शुद्ध बल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 9: Line 9:
== संपूर्ण बल ==
== संपूर्ण बल ==


[[File:Addition of forces.JPG|thumb|350px|A<!--?: nother--> बलों को जोड़ने के लिए आरेखीय विधि।]]बल एक यूक्लिडियन सदिश राशि है, जिसका अर्थ है कि इसकी एक परिमाण और दिशा है, और इसे सामान्यतः बोल्डफेस जैसे एफ या प्रतीक पर एक तीर का उपयोग करके निरूपित किया जाता है, जैसे कि <math>\scriptstyle \vec F</math>.
[[File:Addition of forces.JPG|thumb|350px|A<!--?: nother--> बलों को जोड़ने के लिए आरेखीय विधि।]]बल एक यूक्लिडियन सदिश राशि है, जिसका अर्थ है कि इसकी एक परिमाण और दिशा है, और इसे सामान्यतः '''F''' जैसे बोल्डफेस का उपयोग करके या प्रतीक पर तीर का उपयोग करके दर्शाया जाता है, जैसे कि <math>\scriptstyle \vec F</math>.


रेखांकन के रूप में, एक बल को उसके अनुप्रयोग बिंदु A से बिंदु B तक एक रेखा खंड के रूप में दर्शाया जाता है, जो इसकी दिशा और परिमाण को परिभाषित करता है। खंड AB की लंबाई बल के परिमाण को दर्शाती है।
रेखांकन के रूप में, बल को उसके अनुप्रयोग बिंदु A से बिंदु B तक एक रेखा खंड के रूप में दर्शाया जाता है, जो इसकी दिशा और परिमाण को परिभाषित करता है। खंड AB की लंबाई बल के परिमाण को दर्शाती है।


[[वेक्टर पथरी]] का विकास 1800 के अंत और 1900 के प्रारंभ में हुआ था। बलों को जोड़ने के लिए प्रयुक्त [[समांतर चतुर्भुज नियम]], हालांकि, प्राचीन काल से है और गैलीलियो और न्यूटन द्वारा स्पष्ट रूप से नोट किया गया है।<ref>Michael J. Crowe (1967). ''A History of Vector Analysis : The Evolution of the Idea of a Vectorial System''. Dover Publications (reprint edition; {{ISBN|0-486-67910-1}}).</ref> आरेख बलों के जोड़ को दर्शाता है <math>\scriptstyle  \vec{F}_{1}</math> और <math>\scriptstyle \vec{F}_{2}</math>. योग <math>\scriptstyle \vec F</math> दो बलों में से प्रत्येक को दो बलों द्वारा परिभाषित समांतर चतुर्भुज के विकर्ण के रूप में खींचा जाता है।
[[वेक्टर पथरी|वेक्टर गणना]] का विकास 1800 सदी के अंत और 1900 सदी के प्रारंभ में हुआ था। बलों को जोड़ने के लिए प्रयुक्त [[समांतर चतुर्भुज नियम]], हालांकि, प्राचीन काल से है और गैलीलियो और न्यूटन द्वारा स्पष्ट रूप से नोट किया गया है।<ref>Michael J. Crowe (1967). ''A History of Vector Analysis : The Evolution of the Idea of a Vectorial System''. Dover Publications (reprint edition; {{ISBN|0-486-67910-1}}).</ref> आरेख बलों के जोड़ को दर्शाता है <math>\scriptstyle  \vec{F}_{1}</math> और <math>\scriptstyle \vec{F}_{2}</math>. योग <math>\scriptstyle \vec F</math> दो बलों में से प्रत्येक को दो बलों द्वारा परिभाषित समांतर चतुर्भुज के विकर्ण के रूप में खींचा जाता है।
  <!----
  <!----
   This "intuitive" description is not intuitive:
   This "intuitive" description is not intuitive:

Revision as of 19:22, 1 April 2023

यांत्रिकी में, शुद्ध बल कण या भौतिक वस्तु पर कार्य करने वाली शक्तियों का सदिश योग होता है। शुद्ध बल एक एकल बल है जो कण की गति पर मूल बलों के प्रभाव को प्रतिस्थापित करता है। यह कण को ​​न्यूटन के गति के नियमों द्वारा वर्णित उन सभी वास्तविक बलों के समान त्वरण देता है | न्यूटन की गति का दूसरा नियम।

एक शुद्ध बल के प्रयोग के बिंदु से जुड़े टॉर्क को निर्धारित करना संभव है ताकि यह बल की मूल प्रणाली के अनुसार वस्तु के जेट के गति को बनाए रखे। इससे जुड़ा टॉर्कः , शुद्ध बल, 'परिणामी बल' बन जाता है और वस्तु की घूर्णी गति पर वैसा ही प्रभाव पड़ता है जैसा कि सभी वास्तविक बलों को एक साथ लिया जाता है।[1] बलों की एक प्रणाली के लिए टॉर्क मुक्त परिणामी बल को परिभाषित करना संभव है। इस मामले में, शुद्ध बल, जब कार्रवाई की उचित रेखा पर लागू होता है, तो प्रयोग के बिंदु पर सभी बलों के समान प्रभाव पड़ता है। टॉर्क-मुक्त परिणामी बल का पता लगाना सदैव संभव नहीं होता है।


संपूर्ण बल

A बलों को जोड़ने के लिए आरेखीय विधि।

बल एक यूक्लिडियन सदिश राशि है, जिसका अर्थ है कि इसकी एक परिमाण और दिशा है, और इसे सामान्यतः F जैसे बोल्डफेस का उपयोग करके या प्रतीक पर तीर का उपयोग करके दर्शाया जाता है, जैसे कि .

रेखांकन के रूप में, बल को उसके अनुप्रयोग बिंदु A से बिंदु B तक एक रेखा खंड के रूप में दर्शाया जाता है, जो इसकी दिशा और परिमाण को परिभाषित करता है। खंड AB की लंबाई बल के परिमाण को दर्शाती है।

वेक्टर गणना का विकास 1800 सदी के अंत और 1900 सदी के प्रारंभ में हुआ था। बलों को जोड़ने के लिए प्रयुक्त समांतर चतुर्भुज नियम, हालांकि, प्राचीन काल से है और गैलीलियो और न्यूटन द्वारा स्पष्ट रूप से नोट किया गया है।[2] आरेख बलों के जोड़ को दर्शाता है और . योग दो बलों में से प्रत्येक को दो बलों द्वारा परिभाषित समांतर चतुर्भुज के विकर्ण के रूप में खींचा जाता है। विस्तारित निकाय पर लगाए गए बलों के आवेदन के विभिन्न बिंदु हो सकते हैं। बल बद्ध सदिश होते हैं और इन्हें तभी जोड़ा जा सकता है जब वे एक ही बिंदु पर लागू हों। एक पिंड पर कार्य करने वाली सभी शक्तियों से प्राप्त शुद्ध बल तब तक अपनी गति को संरक्षित नहीं करता है जब तक कि एक ही बिंदु पर लागू नहीं किया जाता है, और आवेदन के नए बिंदु से जुड़े उपयुक्त टॉर्क के साथ निर्धारित किया जाता है। उपयुक्त बल आघूर्ण के साथ एक बिंदु पर लगाए गए पिंड पर कुल बल को परिणामी बल और बल आघूर्ण के रूप में जाना जाता है।

बलों के योग के लिए समानांतर चतुर्भुज नियम

समांतर चतुर्भुज एबीसीडी

एक बल को एक बाध्य सदिश के रूप में जाना जाता है—जिसका अर्थ है कि इसकी एक दिशा और परिमाण और अनुप्रयोग का एक बिंदु है। बल को परिभाषित करने का एक सुविधाजनक तरीका एक बिंदु A से एक बिंदु B तक एक रेखा खंड है। यदि हम इन बिंदुओं के निर्देशांक को 'A' = (A) के रूप में निरूपित करते हैंx, एy, एz) और बी = (बीx, बीy, बीz), तो ए पर लागू बल वेक्टर द्वारा दिया जाता है

सदिश B-A की लंबाई F के परिमाण को परिभाषित करती है और इसके द्वारा दिया जाता है

दो बलों का योग F1 और एफ2 ए पर लागू उन खंडों के योग से गणना की जा सकती है जो उन्हें परिभाषित करते हैं। चलो 'एफ'1= बी−ए और एफ2= D−A, तो इन दो सदिशों का योग है

जिसे इस रूप में लिखा जा सकता है

जहां ई सेगमेंट बीडी का मध्य बिंदु है जो बिंदु 'बी' और 'डी' से जुड़ता है।

इस प्रकार, बलों का योग F1 और एफ2 दो बलों के अंतबिंदु B और D को मिलाने वाले खंड के मध्य बिंदु E से A को मिलाने वाला खंड दोगुना है। समानांतर एबीसीडी को पूरा करने के लिए क्रमशः 'एडी' और 'एबी' के समानांतर 'बीसी' और 'डीसी' खंडों को परिभाषित करके इस लंबाई का दोहरीकरण आसानी से हासिल किया जाता है। इस समांतर चतुर्भुज का विकर्ण 'AC' दो बल सदिशों का योग है। इसे बलों के योग के लिए समांतर चतुर्भुज नियम के रूप में जाना जाता है।

एक बल के कारण अनुवाद और घूर्णन

बिंदु बल

जब कोई बल किसी कण पर कार्य करता है, तो यह एक बिंदु पर लागू होता है (कण का आयतन नगण्य होता है): यह एक बिंदु बल है और कण इसका अनुप्रयोग बिंदु है। लेकिन एक विस्तारित पिंड (वस्तु) पर एक बाहरी बल उसके कई घटक कणों पर लगाया जा सकता है, अर्थात पिंड के कुछ आयतन या सतह पर फैल सकता है। हालांकि, शरीर पर इसके घूर्णी प्रभाव को निर्धारित करने के लिए आवश्यक है कि हम इसके आवेदन के बिंदु को निर्दिष्ट करें (वास्तव में, आवेदन की रेखा, जैसा कि नीचे बताया गया है)। समस्या सामान्यतः निम्नलिखित तरीकों से हल की जाती है:

  • अक्सर, वह आयतन या सतह जिस पर बल कार्य करता है, शरीर के आकार की तुलना में अपेक्षाकृत छोटा होता है, ताकि इसे एक बिंदु द्वारा अनुमानित किया जा सके। सामान्यतः यह निर्धारित करना मुश्किल नहीं है कि इस तरह के सन्निकटन के कारण होने वाली त्रुटि स्वीकार्य है या नहीं।
  • यदि यह स्वीकार्य नहीं है (स्पष्ट रूप से गुरुत्वाकर्षण बल के मामले में), तो ऐसे आयतन/सतही बल को बलों (घटकों) की एक प्रणाली के रूप में वर्णित किया जाना चाहिए, प्रत्येक एक कण पर कार्य करता है, और फिर प्रत्येक के लिए गणना की जानी चाहिए उनमें से अलग से। इस तरह की गणना सामान्यतः शरीर की मात्रा/सतह के अंतर तत्वों और अभिन्न कलन के उपयोग से सरल होती है। कई मामलों में, हालांकि, यह दिखाया जा सकता है कि वास्तविक गणना के बिना बलों की ऐसी प्रणाली को एकल बिंदु बल द्वारा प्रतिस्थापित किया जा सकता है (जैसा कि समान गुरुत्वाकर्षण बल के मामले में)।

किसी भी मामले में, कठोर शरीर गति का विश्लेषण बिंदु बल मॉडल से शुरू होता है। और जब किसी पिंड पर कार्य करने वाले बल को रेखांकन के रूप में दिखाया जाता है, तो बल का प्रतिनिधित्व करने वाला उन्मुख रेखा खंड सामान्यतः इस तरह खींचा जाता है कि आवेदन बिंदु पर शुरू (या अंत) हो।

कठोर शरीर

कैसे एक बल एक शरीर को गति देता है।

आरेख में दिखाए गए उदाहरण में, एक एकल बल एक मुक्त कठोर शरीर पर अनुप्रयोग बिंदु H पर कार्य करता है। शरीर में द्रव्यमान होता है और इसका द्रव्यमान केंद्र बिंदु C है। निरंतर द्रव्यमान सन्निकटन में, बल निम्नलिखित भावों द्वारा वर्णित शरीर की गति में परिवर्तन का कारण बनता है:

द्रव्यमान त्वरण का केंद्र है; और
शरीर का कोणीय त्वरण है।

दूसरी अभिव्यक्ति में, टॉर्क या बल का क्षण है, जबकि शरीर की जड़ता का क्षण है। एक बल की वजह से एक टॉर्क किसी संदर्भ बिंदु के संबंध में परिभाषित एक वेक्टर मात्रा है:

टॉर्क वेक्टर है, और
टॉर्क की मात्रा है।

सदिश बल अनुप्रयोग बिंदु का स्थिति वेक्टर है, और इस उदाहरण में इसे द्रव्यमान के केंद्र से संदर्भ बिंदु के रूप में खींचा गया है (आरेख देखें)। सीधी रेखा खंड बल की उत्तोलक भुजा है द्रव्यमान के केंद्र के संबंध में। जैसा कि चित्रण से पता चलता है, यदि बल के अनुप्रयोग की रेखा (बिंदीदार काली रेखा) के साथ अनुप्रयोग बिंदु को स्थानांतरित किया जाता है, तो टॉर्क नहीं बदलता है (उसी लीवर आर्म)। अधिक औपचारिक रूप से, यह वेक्टर उत्पाद के गुणों से चलता है, और दिखाता है कि बल का घूर्णी प्रभाव केवल उसके आवेदन की रेखा की स्थिति पर निर्भर करता है, न कि उस रेखा के साथ आवेदन के बिंदु की विशेष पसंद पर।

टॉर्क वेक्टर बल और वेक्टर द्वारा परिभाषित विमान के लंबवत है , और इस उदाहरण में यह प्रेक्षक की ओर निर्देशित है; कोणीय त्वरण वेक्टर की एक ही दिशा होती है। दाहिने हाथ का नियम इस दिशा को ड्राइंग के विमान में दक्षिणावर्त या वामावर्त घुमाव से संबंधित करता है।

जड़ता का क्षण द्रव्यमान के केंद्र के माध्यम से धुरी के संबंध में गणना की जाती है जो टॉर्क के समानांतर होती है। यदि चित्रण में दिखाया गया शरीर एक सजातीय डिस्क है, तो यह जड़ता का क्षण है . यदि डिस्क का द्रव्यमान 0,5 kg और त्रिज्या 0,8 m है, तो जड़ता का क्षण 0,16 kgm है2</उप>। यदि बल की मात्रा 2 N है, और लीवर आर्म 0,6 m है, तो टॉर्क की मात्रा 1,2 Nm है। दिखाए गए क्षण में, बल डिस्क को कोणीय त्वरण α = देता है τ/मैं = 7,5 रेड/सेकंड2, और इसके द्रव्यमान के केंद्र को यह रैखिक त्वरण देता है a = F/m = 4 m/s2</उप>।

परिणामी बल

परिणामी बल का ग्राफिकल प्लेसमेंट।

परिणामी बल और बलाघूर्ण कठोर पिंड की गति पर कार्य करने वाली शक्तियों की प्रणाली के प्रभावों को प्रतिस्थापित करता है। एक दिलचस्प विशेष मामला एक टॉर्क-मुक्त परिणामी है, जिसे निम्नानुसार पाया जा सकता है:

  1. वेक्टर जोड़ का उपयोग शुद्ध बल खोजने के लिए किया जाता है;
  2. शून्य टॉर्क के साथ आवेदन के बिंदु को निर्धारित करने के लिए समीकरण का प्रयोग करें:

कहाँ शुद्ध बल है, इसके आवेदन बिंदु का पता लगाता है, और व्यक्तिगत बल हैं आवेदन बिंदुओं के साथ . ऐसा हो सकता है कि आवेदन का कोई बिंदु नहीं है जो टॉर्क मुक्त परिणाम उत्पन्न करता है। विपरीत चित्र सरल प्लानर सिस्टम के परिणामी बल के अनुप्रयोग की रेखा को खोजने के लिए सरल ग्राफिकल विधियों को दिखाता है:

  1. वास्तविक बलों के आवेदन की रेखाएँ और सबसे बाईं ओर चित्रण प्रतिच्छेद करता है। के स्थान पर वेक्टर जोड़ के बाद किया जाता है , प्राप्त शुद्ध बल का अनुवाद किया जाता है ताकि इसके आवेदन की रेखा सामान्य चौराहे बिंदु से गुजरे। उस बिंदु के संबंध में सभी टॉर्क शून्य हैं, इसलिए परिणामी बल का टॉर्क वास्तविक बलों के बलाघूर्णों के योग के बराबर है।
  2. आरेख के बीच में चित्रण दो समानांतर वास्तविक बलों को दर्शाता है। के स्थान पर वेक्टर जोड़ के बाद , शुद्ध बल को आवेदन की उपयुक्त रेखा में अनुवादित किया जाता है, जहाँ यह परिणामी बल बन जाता है . प्रक्रिया घटकों में सभी बलों के अपघटन पर आधारित है, जिसके लिए आवेदन की रेखाएं (पीली बिंदीदार रेखाएं) एक बिंदु पर प्रतिच्छेद करती हैं (तथाकथित ध्रुव, चित्रण के दाईं ओर मनमाने ढंग से सेट)। फिर बलाघूर्ण संबंधों को प्रदर्शित करने के लिए पिछले मामले के तर्कों को बलों और उनके घटकों पर लागू किया जाता है।
  3. सबसे सही चित्रण एक जोड़ी (यांत्रिकी) दिखाता है, दो समान लेकिन विपरीत बल जिनके लिए शुद्ध बल की मात्रा शून्य है, लेकिन वे शुद्ध टॉर्क का उत्पादन करते हैं कहाँ उनके आवेदन की रेखाओं के बीच की दूरी है। चूँकि कोई परिणामी बल नहीं है, यह बलाघूर्ण [है?] शुद्ध बलाघूर्ण के रूप में वर्णित किया जा सकता है।

उपयोग

गैर-समानांतर बलों को जोड़ने के लिए वेक्टर आरेख।

सामान्य तौर पर, एक दृढ़ पिंड पर कार्यरत बलों की एक प्रणाली को सदैव एक बल और एक शुद्ध (पिछला अनुभाग देखें) बलाघूर्ण द्वारा प्रतिस्थापित किया जा सकता है। बल शुद्ध बल है, लेकिन अतिरिक्त बलाघूर्ण की गणना करने के लिए, शुद्ध बल को क्रिया की रेखा सौंपी जानी चाहिए। कार्रवाई की रेखा को मनमाने ढंग से चुना जा सकता है, लेकिन अतिरिक्त शुद्ध टॉर्क इस विकल्प पर निर्भर करता है। एक विशेष मामले में, कार्रवाई की ऐसी रेखा खोजना संभव है कि यह अतिरिक्त टॉर्क शून्य हो।

बलों के किसी भी विन्यास के लिए परिणामी बल और बलाघूर्ण निर्धारित किया जा सकता है। हालांकि, एक दिलचस्प विशेष मामला एक टॉर्क मुक्त परिणामी है। यह वैचारिक और व्यावहारिक दोनों तरह से उपयोगी है, क्योंकि शरीर बिना घुमाए चलता है जैसे कि वह एक कण था। कुछ लेखक परिणामी बल को शुद्ध बल से अलग नहीं करते हैं और शब्दों को समानार्थक शब्द के रूप में उपयोग करते हैं।[3]


यह भी देखें

संदर्भ

  1. Symon, Keith R. (1964), Mechanics, Addison-Wesley, LCCN 60-5164
  2. Michael J. Crowe (1967). A History of Vector Analysis : The Evolution of the Idea of a Vectorial System. Dover Publications (reprint edition; ISBN 0-486-67910-1).
  3. Resnick, Robert and Halliday, David (1966), Physics, (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No. 66-11527