कक्षा (गतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 58: Line 58:
== उदाहरण ==
== उदाहरण ==
<gallery>
<gallery>
Critical orbit 3d.png|[[जटिल द्विघात बहुपद]] पर आधारित असतत गतिशील प्रणाली की महत्वपूर्ण कक्षा। यह गुणक = 0.99993612384259 के साथ कमजोर रूप से आकर्षित करने वाले [[निश्चित बिंदु (गणित)]] की ओर जाता है
File:Index.php?title=File:Critical orbit 3d.png|[[जटिल द्विघात बहुपद]] पर आधारित असतत गतिशील प्रणाली की महत्वपूर्ण कक्षा यह गुणक = 0.99993612384259 के साथ कमजोर रूप से आकर्षित करने वाले [[निश्चित बिंदु (गणित)]] की ओर जाता है
जूलिया समुच्चय p(z)= z^
File:Index.php?title=File:जूलिया समुच्चय p(z)= z^
3+(1.0149042485835864102+0.10183008497976470119i)*z; (zoom).png|क्रिटिकल ऑर्बिट कमजोर रूप से आकर्षित करने वाले बिंदु की ओर जाता है। एक सर्पिल को निश्चित बिंदु को आकर्षित करने वाले निश्चित बिंदु (z = 0) को आकर्षित करने से देख सकता है, जो कि उच्च स्तर के घटता के साथ एक स्थान है।
File:Index.php?title=File:3+(1.0149042485835864102+0.10183008497976470119i)*z; (zoom).png|क्रिटिकल ऑर्बिट कमजोर रूप से आकर्षित करने वाले बिंदु की ओर जाता है। एक सर्पिल को निश्चित बिंदु को आकर्षित करने वाले निश्चित बिंदु (z = 0) को आकर्षित करने से देख सकता है, जो कि उच्च स्तर के घटता के साथ एक स्थान है।
</gallery>
</gallery>
* एक [[संतुलन बिंदु]] की कक्षा एक स्थिर कक्षा होती है।
* [[संतुलन बिंदु]] की कक्षा स्थिर कक्षा होती है।


== कक्षाओं की स्थिरता ==
== कक्षाओं की स्थिरता ==

Revision as of 23:03, 31 March 2023

गणित में विशेष रूप से गतिशील प्रणालियों के अध्ययन में [[चरण स्थान (गतिशील प्रणाली)]] के विकास कार्य से संबंधित बिंदुओं का एक संग्रह है। इसे प्रारंभिक स्थितियों के एक विशेष समुच्चय के अनुसार डायनेमिक प्रणाली के प्रक्षेप वक्र द्वारा कवर किए गए फेज स्पेस (डायनेमिक प्रणाली) के सबसेट के रूप में समझा जा सकता है। क्योंकि प्रणाली विकसित होता है। एक चरण अंतरिक्ष प्रक्षेप वक्र के रूप में चरण अंतरिक्ष निर्देशांक के किसी भी समुच्चय के लिए विशिष्ट रूप से निर्धारित किया जाता है। विभिन्न कक्षाओं के लिए चरण अंतरिक्ष में अंतर करना संभव नहीं है। इसलिए एक गतिशील प्रणाली की सभी कक्षाओं का समुच्चय चरण का एक विभाजन (समुच्चय सिद्धांत) है। सामयिक गतिकी का उपयोग करके कक्षाओं के गुणों को समझना डायनेमिक प्रणाली के आधुनिक सिद्धांत के उद्देश्यों में से एक है।

असतत-समय गतिशील प्रणालियों के लिए कक्षाएँ अनुक्रम हैं। वास्तविक गतिशील प्रणाली के लिए कक्षाएँ वक्र हैं और होलोमॉर्फिक फ़ंक्शन डायनेमिक प्रणालीके लिए कक्षाएँ रीमैन सतह हैं।

परिभाषा

सरल हार्मोनिक गति में द्रव्यमान-वसंत प्रणाली की आवधिक कक्षा को दर्शाने वाला आरेख। (यहाँ दो आरेखों को संरेखित करने के लिए वेग और स्थिति अक्षों को मानक सम्मेलन से उलट दिया गया है)

T a समूह (गणित), M a समुच्चय (गणित) और Φ विकास समारोह के साथ एक गतिशील प्रणाली (T, M, Φ) को देखते हुए

कहाँ साथ

हम परिभाषित करते हैं

फिर समुच्चय

x के माध्यम से कक्षा कहा जाता है। एक कक्षा जिसमें एक बिंदु होता है। स्थिर कक्षा कहलाती है। एक गैर-निरंतर कक्षा को बंद या आवधिक कहा जाता है। यदि मौजूद हो में ऐसा है कि

.

वास्तविक गतिशील प्रणाली

एक वास्तविक गतिशील प्रणाली (R, M, Φ) को देखते हुए (x) वास्तविक संख्या में खुला अंतराल है। जो . M में किसी भी x ए के लिए

'x' और के माध्यम से सकारात्मक अर्ध-कक्षा कहा जाता है।

x से होकर ऋणात्मक अर्ध-कक्षा कहलाती है।

असतत समय गतिशील प्रणाली

असतत समय गतिशील प्रणाली के लिए

x की आगे की कक्षा समुच्चय है।

x की पश्च कक्षा समुच्चय है।

और x की कक्षा समुच्चय है।

कहाँ:

  • एक विकास कार्य है। जो यहाँ एक पुनरावृत्त कार्य है।
  • तय करना गतिशील स्थान है।
  • पुनरावृत्ति की संख्या है। जो प्राकृतिक संख्या है और
  • प्रणाली की प्रारंभिक अवस्था है और

सामान्यतः अलग संकेतन प्रयोग किया जाता है।

  • के रूप में लिखा गया है
  • कहाँ है। उपरोक्त अंकन में।

सामान्य गतिशील प्रणाली

सामान्य गतिशील प्रणाली के लिए विशेष रूप से सजातीय गतिशीलता में जब किसी के पास एक अच्छा समूह होता है। संभाव्यता स्थान पर कार्य करना माप-संरक्षण तरीके से कक्षा स्टेबलाइजर होने पर आवधिक (या समकक्ष, बंद) कहा जाएगा। अंदर एक जाली है .

इसके अतिरिक्त संबंधित शब्द बंधी हुई कक्षा है। जब समुच्चय अंदर प्री-कॉम्पैक्ट है .

कक्षाओं के वर्गीकरण से अन्य गणितीय क्षेत्रों के संबंध में दिलचस्प प्रश्न हो सकते हैं। उदाहरण के लिए ओपेनहाइम अनुमान (मार्गुलिस द्वारा सिद्ध) और लिटिलवुड अनुमान (आंशिक रूप से लिंडेनस्ट्रॉस द्वारा सिद्ध) इस सवाल से निपट रहे हैं। कि क्या किसी प्राकृतिक क्रिया की प्रत्येक परिबद्ध कक्षा पर सजातीय स्थान वास्तव में आवधिक है। यह अवलोकन रघुनाथन के कारण है और दूसरी भाषा में कैसल्स और स्विनर्टन-डायर के कारण है। इस तरह के प्रश्न गहरे माप-वर्गीकरण प्रमेयों से घनिष्ठ रूप से संबंधित हैं।

टिप्पणियाँ

अधिकांशतः ऐसा होता है कि विकास कार्य को एक समूह के तत्वों को बनाने के लिए समझा जा सकता है। इस मामले में समूह क्रिया के समूह-सैद्धांतिक कक्षाएं गतिशील कक्षाओं के समान ही होती हैं।

उदाहरण

कक्षाओं की स्थिरता

कक्षाओं का एक बुनियादी वर्गीकरण है

  • स्थिर कक्षाएँ या निश्चित बिंदु
  • आवधिक परिक्रमा
  • गैर-निरंतर और गैर-आवधिक कक्षाएँ

एक कक्षा दो तरह से बंद होने में विफल हो सकती है। यदि यह (गणित) एक आवधिक कक्षा तक सीमित है, तो यह एक असम्बद्ध रूप से आवधिक कक्षा हो सकती है। ऐसी कक्षाएँ बंद नहीं होती हैं क्योंकि वे वास्तव में कभी दोहराती नहीं हैं, लेकिन वे मनमाने ढंग से एक दोहराई जाने वाली कक्षा के करीब हो जाती हैं। एक कक्षा अराजकता सिद्धांत भी हो सकती है। ये कक्षाएँ मनमाने ढंग से प्रारंभिक बिंदु के करीब आती हैं, लेकिन कभी भी एक आवधिक कक्षा में अभिसरण करने में विफल रहती हैं। वे प्रारंभिक स्थितियों पर संवेदनशील निर्भरता प्रदर्शित करते हैं, जिसका अर्थ है कि प्रारंभिक मूल्य में छोटे अंतर कक्षा के भविष्य के बिंदुओं में बड़े अंतर का कारण बनेंगे।

कक्षाओं के अन्य गुण हैं जो विभिन्न वर्गीकरणों की अनुमति देते हैं। एक कक्षा अतिशयोक्तिपूर्ण संतुलन बिंदु हो सकती है यदि पास के बिंदु कक्षा से घातीय रूप से तेजी से पास आते हैं या विचलन करते हैं।

यह भी देखें

संदर्भ

  • Hale, Jack K.; Koçak, Hüseyin (1991). "Periodic Orbits". Dynamics and Bifurcations. New York: Springer. pp. 365–388. ISBN 0-387-97141-6.
  • Katok, Anatole; Hasselblatt, Boris (1996). Introduction to the modern theory of dynamical systems. Cambridge. ISBN 0-521-57557-5.
  • Perko, Lawrence (2001). "Periodic Orbits, Limit Cycles and Separatrix Cycles". Differential Equations and Dynamical Systems (Third ed.). New York: Springer. pp. 202–211. ISBN 0-387-95116-4.