series in memory of K. Venkatachaliengar: Bangalore, 1–5 June 2009, N. D. Baruah, B. C. Berndt, S. Cooper, T. Huber, and M. J. Schlosser, eds., Ramanujan Mathematical Society, Mysore, 2010, pp. 31-51</ref> प्रारंभिक परिणाम [[यूलर]], [[गॉस]] और [[कॉची]] के कारण हैं। व्यवस्थित अध्ययन [[एडवर्ड हेन]] (1843) के साथ शुरू होता है।<ref>{{cite web|last1=Heine|first1=E.|title=Untersuchungen über die Reihe|url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0034?tify=%7B%22view%22%3A%22info%22%2C%22pages%22%3A%5B299%5D%7D}} J. Reine Angew. Math. 34 (1847), 285-328</ref>
क्यू-श्रृंखला एक [[श्रृंखला (गणित)]] है जिसमें गुणांक एक क्यू के फ़ंक्शन होते हैं, फ़ंक्शन  <math>(a; q)_{n}</math>.<ref>Bruce C. Berndt, [http://www.math.uiuc.edu/~berndt/articles/q.pdf What is a ''q''-series?], in Ramanujan Rediscovered: Proceedings of a Conference on Elliptic Functions, Partitions, and q-Series in memory of K. Venkatachaliengar: Bangalore, 1–5 June 2009, N. D. Baruah, B. C. Berndt, S. Cooper, T. Huber, and M. J. Schlosser, eds., Ramanujan Mathematical Society, Mysore, 2010, pp. 31-51</ref> इसके पहले परिणाम [[यूलर]], [[गॉस]] और [[कॉची]] के लिए हैं। संगठित अध्ययन [[एडवर्ड हेन]] (1843) के साथ शुरू होता है।<ref>{{cite web|last1=Heine|first1=E.|title=Untersuchungen über die Reihe|url=https://gdz.sub.uni-goettingen.de/id/PPN243919689_0034?tify=%7B%22view%22%3A%22info%22%2C%22pages%22%3A%5B299%5D%7D}} J. Reine Angew. Math. 34 (1847), 285-328</ref>




== अन्य क्यू-फ़ंक्शंस से संबंध ==
== अन्य क्यू-फ़ंक्शंस से संबंध ==


n का q-एनालॉग, जिसे n का 'q-ब्रैकेट' या 'q-संख्या' भी कहा जाता है, को परिभाषित किया गया है
n का क्यू-एनालॉग, जिसे n का 'क्यू-ब्रैकेट' या 'क्यू-संख्या' भी कहा जाता है, को परिभाषित किया गया है
<math display="block">[n]_q=\frac{1-q^n}{1-q}.</math>
<math display="block">[n]_q=\frac{1-q^n}{1-q}.</math>
इससे [[ कारख़ाने का ]] के क्यू-एनालॉग को 'क्यू-फैक्टोरियल' के रूप में परिभाषित किया जा सकता है
इससे [[ कारख़ाने का ]] के क्यू-एनालॉग को 'क्यू-फैक्टोरियल' के रूप में परिभाषित किया जा सकता है
<math display="block"> [n]!_q = \prod_{k=1}^n [k]_q = [1]_q \cdot [2]_q \cdots [n-1]_q \cdot [n]_q . </math>
<math display="block"> [n]!_q = \prod_{k=1}^n [k]_q = [1]_q \cdot [2]_q \cdots [n-1]_q \cdot [n]_q . </math>
इसे कई समकक्ष तरीकों से फिर से लिखा जा सकता है, जिसमें शामिल हैं <math>\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q}</math>, <math>1 \cdot (1+q)\cdots (1+q+\cdots + q^{n-2}) \cdot (1+q+\cdots + q^{n-1})</math>, और <math>\frac{(q;q)_n}{(1-q)^n}.</math>
इसे कई समकक्ष तरीकों से फिर से लिखा जा सकता है, जिसमें शामिल हैं <math>\frac{1-q}{1-q} \frac{1-q^2}{1-q} \cdots \frac{1-q^{n-1}}{1-q} \frac{1-q^n}{1-q}</math>, <math>1 \cdot (1+q)\cdots (1+q+\cdots + q^{n-2}) \cdot (1+q+\cdots + q^{n-1})</math>, और <math>\frac{(q;q)_n}{(1-q)^n}.</math>ये संख्याएँ इस अर्थ में अनुरूप हैं जिसका अर्थ है कि
ये संख्याएँ इस अर्थ में अनुरूप हैं
<math display="block">\lim_{q\rightarrow 1}[n]_q = n,</math>
  <math display="block">\lim_{q\rightarrow 1}[n]_q = n,</math>
और इसलिए भी
और इसलिए भी
  <math display="block">\lim_{q\rightarrow 1}[n]!_q = n!.</math>
  <math display="block">\lim_{q\rightarrow 1}[n]!_q = n!.</math>
सीमा मूल्य n! एक एन-तत्व सेट एस के क्रम[[परिवर्तन]] की गणना करता है। समान रूप से, यह नेस्टेड सेट के अनुक्रमों की संख्या की गणना करता है <math>E_1 \subset E_2 \subset \cdots \subset E_n = S</math> ऐसा है कि <math>E_i</math> बिल्कुल i तत्व शामिल हैं।<ref name="EC1">{{citation | last = Stanley | first = Richard P. | authorlink = Richard P. Stanley | title = Enumerative Combinatorics | volume = 1 | edition = 2 | publisher = Cambridge University Press | year = 2011}}, Section 1.10.2.</ref> तुलनात्मक रूप से, जब q एक प्रमुख शक्ति है और V q तत्वों वाले क्षेत्र पर एक n-आयामी सदिश स्थान है, तो q-एनालॉग <math>[n]!_q</math> वी में पूर्ण झंडों की संख्या है, अर्थात यह अनुक्रमों की संख्या है <math>V_1 \subset V_2 \subset \cdots \subset V_n = V</math> उप-स्थानों की जैसे कि <math>V_i</math> आयाम i है।<ref name = "EC1" /> पूर्ववर्ती विचारों से पता चलता है कि एक नेस्टेड सेट के अनुक्रम को एक तत्व के साथ अनुमानित क्षेत्र पर ध्वज के रूप में माना जा सकता है।
सीमा मूल्य n! n-तत्व सेट S के क्रम[[परिवर्तन]] की गिनता है। समान रूप से, इसके समकक्ष रूप से, यह n-अंश वाले समन्वित सेट के नेस्टेड सेटों की शृंखलाओं की संख्या को गिनता है <math>E_1 \subset E_2 \subset \cdots \subset E_n = S</math> जो इस तरह हो कि <math>E_i</math> में बिल्कुल i तत्व हों।<ref name="EC1">{{citation | last = Stanley | first = Richard P. | authorlink = Richard P. Stanley | title = Enumerative Combinatorics | volume = 1 | edition = 2 | publisher = Cambridge University Press | year = 2011}}, Section 1.10.2.</ref> तुलना करने पर, जब क्यू एक प्राइम पावर हो और V क्यू तत्वों वाले फ़ील्ड पर एक n-विमानित वेक्टर अंतरिक्ष हो, तो क्यू-अनुशंष <math>V_1 \subset V_2 \subset \cdots \subset V_n = V</math> में पूर्ण झंडों की संख्या है, अर्थात यह उप-स्थान की शृंखला है <math>V_i</math> का आयाम i होता है।<ref name = "EC1" /> पिछली विचारों से यह सुझाव देते हैं कि कोई एक तत्व वाली फ़ील्ड के उपर एक नेस्टेड सेट की शृंखला को एक झंडे के रूप में देखा जा सकता है।


ऋणात्मक पूर्णांक q-कोष्ठकों के गुणनफल को q-फैक्टोरियल के रूप में व्यक्त किया जा सकता है
ऋणात्मक पूर्णांक क्यू-कोष्ठकों के गुणनफल को क्यू-फैक्टोरियल के रूप में व्यक्त किया जा सकता है
<math display="block">\prod_{k=1}^n [-k]_q = \frac{(-1)^n\,[n]!_q}{q^{n(n+1)/2}}</math>
<math display="block">\prod_{k=1}^n [-k]_q = \frac{(-1)^n\,[n]!_q}{q^{n(n+1)/2}}</math>
क्यू-फैक्टोरियल्स से, कोई क्यू-बिनोमियल गुणांक परिभाषित करने के लिए आगे बढ़ सकता है, जिसे गौसियन द्विपद गुणांक के रूप में भी जाना जाता है, जैसा कि
क्यू-फैक्टोरियल्स से, कोई क्यू-बिनोमियल गुणांक परिभाषित करने के लिए आगे बढ़ सकता है, जिसे गौसियन द्विपद गुणांक के रूप में भी जाना जाता है, जैसा कि
Line 93: Line 92:
\frac{[n]!_q}{[n-k]!_q [k]!_q},  
\frac{[n]!_q}{[n-k]!_q [k]!_q},  
</math>
</math>
जहाँ यह देखना आसान है कि इन गुणांकों का त्रिभुज इस अर्थ में सममित है <math>\begin{bmatrix} n \\ m \end{bmatrix}_q = \begin{bmatrix} n \\ n-m \end{bmatrix}_q</math> सभी के लिए <math>0 \leq m \leq n</math>.
जहाँ इसे समझना बहुत आसान होता है कि इन कोईफिशिएं का त्रिकोण सममित होता है, अर्थात इस अर्थ में कि


कोई इसकी जांच कर सकता है
<math>\begin{bmatrix} n \\ m \end{bmatrix}_q = \begin{bmatrix} n \\ n-m \end{bmatrix}_q</math> सभी के लिए <math>0 \leq m \leq n</math>.
 
इससे हम देख सकते हैं कि
<math display="block">
<math display="block">
\begin{align}
\begin{align}
Line 117: Line 118:
\end{align}
\end{align}
</math>
</math>
कोई भी पिछले पुनरावृत्ति संबंधों से यह भी देख सकता है कि अगले संस्करण <math>q</math>इन गुणांकों के संदर्भ में द्विपद प्रमेय का विस्तार इस प्रकार है:<ref>{{cite book|last1=Olver |display-authors=et al.|title=गणितीय कार्यों की एनआईएसटी हैंडबुक|date=2010|section=Section 17.2|page=421|url=http://dlmf.nist.gov/}}</ref>
पिछले रिकरेंट रिश्तों से हम देख सकते हैं कि <math>q</math> बाइनोमियल थियोरी के अगले रूप भी इन कोईफिशिएं के आधार पर विस्तारित किए जाते हैं जैसे निम्नलिखित होते हैं।:<ref>{{cite book|last1=Olver |display-authors=et al.|title=गणितीय कार्यों की एनआईएसटी हैंडबुक|date=2010|section=Section 17.2|page=421|url=http://dlmf.nist.gov/}}</ref>
<math display="block">
<math display="block">
\begin{align}  
\begin{align}  
Line 126: Line 127:
\end{align}
\end{align}
</math>
</math>
आगे q-बहुपद गुणांकों को परिभाषित किया जा सकता है
इन्हें और आगे बढ़ाकर क्यू-बहुपद गुणांकों की परिभाषा भी की जा सकती है।
<math display="block">
<math display="block">
\begin{bmatrix}
\begin{bmatrix}
Line 135: Line 136:
\frac{[n]!_q}{[k_1]!_q \cdots [k_m]!_q},  
\frac{[n]!_q}{[k_1]!_q \cdots [k_m]!_q},  
</math>
</math>
जहां तर्क <math>k_1, \ldots, k_m</math> गैर-ऋणात्मक पूर्णांक हैं जो संतुष्ट करते हैं <math>
यहाँ तर्क <math>k_1, \ldots, k_m</math> गैर-ऋणात्मक पूर्णांक हैं जो संतुष्ट करते हैं <math>
\sum_{i=1}^m k_i = n  
\sum_{i=1}^m k_i = n  
</math>. उपरोक्त गुणांक झंडे की संख्या की गणना करता है
</math>. उपरोक्त गुणांक झंडे की संख्या की गणना करता है
Line 152: Line 153:
किसी भी एक्स और के लिए
किसी भी एक्स और के लिए
<math display="block">\Gamma_q(n+1)=[n]!_q</math>
<math display="block">\Gamma_q(n+1)=[n]!_q</math>
एन के गैर-नकारात्मक पूर्णांक मानों के लिए। वैकल्पिक रूप से, इसे वास्तविक संख्या प्रणाली में क्यू-फैक्टोरियल कार्य के विस्तार के रूप में लिया जा सकता है।
यह गैर-नकारात्मक पूर्णांक मानों के लिए होता है। या फिर, इसे वास्तविक संख्या प्रणाली के लिए q-फैक्टरियल फ़ंक्शन का विस्तार माना जा सकता है।


== यह भी देखें ==
== यह भी देखें ==
Line 163: Line 164:
* क्यू-व्युत्पन्न|क्यू-व्युत्पन्न
* क्यू-व्युत्पन्न|क्यू-व्युत्पन्न
* क्यू-थीटा कार्य | क्यू-थीटा कार्य
* क्यू-थीटा कार्य | क्यू-थीटा कार्य
* q-वंडरमोंडे की पहचान|q-वंडरमोंडे की पहचान
* क्यू-वंडरमोंडे की पहचान|क्यू-वंडरमोंडे की पहचान
* रोजर्स-रामानुजन पहचान
* रोजर्स-रामानुजन पहचान
* रोजर्स-रामानुजन ने अंश जारी रखा
* रोजर्स-रामानुजन ने अंश जारी रखा
Line 170: Line 171:
{{Reflist}}
{{Reflist}}
* George Gasper and [[Mizan Rahman]], ''Basic Hypergeometric Series, 2nd Edition'', (2004), Encyclopedia of Mathematics and Its Applications, '''96''', Cambridge University Press, Cambridge. {{ISBN|0-521-83357-4}}.
* George Gasper and [[Mizan Rahman]], ''Basic Hypergeometric Series, 2nd Edition'', (2004), Encyclopedia of Mathematics and Its Applications, '''96''', Cambridge University Press, Cambridge. {{ISBN|0-521-83357-4}}.
* Roelof Koekoek and Rene F. Swarttouw, ''[http://fa.its.tudelft.nl/~koekoek/askey/ The Askey scheme of orthogonal polynomials and its q-analogues]'', section 0.2.
* Roelof Koekoek and Rene F. Swarttouw, ''[http://fa.its.tudelft.nl/~koekoek/askey/ The Askey scheme of orthogonal polynomials and its क्यू-analogues]'', section 0.2.
* Exton, H. (1983), ''q-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, {{ISBN|0853124914}},  {{ISBN|0470274530}}, {{ISBN|978-0470274538}}
* Exton, H. (1983), ''क्यू-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, {{ISBN|0853124914}},  {{ISBN|0470274530}}, {{ISBN|978-0470274538}}
*M.A. Olshanetsky and V.B.K. Rogov (1995), The Modified q-Bessel Functions and the q-Bessel-Macdonald Functions, arXiv:q-alg/9509013.
*M.A. Olshanetsky and V.B.K. Rogov (1995), The Modified क्यू-Bessel Functions and the क्यू-Bessel-Macdonald Functions, arXiv:क्यू-alg/9509013.





Revision as of 20:22, 28 March 2023

साहचर्य के गणितीय क्षेत्र में, क्यू-पोचममेर चिह्न, जिसे क्यू-शिफ्टेड फैक्टोरियल भी कहा जाता है, उत्पाद होता है

जहाँ यह पोचममेर चिह्न का क्यू-एनालॉग|क्यू-एनालॉग है , इस अर्थ में कि
क्यू-पोचममेर चिह्न क्यू-एनालॉग्स के निर्माण में एक प्रमुख बिल्डिंग ब्लॉक है; उदाहरण के लिए, बुनियादी हाइपरज्यामितीय श्रृंखला के सिद्धांत में, यह वह भूमिका निभाता है जो साधारण पोचममेर चिह्न सामान्यीकृत हाइपरज्यामितीय श्रृंखला के सिद्धांत में निभाता है।

साधारण पोचहैमर चिह्न के विपरीत, क्यू-पोचममेर चिह्न को एक अनंत उत्पाद में विस्तारित किया जा सकता है:

यह यूनिट डिस्क के अंदर क्यू के लिए एक विश्लेषणात्मक कार्य है, और इसे क्यू में एक औपचारिक शक्ति श्रृंखला के रूप में भी माना जा सकता है। विशेष मामला
यूलर के कार्य के रूप में जाना जाता है, और संयोजक, संख्या सिद्धांत और मॉड्यूलर रूप के सिद्धांत में महत्वपूर्ण है।

पहचान

अंतिम उत्पाद अनंत उत्पाद के शब्दों में व्यक्त किया जा सकता है::

जो नकारात्मक पूर्णांक n के लिए परिभाषा को विस्तारित करता है। इस प्रकार, गैर-ऋणात्मक n के लिए, निम्नलिखित मान प्राप्त होते हैं:
और
वैकल्पिक रूप से,
जो विभाजन कार्यों के कुछ जनरेटिंग कार्यों के लिए उपयोगी होता है।

क्यू-पोचममेर चिह्न कई क्यू-श्रृंखला पहचानों का विषय है, विशेष रूप से अनंत श्रृंखला विस्तार

और
जो दोनों क्यू-बाइनोमियल सिद्धांत के विशेष मामले हैं
फ्रेडरिक कारपेलेविच ने निम्नलिखित पहचान का पता लगाया (सबूत के लिए ओलशनत्स्की and रोगोव (1995) देखें ):


मिश्रित व्याख्या

क्यू-पोचममेर चिह्न विभाजनों के ज्ञातिकरणीय संख्यात्मक संगणना से गहराता संबंध रखता है।

के समकोण में अध्यक्षता के द्वारा, यह m के बहुत से अंशों में विभाजनों की संख्या है? चूँकि विभाजनों के संयुक्तिकरण द्वारा, यह m के n से अधिक नहीं होने वाले अंशों में विभाजनों की संख्या के बराबर होता है, जेनरेटिंग सीरीज की पहचान के द्वारा हम इस तोते को प्राप्त करते हैं
जैसा कि उपरोक्त खंड में है।

हमारे पास वह गुणांक भी है में

यह m के n या n-1 अलग-अलग अंशों में विभाजनों की संख्या है।

इस तरह के एक विभाजन से n − 1 अंशों के साथ एक त्रिकोणीय विभाजन को हटाकर, हम अधिकांश n अंशों वाले एक अनिश्चित विभाजन के साथ छोड़ दिया जाता है। यह n या n − 1 अलग-अलग हिस्सों में विभाजन के सेट और n − 1 अंशों वाले त्रिकोणीय विभाजन वाले जोड़े के सेट और अधिकांश n अंशों वाले विभाजन के बीच एक वजन-संरक्षण आक्षेप देता है। जनरेटिंग सीरीज़ की पहचान करके, यह पहचान की ओर ले जाता है

उपरोक्त खंड में भी वर्णित है।फलन का व्युत्क्रम उसी तरह से, विभाजन फ़ंक्शन(संख्या सिद्धांत) के लिए जनरेटिंग कार्य के रूप में उत्पन्न होता है, , जिसे नीचे दिए गए दूसरे दो क्यू-श्रृंखला विस्तारों द्वारा भी विस्तारित किया गया है:[1]
क्यू-बाइनोमियल उद्धरण खुद एक थोड़ी और विस्तृत संख्यात्मक तर्क के द्वारा उठाया जा सकता है जो एक इसी प्रकार का स्वाद रखता है (अगले उपखण्ड में दिए गए विस्तारों को देखें)।

इसी तरह,


एकाधिक तर्क सम्मेलन

चूंकि क्यू-पोचहैमर चिह्नों से संबंधित उद्धरण अक्सर कई प्रतीकों के उत्पादों को शामिल करते हैं, इसलिए मानक अनुशासन एक उपकरण के रूप में एक उत्पाद को कई तर्कों का एक एकल प्रतीक लिखना है::


क्यू-श्रृंखला

क्यू-श्रृंखला एक श्रृंखला (गणित) है जिसमें गुणांक एक क्यू के फ़ंक्शन होते हैं, फ़ंक्शन .[2] इसके पहले परिणाम यूलर, गॉस और कॉची के लिए हैं। संगठित अध्ययन एडवर्ड हेन (1843) के साथ शुरू होता है।[3]


अन्य क्यू-फ़ंक्शंस से संबंध

n का क्यू-एनालॉग, जिसे n का 'क्यू-ब्रैकेट' या 'क्यू-संख्या' भी कहा जाता है, को परिभाषित किया गया है

इससे कारख़ाने का के क्यू-एनालॉग को 'क्यू-फैक्टोरियल' के रूप में परिभाषित किया जा सकता है
इसे कई समकक्ष तरीकों से फिर से लिखा जा सकता है, जिसमें शामिल हैं , , और ये संख्याएँ इस अर्थ में अनुरूप हैं जिसका अर्थ है कि
और इसलिए भी

सीमा मूल्य n! n-तत्व सेट S के क्रमपरिवर्तन की गिनता है। समान रूप से, इसके समकक्ष रूप से, यह n-अंश वाले समन्वित सेट के नेस्टेड सेटों की शृंखलाओं की संख्या को गिनता है जो इस तरह हो कि में बिल्कुल i तत्व हों।[4] तुलना करने पर, जब क्यू एक प्राइम पावर हो और V क्यू तत्वों वाले फ़ील्ड पर एक n-विमानित वेक्टर अंतरिक्ष हो, तो क्यू-अनुशंष में पूर्ण झंडों की संख्या है, अर्थात यह उप-स्थान की शृंखला है का आयाम i होता है।[4] पिछली विचारों से यह सुझाव देते हैं कि कोई एक तत्व वाली फ़ील्ड के उपर एक नेस्टेड सेट की शृंखला को एक झंडे के रूप में देखा जा सकता है।

ऋणात्मक पूर्णांक क्यू-कोष्ठकों के गुणनफल को क्यू-फैक्टोरियल के रूप में व्यक्त किया जा सकता है

क्यू-फैक्टोरियल्स से, कोई क्यू-बिनोमियल गुणांक परिभाषित करने के लिए आगे बढ़ सकता है, जिसे गौसियन द्विपद गुणांक के रूप में भी जाना जाता है, जैसा कि
जहाँ इसे समझना बहुत आसान होता है कि इन कोईफिशिएं का त्रिकोण सममित होता है, अर्थात इस अर्थ में कि

सभी के लिए .

इससे हम देख सकते हैं कि

पिछले रिकरेंट रिश्तों से हम देख सकते हैं कि बाइनोमियल थियोरी के अगले रूप भी इन कोईफिशिएं के आधार पर विस्तारित किए जाते हैं जैसे निम्नलिखित होते हैं।:[5]
इन्हें और आगे बढ़ाकर क्यू-बहुपद गुणांकों की परिभाषा भी की जा सकती है।
यहाँ तर्क गैर-ऋणात्मक पूर्णांक हैं जो संतुष्ट करते हैं . उपरोक्त गुणांक झंडे की संख्या की गणना करता है क्यू तत्वों के साथ क्षेत्र पर एन-आयामी वेक्टर अंतरिक्ष में उप-स्थानों की संख्या .

सीमा सामान्य बहुराष्ट्रीय गुणांक देता है , जो शब्दों को अलग-अलग चिह्नों में गिनता है ऐसा है कि प्रत्येक दिखाई पड़ना बार।

एक व्यक्ति गामा फलन का क्यू-एनालॉग भी प्राप्त करता है, जिसे 'क्यू-गामा फलन' कहा जाता है, और इसे इस रूप में परिभाषित किया जाता है

यह सामान्य गामा कार्य में परिवर्तित हो जाता है क्योंकि क्यू यूनिट डिस्क के अंदर से 1 तक पहुंचता है। ध्यान दें कि
किसी भी एक्स और के लिए
यह गैर-नकारात्मक पूर्णांक मानों के लिए होता है। या फिर, इसे वास्तविक संख्या प्रणाली के लिए q-फैक्टरियल फ़ंक्शन का विस्तार माना जा सकता है।

यह भी देखें

  • बुनियादी हाइपरज्यामितीय श्रृंखला
  • अण्डाकार गामा समारोह
  • थीटा समारोह
  • लैम्बर्ट श्रृंखला
  • पंचकोणीय संख्या प्रमेय
  • क्यू-व्युत्पन्न|क्यू-व्युत्पन्न
  • क्यू-थीटा कार्य | क्यू-थीटा कार्य
  • क्यू-वंडरमोंडे की पहचान|क्यू-वंडरमोंडे की पहचान
  • रोजर्स-रामानुजन पहचान
  • रोजर्स-रामानुजन ने अंश जारी रखा

संदर्भ

  1. Berndt, B. C. "What is a q-series?" (PDF).
  2. Bruce C. Berndt, What is a q-series?, in Ramanujan Rediscovered: Proceedings of a Conference on Elliptic Functions, Partitions, and q-Series in memory of K. Venkatachaliengar: Bangalore, 1–5 June 2009, N. D. Baruah, B. C. Berndt, S. Cooper, T. Huber, and M. J. Schlosser, eds., Ramanujan Mathematical Society, Mysore, 2010, pp. 31-51
  3. Heine, E. "Untersuchungen über die Reihe". J. Reine Angew. Math. 34 (1847), 285-328
  4. 4.0 4.1 Stanley, Richard P. (2011), Enumerative Combinatorics, vol. 1 (2 ed.), Cambridge University Press, Section 1.10.2.
  5. Olver; et al. (2010). "Section 17.2". गणितीय कार्यों की एनआईएसटी हैंडबुक. p. 421.


बाहरी संबंध