युग्मित स्तवक: Difference between revisions

From Vigyanwiki
m (9 revisions imported from alpha:युग्मित_स्तवक)
No edit summary
Line 158: Line 158:
श्रेणी:हार्ट्री-फॉक के पश्चात के तरीके
श्रेणी:हार्ट्री-फॉक के पश्चात के तरीके


 
[[Category:CS1]]
[[Category: Machine Translated Page]]
[[Category:Created On 09/03/2023]]
[[Category:Created On 09/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Revision as of 17:26, 17 April 2023

युग्मित स्तवक (सीसी) एक संख्यात्मक तकनीक है, जिसका उपयोग कई-निकाय प्रणालियों का वर्णन करने के लिए किया जाता है। इसका सबसे सरल उपयोग संगणनीय रसायन विज्ञान के क्षेत्र में पोस्ट-हार्ट्री-फॉक एब इनिटियो क्वांटम रसायन विज्ञान विधियों में से एक है, परन्तु इसका उपयोग परमाणु भौतिकी में भी किया जाता है। युग्मित स्तवक अनिवार्य रूप से आधारभूत हार्ट्री-फॉक आणविक कक्षीय विधि लेता है, और इलेक्ट्रॉनिक सहसंबंध के लिए घातीय स्तवक संचालक का उपयोग करके बहु-इलेक्ट्रॉन तरंग फलन का निर्माण करता है। छोटे एवं मध्यम आकार के अणुओं के लिए सबसे उपयुक्त गणनाओं में से कुछ इस प्रकार के पद्धति का उपयोग करते हैं।[1][2][3]

1950 के दशक में फ्रिट्ज कोस्टर और हरमन कुमेल द्वारा परमाणु-भौतिकी घटना का अध्ययन करने के लिए इस पद्धति को आरम्भ में विकसित किया गया था, परन्तु 1966 में जिरी सिज़ेक ने परमाणुओं और अणुओं में इलेक्ट्रॉन सहसंबंध के लिए विधि का सुधार किया। यह अब क्वांटम रसायन विज्ञान में सबसे प्रचलित विधियों में से एक है, जिसमें इलेक्ट्रॉनिक सहसंबंध सम्मिलित है।

सीसी सिद्धांत ओकटे सिनानोग्लू के अनेक-इलेक्ट्रॉन सिद्धांत (एमईटी) का केवल विचलित करने वाला संस्करण है, जो अनेक-इलेक्ट्रॉन समस्या का उपयुक्त समाधान है, इसलिए इसे युग्मित-जोड़ी एमईटी (सीपीएमईटी) भी कहा जाता था। जे. सिज़ेक ने एमईटी के सहसंबंध फलन का उपयोग किया और ऊर्जा अभिव्यक्ति प्राप्त करने के लिए गोल्डस्टोन-प्रकार क्षोभ सिद्धांत का उपयोग किया, जबकि मूल एमईटी पूरी तरह से भिन्न था। सिजेक ने सबसे पहले रैखिक सीपीएमईटी विकसित किया और उसके पश्चात 1966 में उसी कार्य में इसे पूर्ण सीपीएमईटी के लिए सामान्यीकृत किया। इसके पश्चात उन्होंने उसी वर्ष सिनानोग्लू के साथ बेंजीन अणु पर इसका एक अनुप्रयोग भी किया। क्योंकि एमइटी संगणनीय रूप से प्रदर्शन करना संभवतः कठिन है, सीसी सरल है और इस प्रकार, आज की संगणनीयता रसायन विज्ञान में, सीसी एमइटी का सबसे उत्तम संस्करण है, और प्रयोगों की तुलना में अत्यधिक उपयुक्त परिणाम देता है।[4][5][6]


तरंग फलन एएनएसएटीजेड

युग्मित-स्तवक सिद्धांत समय-स्वतंत्र श्रोडिंगर समीकरण का उपयुक्त समाधान प्रदान करता है

जहाँ प्रणाली का आणविक हैमिल्टनियन है, उपयुक्त तरंग है, और ई भूमिगत अवस्था की उपयुक्त ऊर्जा है। युग्मित-स्तवक सिद्धांत का उपयोग उत्तेजित राज्यों के लिए समाधान प्राप्त करने के लिए भी किया जा सकता है, उदाहरण के लिए, रैखिक प्रतिक्रिया ,[7] समीकरण-की-गति,[8] राज्य-सार्वभौमिक बहु-सन्दर्भ,[9] या संयोजन-सार्वभौमिक बहु-संद्दर्भ युग्मित स्तवक[10] दृष्टिकोण

युग्मित-स्तवक सिद्धांत का तरंग फलन एक घातीय एएनएसएटीजेड के रूप में लिखा गया है:

जहाँ संदर्भ तरंग फलन है, जो सामान्यतः हार्ट्री-फॉक आणविक कक्षाओं से निर्मित एक स्लेटर निर्धारक है, यद्यपि अन्य तरंग फलन जैसे कि विन्यास अन्तःक्रिया, बहु-विन्यास स्व-सुसंगत क्षेत्र, या ब्रुकनर कक्षाओं का भी उपयोग किया जा सकता है। स्तवक संचालक है, जिस पर कार्य करते समय , संदर्भ तरंग फलन से उत्साहित निर्धारकों का एक रैखिक संयोजन उत्पन्न करता है।

घातीय एएनएसएटीजेड का चुनाव उपयुक्त है, क्योंकि (अन्य एएनएसएटीजेडईएस के विपरीत, उदाहरण के लिए, विन्यास अन्तःक्रिया) यह समाधान की व्यापक मात्रा को सुनिश्चित करता है। सीसी सिद्धांत में आकार स्थिरता, अन्य सिद्धांतों के विपरीत, संदर्भ तरंग फलन के आकार की स्थिरता पर निर्भर नहीं करती है। यह आसानी से देखा जा सकता है, उदाहरण के लिए, एफ2 के एकल बंध को तोड़ने में सिद्धांत के सीसीएसडीटी स्तर पर एक प्रतिबंधित हार्ट्री-फॉक संदर्भ का उपयोग करते समय, जो आकार-संगत नहीं है, जो लगभग उपयुक्त, पूर्ण-सीआई-गुणवत्ता, क्षमता-ऊर्जा प्रदान करता है, और अणु को एफ ऋणात्मक एवं एफ धनात्मक आयनों में अलग नहीं करता है, जैसे की आरएचएफ तरंग फलन, अपितु दो तटस्थ एफ परमाणुओं में होता है ।[11] उदाहरण के लिए, यदि कोई सीसीएसडी, या सीसीएसडी (टी) सिद्धांत के स्तर उपयोग करता है,, तो वे एफ2 के बंध को तोड़ने के लिए उचित परिणाम प्रदान नहीं करेंगे। उपरांत वाले के साथ अभौतिक संभावित ऊर्जा सतहों तक पहुंचता है,[12] यद्यपि यह केवल आकार स्थिरता के अतिरिक्त अन्य कारणों से है।

विधि की एक आलोचना यह है कि समानता-रूपांतरित हैमिल्टनियन को नियोजित करने वाला पारंपरिक कार्यान्वयन परिवर्तनशील सिद्धांत नहीं है, यद्यपि सिद्धांत के पहले कार्यान्वयन के पश्चात से द्वि-चर और अर्ध-परिवर्तनशील दृष्टिकोण विकसित किए गए हैं। जबकि तरंग फलन के लिए उपरोक्त एएनएसएटीजेड में कोई प्राकृतिक खंडन नहीं है, यद्यपि, अन्य गुणों के लिए, जैसे कि ऊर्जा, अपेक्षा मूल्यों की जांच करते समय एक प्राकृतिक खंडन होता है, जिसका आधार श्रृंखलित और संबद्ध-स्तवक प्रमेय में होता है, और इस प्रकार यह आकार विस्तार की कमी जैसे विविध विन्यास-अंतःक्रिया दृष्टिकोण जैसे विषयों से ग्रस्त नहीं है।

स्तवक संचालक

फॉर्म में स्तवक संचालक लिखा होता है

जहाँ सभी एकल उत्तेजनाओं का संचालक है, सभी दोहरे उत्तेजनाओं का संचालक है, और इसी तरह। दूसरे परिमाणीकरण की औपचारिकता में इन उत्तेजना संचालकों को व्यक्त किया जाता है

और सामान्य एन-फोल्ड स्तवक संचालक के लिए

उपरोक्त सूत्रों में और क्रमशः निर्माण और विलोपन संचालकों को निरूपित करते हैं, जबकि आई, जे अधिकृत वाले (छिद्र) और ए, बी खाली (कण) कक्षकों (राज्यों) के लिए है। उपरोक्त युग्मित-स्तवक शर्तों में सृजन और विनाश संचालकों को कैननिकल रूप में लिखा गया है, जहां प्रत्येक शब्द सामान्य क्रम में है, फर्मी वैक्यूम के संबंध में . एक-कण स्तवक संचालक और दो-कण स्तवक संचालक होने के करण, और संदर्भ फलन को परिवर्तित करें यदि घातांक के अतिरिक्त लागू किया जाता है (जैसे विन्यास अंतःक्रिया में, जहां एक रैखिक उत्तेजना संचालक तरंग फलन पर लागू होता है) क्रमशः एकल और दोगुनी उत्साहित स्लेटर निर्धारकों के एक रैखिक संयोजन में। तरंग फलन में घातीय स्तवक संचालक को लागू करने के पश्चात, विभिन्न शक्तियों के कारण दोगुने से अधिक उत्साहित निर्धारक उत्पन्न कर सकते हैं और जो परिणामी व्यंजकों में दिखाई देते हैं (नीचे देखें)। अज्ञात गुणांकों के लिए हल करना और अनुमानित समाधान खोजने के लिए आवश्यक है .

घातीय संकारक टेलर श्रृंखला के रूप में विस्तारित किया जा सकता है, और यदि हम केवल और के स्तवक संचालक , हम लिख सकते हैं

यद्यपि व्यवहार में यह श्रृंखला परिमित है क्योंकि अधिकृत वाले आणविक कक्षाओं की संख्या परिमित है, जैसा कि उत्तेजनाओं की संख्या है, यह अभी भी बहुत बड़ी है, इस सीमा तक कि आधुनिक समय के बड़े पैमाने पर समानांतर संगणक भी अपर्याप्त हैं, एक दर्जन की समस्याओं को छोड़कर या तो इलेक्ट्रॉनों और बहुत छोटे आधार समुच्चय, जब स्तवक संचालक के सभी योगदानों पर विचार किया जाता है और न केवल और . प्रायः, जैसा कि ऊपर किया गया था, स्तवक संचालक में केवल एकल और युगल सम्मिलित होते हैं (नीचे सीसीएसडी देखें) क्योंकि यह संगणनीय रूप से सरल विधि प्रदान करता है जो मोलर-प्लेसेट समस्या सिद्धांत और सीआईएसडी से उपयुक्त प्रदर्शन करता है, परन्तु सामान्यतः बहुत उपयुक्त नहीं होता है। उपयुक्त परिणामों के लिए कुछ प्रकार के त्रिगुणों की आवश्यकता होती है, यहां तक ​​​​कि संतुलन ज्यामिति के पास भी (फ्रैंक-कोंडन सिद्धांत), और विशेष रूप से जब एकल बांड तोड़ते हैं या डायरेडिकल प्रजातियों का वर्णन करते हैं, जिसे बहु-संदर्भ समस्याओं के रूप में संदर्भित किया जाता है, क्योंकि एक से अधिक निर्धारकों का परिणामी तरंग फलन में महत्वपूर्ण योगदान होता है)। द्वि-बन्ध विभाजन और रसायन विज्ञान में अधिक जटिल समस्याओं के लिए, चौगुनी उत्तेजना भी प्रायः महत्वपूर्ण हो जाती है, यद्यपि सामान्यतः अधिकांश समस्याओं के लिए उनका छोटा योगदान होता है, और इस प्रकार, का योगदान , आदि संचालक को प्राय: छोटा होता है। इसके अतिरिक्त, यदि उच्चतम उत्तेजना स्तर संचालक एन है,

तत्पश्चात एन-इलेक्ट्रॉन प्रणाली के लिए स्लेटर निर्धारक इससे अधिक उत्तेजित होते हैं () समय अभी भी युग्मित-स्तवक तरंग फलन में योगदान दे सकता है गैर-रैखिकता के कारण घातीय एएनएसएटीजेड की गैर-रैखिक प्रकृति, और इसलिए, युग्मित स्तवक को समाप्त कर दिया गया सामान्यतः अधिकतम एन उत्तेजनाओं के साथ सीआई की तुलना में अधिक सहसंबंध ऊर्जा प्राप्त करता है।

युग्मित-स्तवक समीकरण

श्रोडिंगर समीकरण को युग्मित-स्तवक तरंग फलन का उपयोग करके लिखा जा सकता है

जहां हल करने के लिए कुल क्यू गुणांक (टी-आयाम) हैं। क्यू समीकरण प्राप्त करने के लिए, सबसे प्रथम, हम बायीं ओर के उपरोक्त श्रोडिंगर समीकरण को इससे गुणा करते हैं और फिर एम-टुप्ली उत्तेजित निर्धारकों के पूरे समुच्चय पर प्रक्षेपण करें, जहाँ एम उच्चतम-क्रम उत्तेजना सम्मिलित है जिसे सन्दर्भ तरंग फलन से बनाया जा सकता है , द्वारा चिह्नित . व्यक्तिगत रूप से, अकेले उत्साहित निर्धारक हैं जहां कक्षीय आई में इलेक्ट्रॉन कक्षीय ए के लिए उत्तेजित किया गया है; दोगुने उत्तेजित निर्धारक हैं जहां कक्षीय आई में इलेक्ट्रॉन ए कक्षीय के लिए उत्साहित किया गया है और कक्षीय जे में इलेक्ट्रॉन कक्षीय बी आदि के लिए उत्तेजित किया गया है। इस तरह हम युग्मित ऊर्जा-स्वतंत्र गैर-रैखिक बीजगणितीय समीकरणों का एक समुच्चय उत्पन्न करते हैं जिनकी आवश्यकता है टी-आयाम निर्धारित करें:

पश्चात वाला समीकरण हल किया जाना है, और पूर्व ऊर्जा के मूल्यांकन के लिए समीकरण है। (ध्यान दें कि हमने इसका उपयोग किया है , समरूपता संचालक, और यह भी मानते हैं कि कक्षाओं ऑर्थोगोनल हैं, यद्यपि यह आवश्यक नहीं है कि यह सच हो, उदाहरण के लिए, संयोजकता बन्ध कक्षाओं का उपयोग किया जा सकता है, और ऐसे विषयों में समीकरणों का अंतिम समुच्चय शून्य के सामान नहीं है।)

आधारभूत सीसीएसडी पद्धति को ध्यान में रखते हुए:

जिसमें समानता-रूपांतरित हैमिल्टनियन लाई बीजगणित में हैडमार्ड के सूत्र का उपयोग करके स्पष्ट रूप से लिखा जा सकता है, जिसे हैडमर्ड लेम्मा भी कहा जाता है (बेकर-कैंपबेल-हॉसडॉर्फ सूत्र भी देखें), यद्यपि ध्यान दें कि वे अलग हैं, इसमें हैडमार्ड का सूत्र बीसीएच सूत्र का लेम्मा है):

अधोलेख सी संबंधित संचालक अभिव्यक्ति के जुड़े हिस्से को निर्दिष्ट करता है।

परिणामी समानता-रूपांतरित हैमिल्टनियन गैर-हर्मिटियन है, जिसके परिणामस्वरूप एक ही स्थिति के लिए भिन्न -भिन्न बाएं और दाएं संवाहक (तरंग फलन) होते हैं (यही वह है जिसे प्रायः युग्मित-स्तवक सिद्धांत में बायोऑर्थोगोनलिटी के रूप में संदर्भित किया जाता है। समाधान, या तरंग फलन, यद्यपि यह अन्य गैर-हर्मिटियन सिद्धांतों पर भी लागू होता है)। परिणामी समीकरण गैर-रैखिक समीकरणों का एक समुच्चय है, जो पुनरावृत्त विधियों से हल किए जाते हैं। मानक क्वांटम-रसायन विज्ञान पैकेज (जीएएमइएसएस (यूएस), एनडब्ल्यूसीएचइएम, एसीइएस जैकोबी पद्धति का उपयोग करके युग्मित-स्तवक समीकरणों को हल करते हैं, और अभिसरण को तीव्र करने के लिए टी-आयामों का पुनरावृत्त उप-स्थान (डीआईआईएस) बहिर्वेशन का प्रत्यक्ष व्युत्क्रमण करते हैं।

युग्मित-स्तवक विधियों के प्रकार

पारंपरिक युग्मित-स्तवक विधियों का वर्गीकरण परिभाषा में अनुमत उत्तेजनाओं की उच्चतम संख्या पर आधारित है . युग्मित-स्तवक विधियों के संक्षिप्त रूप सामान्यतः अक्षर सीसी (युग्मित स्तवक के लिए) से प्रारम्भ होते हैं और उसके पश्चात

  1. एस - एकल उत्तेजनाओं के लिए (युग्मित-स्तवक शब्दावली में एकल के लिए छोटा),
  2. डी - डबल उत्तेजना (युगल) के लिए,
  3. टी - ट्रिपल उत्तेजना (ट्रिपल) के लिए,
  4. क्यू - चौगुनी उत्तेजना (चौगुनी) के लिए।

इस प्रकार सीसीएसडीटी में संचालक के पास फॉर्म है

गोल कोष्ठकों में शर्तें इंगित करती हैं कि इन शर्तों की गणना समस्या सिद्धांत के आधार पर की जाती है। उदाहरण के लिए, सीसीएसडी (टी) पद्धति का अर्थ है:

  1. पूर्ण उपचार एकल और युगल के साथ युग्मित स्तवक।
  2. जुड़े हुए त्रिगुणों के योगदान के अनुमान की गणना गैर-पुनरावृत्ति सिद्धांत (क्वांटम यांत्रिकी) | कई-निकाय समस्या सिद्धांत तर्कों का उपयोग करके की जाती है।

सिद्धांत का सामान्य विवरण

समीकरणों की जटिलता और संबंधित संगणक कोड, साथ ही संगणना की लागत, उत्तेजना के उच्चतम स्तर के साथ तीव्रता से बढ़ती है। कई अनुप्रयोगों के लिए सीसीएसडी, जबकि अपेक्षाकृत सस्ता है, छोटी प्रणालियों (लगभग 2 से 4 इलेक्ट्रॉनों) को छोड़कर पर्याप्त उपयुक्तता प्रदान नहीं करता है, और प्रायः त्रिगुणों के अनुमानित उपचार की आवश्यकता होती है। सबसे प्रसिद्ध युग्मित-स्तवक विधि जो सम्बंधित त्रिगुण का अनुमान प्रदान करती है, सीसीएसडी (टी) है, जो संतुलन ज्यामिति के पास बंद-आवरण अणुओं का एक उपयुक्त विवरण प्रदान करती है, परन्तु बन्ध विभाजन और द्विमूलक जैसी अत्यधिक जटिल स्थितियों में विभाजित हो जाती है। मानक सीसीएसडी (टी) दृष्टिकोण की विफलताओं के लिए एक और लोकप्रिय विधि है सम्पूर्ण पुनर्सामान्यीकृत-सीसी (2,3), जहां ऊर्जा में त्रिगुण योगदान की गणना उपयुक्त समाधान और सीसीएसडी ऊर्जा के मध्य भिन्नता से की जाती है. और यह समस्या-सिद्धांत तर्कों पर आधारित नहीं है। सीसीएसडीटी और सीसीएसडीटीक्यू जैसे अधिक जटिल युग्मित-स्तवक विधियों का उपयोग केवल छोटे अणुओं की उच्च-उपयुक्तता गणनाओं के लिए किया जाता है। एन-इलेक्ट्रॉन प्रणाली के लिए उत्तेजना के सभी एन स्तरों को सम्मिलित करने से बॉर्न-ओपेनहाइमर सादृश्य के भीतर दिए गए आधार समुच्चय (रसायन विज्ञान) श्रोडिंगर समीकरण का उपयुक्त समाधान मिलता है, (यद्यपि कि बीओ के अतिरिक्त भी कार्य करने के लिए योजनाएं तैयार की गई हैं)। [13][14]).

मानक युग्मित-स्तवक दृष्टिकोण में एक संभावित सुधार सीसीएसडी-आर12 जैसे विधियों के माध्यम से अंतरविद्युत्कीय दूरी में रैखिक शब्दों को जोड़ना है। यह काटो पुच्छल स्थिति को संतुष्ट करके गतिशील इलेक्ट्रॉन सहसंबंध के उपचार में सुधार करता है और कक्षीय आधार समुच्चय के संबंध में अभिसरण को तीव्र करता है। दुर्भाग्य से, आर12 विधियाँ पहचान के संकल्प का आह्वान करती हैं, जिसके लिए एक उपयुक्त सादृश्य होने के लिए अपेक्षाकृत बड़े आधार समुच्चय की आवश्यकता होती है।

ऊपर वर्णित युग्मित-स्तवक विधि को एकल-संदर्भ (एसआर) युग्मित-स्तवक विधि के रूप में भी जाना जाता है, क्योंकि घातीय एएनएसएटीजेड में केवल एक संदर्भ फलन सम्मिलित होता है . एसआर-सीसी पद्धति के मानक सामान्यीकरण बहु-संदर्भ (एमआर) दृष्टिकोण हैं: राज्य-सार्वभौमिक युग्मित स्तवक (हिल्बर्ट अंतरिक्ष युग्मित स्तवक के रूप में भी जाना जाता है), संयोजकता-सार्वभौमिक युग्मित स्तवक (या फॉक स्पेस युग्मित स्तवक) और राज्य-चयनात्मक युग्मित स्तवक (या राज्य-विशिष्ट युग्मित स्तवक)।

ऐतिहासिक खाते

कुमेल टिप्पणियाँ:[1]

इस तथ्य को ध्यान में रखते हुए कि सीसी पद्धति को पचास के दशक के अंत में उपयुक्त समझा गया था [,] यह असामान्य लगता है कि 1966 तक इसके साथ कुछ भी नहीं हुआ, जैसा कि जिरी सिज़ेक ने क्वांटम रसायन विज्ञान की समस्या पर अपना प्रथम पत्र प्रकाशित किया था। उन्होंने फ्रिट्ज और मेरे द्वारा परमाणु भौतिकी में प्रकाशित 1957 और 1960 के पत्रों को देखा था। मुझे सदैव यह अत्यधिक उल्लेखनीय लगा कि एक क्वांटम रसायनज्ञ परमाणु भौतिकी पत्रिका का एक अंक खोलेगा। मैंने स्वयं उस समय सीसी पद्धति को लगभग छोड़ दिया था, क्योंकि यह सुविधाजनक नहीं था, और निश्चित रूप से मैंने कभी क्वांटम रसायन विज्ञान पत्रिकाओं में नहीं देखा। इसका परिणाम यह हुआ कि मुझे जीरी के कार्य के सम्बन्ध में सत्तर के दशक की प्रारम्भ में पता चला, जब उन्होंने मुझे एक बड़ा पार्सल भेजा, जिसमें उनके और जो पलडस ने तब तक लिखे कई पत्रों के पुनर्मुद्रण थे।

जोसेफ पाल्डस ने युग्मित-स्तवक सिद्धांत की उत्पत्ति, इसके कार्यान्वयन और इलेक्ट्रॉनिक तरंग-फलन निर्धारण में शोषण का अपना पहला लेख भी लिखा; उनका खाता मुख्य रूप से सिद्धांत के बजाय युग्मित-स्तवक सिद्धांत बनाने के बारे में है।[15]


अन्य सिद्धांतों से संबंध

कॉन्फ़िगरेशन इंटरैक्शन

Cj तरंग फलन के लिए N-इलेक्ट्रॉन प्रणाली के सीआई विस्तार को परिभाषित करने वाले उत्तेजना संचालक ,

स्तवक संचालकों से संबंधित हैं , क्योंकि सम्मिलित करने की सीमा में स्तवक संचालक में सीसी सिद्धांत पूर्ण सीआई के बराबर होना चाहिए, हम निम्नलिखित संबंध प्राप्त करते हैं[16][17]

आदि सामान्य संबंधों के लिए जे. पाल्डस, मेथड्स इन संगणनीय आणविक भौतिकी, खंड देखें। नाटो एडवांस्ड स्टडी इंस्टिट्यूट सीरीज बी का 293: भौतिकी, एस. विल्सन और जी. एच. एफ. डिएर्क्सन द्वारा संपादित (प्लेनम, न्यूयॉर्क, 1992), पीपी. 99-194।

समरूपता-अनुकूलित स्तवक

समरूपता-अनुकूलित स्तवक (एसएसी)[18][19] दृष्टिकोण (स्पिन- और) समरूपता-अनुकूलित स्तवक संचालक को निर्धारित करता है

ऊर्जा-निर्भर समीकरणों की निम्नलिखित प्रणाली को हल करके:

जहाँ के सापेक्ष n-टुप्ली उत्साहित निर्धारक हैं (सामान्यतः, व्यावहारिक कार्यान्वयन में, वे स्पिन- और समरूपता-अनुकूलित विन्यास स्टेट फलन होते हैं), और एसएसी संचालक में सम्मिलित उत्तेजना का उच्चतम क्रम है। यदि सभी गैर-रैखिक शर्तों में सम्मिलित हैं, तो एसएसी समीकरण जिरी सिज़ेक के मानक युग्मित-स्तवक समीकरणों के समानांतर हो जाते हैं। यह उत्पाद में योगदान देने वाली पृथक की गई उपबंध के साथ ऊर्जा-निर्भर उपबंध को निरस्त करने के कारण है , जिसके परिणामस्वरूप गैर-रैखिक ऊर्जा-स्वतंत्र समीकरणों का एक ही समुच्चय होता है। विशिष्ट रूप से, सभी अरैखिक शब्द, को छोड़कर हटा दिए जाते हैं, क्योंकि उच्च-क्रम के अरैखिक पद सामान्यतः छोटे होते हैं।[20]


परमाणु भौतिकी में प्रयोग

1980 और 1990 के दशक के दौरान परमाणु भौतिकी में, युग्मित स्तवक क्वांटम रसायन विज्ञान की तुलना में अधिकतर न्यूनतम उपयोग देखा गया। अधिक शक्तिशाली संगणक, साथ ही साथ सिद्धांत में प्रगति (जैसे कि तीन-न्यूक्लियॉन अंतःक्रिया का समावेश), ने तब से विधि में नए सिरे से रुचि पैदा की है, और इसे न्यूट्रॉन-समृद्ध और मध्यम- द्रव्यमान वाले नाभिकों पर सफलतापूर्वक लागू किया गया है। युग्मित स्तवक परमाणु भौतिकी में कई प्रारंभिक विधियों में से एक है, और विशेष रूप से बंद या लगभग बंद परमाणु आवरण प्रारूप वाले नाभिक के लिए उपयुक्त है।[21]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Kümmel, H. G. (2002). "A biography of the coupled cluster method". In Bishop, R. F.; Brandes, T.; Gernoth, K. A.; Walet, N. R.; Xian, Y. (eds.). अनेक-निकाय सिद्धांतों में हाल की प्रगति 11वें अंतर्राष्ट्रीय सम्मेलन की कार्यवाही. Singapore: World Scientific Publishing. pp. 334–348. ISBN 978-981-02-4888-8.
  2. Cramer, Christopher J. (2002). Essentials of Computational Chemistry. Chichester: John Wiley & Sons, Ltd. pp. 191–232. ISBN 0-471-48552-7.
  3. Shavitt, Isaiah; Bartlett, Rodney J. (2009). Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge University Press. ISBN 978-0-521-81832-2.
  4. Čížek, Jiří (1966). "परमाणु और आणविक प्रणालियों में सहसंबंध समस्या पर। क्वांटम-फील्ड सैद्धांतिक विधियों का उपयोग करके उर्सेल-प्रकार के विस्तार में वेवफंक्शन घटकों की गणना". The Journal of Chemical Physics. 45 (11): 4256–4266. Bibcode:1966JChPh..45.4256C. doi:10.1063/1.1727484.
  5. Sinanoğlu, O.; Brueckner, K. (1971). Three approaches to electron correlation in atoms. Yale Univ. Press. ISBN 0-300-01147-4. See also references therein.
  6. Si̇nanoğlu, Oktay (1962). "अनेक-परमाणुओं और अणुओं का इलेक्ट्रॉन सिद्धांत। I. गोले, इलेक्ट्रॉन जोड़े बनाम कई-इलेक्ट्रॉन सहसंबंध". The Journal of Chemical Physics. 36 (3): 706–717. Bibcode:1962JChPh..36..706S. doi:10.1063/1.1732596.
  7. Monkhorst, H. J. (1977). "युग्मित-क्लस्टर विधि के साथ गुणों की गणना". International Journal of Quantum Chemistry. 12, S11: 421–432. doi:10.1002/qua.560120850.
  8. Stanton, John F.; Bartlett, Rodney J. (1993). "गति युग्मित-क्लस्टर विधि का समीकरण। आणविक उत्तेजना ऊर्जा, संक्रमण की संभावनाएं, और उत्साहित राज्य गुणों के लिए एक व्यवस्थित बायोऑर्थोगोनल दृष्टिकोण". The Journal of Chemical Physics. 98 (9): 7029. Bibcode:1993JChPh..98.7029S. doi:10.1063/1.464746.
  9. Jeziorski, B.; Monkhorst, H. (1981). "बहुनिर्धारक संदर्भ राज्यों के लिए युग्मित-क्लस्टर विधि". Physical Review A. 24 (4): 1668. Bibcode:1981PhRvA..24.1668J. doi:10.1103/PhysRevA.24.1668.
  10. Lindgren, D.; Mukherjee, Debashis (1987). "सामान्य मॉडल स्पेस के लिए ओपन-शेल कपल्ड-क्लस्टर थ्योरी में कनेक्टिविटी मानदंड पर". Physics Reports. 151 (2): 93. Bibcode:1987PhR...151...93L. doi:10.1016/0370-1573(87)90073-1.
  11. Kowalski, K.; Piecuch, P. (2001). "A comparison of the renormalized and active-space coupled-cluster methods: Potential energy curves of BH and F2". Chemical Physics Letters. 344 (1–2): 165–175. Bibcode:2001CPL...344..165K. doi:10.1016/s0009-2614(01)00730-8.
  12. Ghose, K. B.; Piecuch, P.; Adamowicz, L. (1995). "Improved computational strategy for the state‐selective coupled‐cluster theory with semi‐internal triexcited clusters: Potential energy surface of the HF molecule". Journal of Physical Chemistry. 103 (21): 9331. Bibcode:1995JChPh.103.9331G. doi:10.1063/1.469993.
  13. Monkhorst, Hendrik J. (1987). "Chemical physics without the Born-Oppenheimer approximation: The molecular coupled-cluster method". Physical Review A. 36 (4): 1544–1561. Bibcode:1987PhRvA..36.1544M. doi:10.1103/PhysRevA.36.1544. PMID 9899035.
  14. Nakai, Hiromi; Sodeyama, Keitaro (2003). "Many-body effects in nonadiabatic molecular theory for simultaneous determination of nuclear and electronic wave functions: Ab initio NOMO/MBPT and CC methods". The Journal of Chemical Physics. 118 (3): 1119. Bibcode:2003JChPh.118.1119N. doi:10.1063/1.1528951.
  15. Paldus, J. (2005). "The beginnings of coupled-cluster theory: an eyewitness account". In Dykstra, C. (ed.). Theory and Applications of Computational Chemistry: The First Forty Years. Elsivier B.V. p. 115.
  16. Paldus, J. (1981). कई-फर्मियन सिस्टम के लिए आरेखीय तरीके (Lecture Notes ed.). University of Nijmegen, Njimegen, The Netherlands.{{cite book}}: CS1 maint: location missing publisher (link)
  17. Bartlett, R. J.; Dykstra, C. E.; Paldus, J. (1984). Dykstra, C. E. (ed.). अणुओं की इलेक्ट्रॉनिक संरचना के लिए उन्नत सिद्धांत और कम्प्यूटेशनल दृष्टिकोण. p. 127.
  18. Nakatsuji, H.; Hirao, K. (1977). "वेवफंक्शन का क्लस्टर विस्तार। स्यूडो-ऑर्बिटल सिद्धांत स्पिन सहसंबंध पर लागू होता है". Chemical Physics Letters. 47 (3): 569. Bibcode:1977CPL....47..569N. doi:10.1016/0009-2614(77)85042-2.
  19. Nakatsuji, H.; Hirao, K. (1978). "Cluster expansion of the wavefunction. Symmetry‐adapted‐cluster expansion, its variational determination, and extension of open‐shell orbital theory". Journal of Chemical Physics. 68 (5): 2053. Bibcode:1978JChPh..68.2053N. doi:10.1063/1.436028.
  20. Ohtsuka, Y.; Piecuch, P.; Gour, J. R.; Ehara, M.; Nakatsuji, H. (2007). "रेडिकल्स की संभावित ऊर्जा सतहों की उच्च सटीकता गणना के लिए सक्रिय-अंतरिक्ष समरूपता-अनुकूलित-क्लस्टर कॉन्फ़िगरेशन-इंटरैक्शन और समीकरण-ऑफ-मोशन युग्मित-क्लस्टर विधियां". Journal of Chemical Physics. 126 (16): 164111. Bibcode:2007JChPh.126p4111O. doi:10.1063/1.2723121. hdl:2433/50108. PMID 17477593.
  21. Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J. (2014). "परमाणु नाभिक की युग्मित-क्लस्टर संगणना". Reports on Progress in Physics. 77 (9): 096302. arXiv:1312.7872. Bibcode:2014RPPh...77i6302H. doi:10.1088/0034-4885/77/9/096302. PMID 25222372. S2CID 10626343.


बाहरी संसाधन

श्रेणी:क्वांटम रसायन श्रेणी:इलेक्ट्रॉनिक संरचना के तरीके श्रेणी:हार्ट्री-फॉक के पश्चात के तरीके