टोपोलॉजी की तुलना: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 63: Line 63:
</ref>
</ref>
}}
}}
[[Category: सामान्य टोपोलॉजी]] [[Category: तुलना (गणितीय) | टोपोलॉजी]]


[[Category: Machine Translated Page]]
[[Category:Created On 05/04/2023]]
[[Category:Created On 05/04/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:तुलना (गणितीय)| टोपोलॉजी]]
[[Category:सामान्य टोपोलॉजी]]

Latest revision as of 18:00, 15 April 2023

टोपोलॉजी और गणित के संबंधित क्षेत्रों में, किसी दिए गए सेट पर सभी संभावित टोपोलॉजी का सेट आंशिक रूप से ऑर्डर किए गए सेट का निर्माण करता है। इस क्रम संबंध का उपयोग टोपोलॉजी की तुलना के लिए किया जा सकता है।

परिभाषा

एक सेट पर टोपोलॉजी को सबसेट के संग्रह के रूप में परिभाषित किया जा सकता है जिसे खुला माना जाता है। वैकल्पिक परिभाषा यह है कि यह सबसेट का संग्रह है जिसे बंद माना जाता है। टोपोलॉजी को परिभाषित करने की ये दो विधियाँ अनिवार्य रूप से समतुल्य हैं क्योंकि खुले सेट का पूरक (सेट सिद्धांत) बंद और इसके विपरीत है। निम्नलिखित में, इससे कोई अंतर नहीं पड़ता कि किस परिभाषा का उपयोग किया जाता है।

चलो τ1 और τ2 सेट X पर दो टोपोलॉजी हो जैसे कि τ1 τ2 का उपसमुच्चय है:

.

यानी τ1 का हर तत्व τ2 का तत्व भी है। फिर टोपोलॉजी τ1 τ2 की तुलना में मोटे (कमजोर या छोटे) टोपोलॉजी कहा जाता है, और τ2 τ1 की तुलना में महीन (जटिल या बड़ा) टोपोलॉजी कहा जाता है।[nb 1]

यदि इसके अतिरिक्त

जबकि τ1 τ2 की तुलना में सख्त है और τ2 τ1 से सख्ती से श्रेष्ठ है.[1]

द्विआधारी संबंध ⊆ एक्स पर सभी संभावित टोपोलॉजी के सेट पर आंशिक आदेश संबंध को परिभाषित करता है।

उदाहरण

एक्स पर सर्वोत्तम टोपोलॉजी असतत टोपोलॉजी है; यह टोपोलॉजी सभी उपसमुच्चयों को खुला बनाती है। एक्स पर सबसे मोटे टोपोलॉजी तुच्छ टोपोलॉजी है; यह टोपोलॉजी केवल खाली सेट और पूरे स्थान को खुले सेट के रूप में स्वीकार करती है।

कार्य स्थान और माप के स्थान (गणित) में अधिकांशतः कई संभावित टोपोलॉजी होती हैं। कुछ जटिल संबंधों के लिए हिल्बर्ट स्पेस पर ऑपरेटरों के सेट पर टोपोलॉजी देखें।

एक दोहरी जोड़ी पर सभी संभावित ध्रुवीय टोपोलॉजी कमजोर टोपोलॉजी (ध्रुवीय टोपोलॉजी) से महीन और जटिल टोपोलॉजी (ध्रुवीय टोपोलॉजी) की तुलना में मोटे हैं।

कॉम्प्लेक्स समन्वय स्थान Cn या तो इसकी सामान्य (यूक्लिडियन) टोपोलॉजी, या इसकी जरिस्की टोपोलॉजी से लैस हो सकता है। उत्तरार्द्ध में, Cn का उपसमुच्चय V बंद है यदि और केवल यदि इसमें बहुपद समीकरणों की किसी प्रणाली के सभी समाधान सम्मिलित हैं। चूंकि ऐसा कोई V भी सामान्य अर्थों में बंद सेट है, किंतु इसके विपरीत नहीं, ज़रिस्की टोपोलॉजी सामान्य से बहुत कमजोर है।

गुण

चलो τ1 और τ2 सेट X पर दो टोपोलॉजी है। फिर निम्नलिखित कथन समतुल्य हैं:

  • τ1τ2
  • पहचान मानचित्र idX : (X, τ2) → (X, τ1) एक सतत मानचित्र (टोपोलॉजी) है।
  • पहचान मानचित्र idX : (X, τ1) → (X, τ2) एक दृढ़ता से/अपेक्षाकृत खुला मानचित्र है।

(पहचान मानचित्र idX विशेषण कार्य है और इसलिए यह दृढ़ता से खुला है यदि और केवल यदि यह अपेक्षाकृत खुला है।)

उपरोक्त समतुल्य कथनों के दो तात्कालिक परिणाम हैं

  • एक सतत मानचित्र f : X → Y निरंतर बना रहता है यदि Y पर टोपोलॉजी मोटे हो जाते हैं या X पर टोपोलॉजी महीन हो जाती है।
  • एक खुला (प्रतिक्रिया बंद) मानचित्र f : X → Y खुला रहता है (उत्तर बंद)। यदि Y पर टोपोलॉजी महीन हो जाती है या X मोटे पर टोपोलॉजी हो जाती है।

आस-पड़ोस के ठिकानों का उपयोग करके कोई भी टोपोलॉजी की तुलना कर सकता है। τ1 और τ2 सेट एक्स पर दो टोपोलॉजी बनें और Bi(x) को टोपोलॉजी τi के लिए x ∈ X पर i = 1,2 के लिए एक स्थानीय आधार होने दें। फिर τ1τ2 यदि और केवल यदि सभी x ∈ X के लिए, B1(x) में प्रत्येक खुले सेट U1 में B2(x) में कुछ खुला सेट U2 होता है। सहजता से, यह समझ में आता है: श्रेष्ठ टोपोलॉजी में छोटे पड़ोस होने चाहिए।

टोपोलॉजी का जाल

एक सेट एक्स पर सभी टोपोलॉजी का सेट आंशिक ऑर्डरिंग रिलेशन ⊆ के साथ मिलकर पूर्ण जाली बनाता है जो इच्छानुसार चौराहों के अनुसार भी बंद है। यही है, एक्स पर टोपोलॉजी के किसी भी संग्रह में एक मिल (या इन्फिनिमम) और जॉइन (या अंतिम) होता है। टोपोलॉजी के संग्रह का मिलन उन टोपोलॉजी का प्रतिच्छेदन (सेट थ्योरी) है। चूँकि, जुड़ना सामान्यतः उन टोपोलॉजी का संघ (सेट सिद्धांत) नहीं है (दो टोपोलॉजी का संघ टोपोलॉजी नहीं होना चाहिए) किंतु टोपोलॉजी संघ को उप-आधार बनाता है।

प्रत्येक पूर्ण जाली भी बंधी हुई जाली होती है, जिसका अर्थ है कि इसमें सब बेस बड़ा तत्व और सबसे कम तत्व होता है। टोपोलॉजी की स्थितियों में, सबसे बड़ा तत्व असतत टोपोलॉजी है और सबसे छोटा तत्व तुच्छ टोपोलॉजी है।

टिप्पणियाँ

  1. There are some authors, especially analysts, who use the terms weak and strong with opposite meaning (Munkres, p. 78).

यह भी देखें

  • प्रारंभिक टोपोलॉजी, उस सेट से मैपिंग के परिवार को निरंतर बनाने के लिए सेट पर सबसे मोटे टोपोलॉजी
  • अंतिम टोपोलॉजी , उस सेट में मैपिंग के परिवार को निरंतर बनाने के लिए सेट पर सर्वोत्तम टोपोलॉजी

संदर्भ

  1. Munkres, James R. (2000). Topology (2nd ed.). Saddle River, NJ: Prentice Hall. pp. 77–78. ISBN 0-13-181629-2.