औसत पूर्ण प्रतिशत त्रुटि: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Measure of prediction accuracy of a forecast}} {{Refimprove|date=December 2009}} औसत पूर्ण प्रतिशत त्रुटि (एम...")
 
No edit summary
Line 1: Line 1:
{{short description|Measure of prediction accuracy of a forecast}}
{{short description|Measure of prediction accuracy of a forecast}}
{{Refimprove|date=December 2009}}
औसत पूर्ण प्रतिशत त्रुटि (एमएपीई), जिसे औसत पूर्ण प्रतिशत विचलन (एमएपीडी) के रूप में भी जाना जाता है, आंकड़ों में पूर्वानुमान पद्धति की भविष्यवाणी सटीकता का एक उपाय है। यह सामान्यता सटीकता को सूत्र द्वारा परिभाषित अनुपात के रूप में व्यक्त करता है:
औसत पूर्ण प्रतिशत त्रुटि (एमएपीई), जिसे औसत पूर्ण प्रतिशत विचलन (एमएपीडी) के रूप में भी जाना जाता है, आंकड़ों में भविष्यवाणी पद्धति की भविष्यवाणी सटीकता का एक उपाय है। यह आमतौर पर सटीकता को सूत्र द्वारा परिभाषित अनुपात के रूप में व्यक्त करता है:


: <math>\mbox{MAPE} = \frac{100\%}{n}\sum_{t=1}^n  \left|\frac{A_t-F_t}{A_t}\right| </math>
: <math>\mbox{MAPE} = \frac{100\%}{n}\sum_{t=1}^n  \left|\frac{A_t-F_t}{A_t}\right| </math>
कहाँ {{math|''A''<sub>''t''</sub>}} वास्तविक मूल्य है और {{math|''F''<sub>''t''</sub>}} पूर्वानुमान मान है। उनके अंतर को वास्तविक मूल्य से विभाजित किया जाता है {{math|''A''<sub>''t''</sub>}}. इस अनुपात का निरपेक्ष मूल्य समय में प्रत्येक पूर्वानुमानित बिंदु के लिए अभिव्यक्त किया जाता है और फिट किए गए बिंदुओं की संख्या से विभाजित किया जाता है{{math|''n''}}.
जहाँ {{math|''A''<sub>''t''</sub>}} वास्तविक मूल्य है और {{math|''F''<sub>''t''</sub>}} पूर्वानुमान मान है। उनके अंतर को वास्तविक मूल्य से विभाजित किया जाता है {{math|''A''<sub>''t''</sub>}}. इस अनुपात का निरपेक्ष मूल्य समय में प्रत्येक पूर्वानुमानित बिंदु के लिए अभिव्यक्त किया जाता है और {{math|''n''}} फिट किए गए बिंदुओं की संख्या से विभाजित किया जाता है.


== प्रतिगमन समस्याओं में MAPE ==
== प्रतिगमन समस्याओं में एमएपीई ==


सापेक्ष त्रुटि के संदर्भ में इसकी बहुत सहज व्याख्या के कारण औसत पूर्ण प्रतिशत त्रुटि आमतौर पर [[प्रतिगमन विश्लेषण]] और मॉडल मूल्यांकन के लिए हानि फ़ंक्शन के रूप में उपयोग की जाती है।
सापेक्ष त्रुटि के संदर्भ में इसकी बहुत सहज व्याख्या के कारण औसत पूर्ण प्रतिशत त्रुटि सामान्यता [[प्रतिगमन विश्लेषण]] और मॉडल मूल्यांकन के लिए हानि फ़ंक्शन के रूप में उपयोग की जाती है।


=== परिभाषा ===
=== परिभाषा ===
Line 17: Line 16:


:<math>g_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \mathbb{E}\left[ \left|\frac{g(X) - Y}{Y}\right||X = x\right]</math>
:<math>g_\text{MAPE}(x) = \arg\min_{g \in \mathcal{G}} \mathbb{E}\left[ \left|\frac{g(X) - Y}{Y}\right||X = x\right]</math>
कहाँ <math>\mathcal{G}</math> माना जाने वाला मॉडल का वर्ग है (उदाहरण के लिए रैखिक मॉडल)।
जहाँ <math>\mathcal{G}</math> माना जाने वाला मॉडल का वर्ग है (उदाहरण के लिए रैखिक मॉडल)।


व्यवहार में
व्यवहार में
Line 37: Line 36:
WMAPE (कभी-कभी स्पेलिंग wMAPE) भारित माध्य निरपेक्ष प्रतिशत त्रुटि के लिए है।<ref name="baeldungdef">{{cite web |url=https://www.baeldung.com/cs/mape-vs-wape-vs-wmape%7Ctitle=Understanding Forecast Accuracy: MAPE, WAPE, WMAPE}}</ref> यह प्रतिगमन या पूर्वानुमान मॉडल के प्रदर्शन का मूल्यांकन करने के लिए उपयोग किया जाने वाला एक उपाय है। यह एमएपीई का एक रूप है जिसमें औसत पूर्ण प्रतिशत त्रुटियों को भारित अंकगणितीय माध्य के रूप में माना जाता है। आम तौर पर पूर्ण प्रतिशत त्रुटियां वास्तविक द्वारा भारित होती हैं (उदाहरण के लिए बिक्री पूर्वानुमान के मामले में, त्रुटियों को बिक्री मात्रा द्वारा भारित किया जाता है)।<ref name="ibfdef">{{cite web |url=https://ibf.org/knowledge/glossary/weighted-mean-absolute-percentage-error-wmape-299%7Ctitle=WMAPE: Weighted Mean Absolute Percentage Error}}</ref>. प्रभावी रूप से, यह 'अनंत त्रुटि' के मुद्दे पर काबू पा लेता है।<ref name="statisticalforecast"/>इसका सूत्र है:<ref name="statisticalforecast">{{cite web |title=सांख्यिकीय पूर्वानुमान त्रुटियां|url=https://blog.olivehorse.com/statistical-forecast-errors}}</ref>
WMAPE (कभी-कभी स्पेलिंग wMAPE) भारित माध्य निरपेक्ष प्रतिशत त्रुटि के लिए है।<ref name="baeldungdef">{{cite web |url=https://www.baeldung.com/cs/mape-vs-wape-vs-wmape%7Ctitle=Understanding Forecast Accuracy: MAPE, WAPE, WMAPE}}</ref> यह प्रतिगमन या पूर्वानुमान मॉडल के प्रदर्शन का मूल्यांकन करने के लिए उपयोग किया जाने वाला एक उपाय है। यह एमएपीई का एक रूप है जिसमें औसत पूर्ण प्रतिशत त्रुटियों को भारित अंकगणितीय माध्य के रूप में माना जाता है। आम तौर पर पूर्ण प्रतिशत त्रुटियां वास्तविक द्वारा भारित होती हैं (उदाहरण के लिए बिक्री पूर्वानुमान के मामले में, त्रुटियों को बिक्री मात्रा द्वारा भारित किया जाता है)।<ref name="ibfdef">{{cite web |url=https://ibf.org/knowledge/glossary/weighted-mean-absolute-percentage-error-wmape-299%7Ctitle=WMAPE: Weighted Mean Absolute Percentage Error}}</ref>. प्रभावी रूप से, यह 'अनंत त्रुटि' के मुद्दे पर काबू पा लेता है।<ref name="statisticalforecast"/>इसका सूत्र है:<ref name="statisticalforecast">{{cite web |title=सांख्यिकीय पूर्वानुमान त्रुटियां|url=https://blog.olivehorse.com/statistical-forecast-errors}}</ref>
:<math>\mbox{wMAPE} = \frac{\sum_{i=1}^n (w_i \cdot \frac{\left|A_i-F_i\right|}{|A_i|})}{\sum_{i=1}^n w_i} = \frac{\sum_{i=1}^n (|A_i| \cdot \frac{\left|A_i-F_i\right|}{|A_i|})}{\sum_{i=1}^n \left|A_i\right|}</math>
:<math>\mbox{wMAPE} = \frac{\sum_{i=1}^n (w_i \cdot \frac{\left|A_i-F_i\right|}{|A_i|})}{\sum_{i=1}^n w_i} = \frac{\sum_{i=1}^n (|A_i| \cdot \frac{\left|A_i-F_i\right|}{|A_i|})}{\sum_{i=1}^n \left|A_i\right|}</math>
कहाँ <math>w_i</math> वजन है, <math>A</math> वास्तविक डेटा का एक वेक्टर है और <math>F</math> पूर्वानुमान या भविष्यवाणी है।
जहाँ <math>w_i</math> वजन है, <math>A</math> वास्तविक डेटा का एक वेक्टर है और <math>F</math> पूर्वानुमान या भविष्यवाणी है।
हालाँकि, यह प्रभावी रूप से बहुत सरल सूत्र को सरल करता है:
हालाँकि, यह प्रभावी रूप से बहुत सरल सूत्र को सरल करता है:
:<math>\mbox{wMAPE} = \frac{\sum_{i=1}^n \left|A_i-F_i\right|}{\sum_{i=1}^n \left|A_i\right|}</math>
:<math>\mbox{wMAPE} = \frac{\sum_{i=1}^n \left|A_i-F_i\right|}{\sum_{i=1}^n \left|A_i\right|}</math>

Revision as of 21:28, 27 March 2023

औसत पूर्ण प्रतिशत त्रुटि (एमएपीई), जिसे औसत पूर्ण प्रतिशत विचलन (एमएपीडी) के रूप में भी जाना जाता है, आंकड़ों में पूर्वानुमान पद्धति की भविष्यवाणी सटीकता का एक उपाय है। यह सामान्यता सटीकता को सूत्र द्वारा परिभाषित अनुपात के रूप में व्यक्त करता है:

जहाँ At वास्तविक मूल्य है और Ft पूर्वानुमान मान है। उनके अंतर को वास्तविक मूल्य से विभाजित किया जाता है At. इस अनुपात का निरपेक्ष मूल्य समय में प्रत्येक पूर्वानुमानित बिंदु के लिए अभिव्यक्त किया जाता है और n फिट किए गए बिंदुओं की संख्या से विभाजित किया जाता है.

प्रतिगमन समस्याओं में एमएपीई

सापेक्ष त्रुटि के संदर्भ में इसकी बहुत सहज व्याख्या के कारण औसत पूर्ण प्रतिशत त्रुटि सामान्यता प्रतिगमन विश्लेषण और मॉडल मूल्यांकन के लिए हानि फ़ंक्शन के रूप में उपयोग की जाती है।

परिभाषा

एक मानक प्रतिगमन सेटिंग पर विचार करें जिसमें एक यादृच्छिक जोड़ी द्वारा डेटा का पूरी तरह से वर्णन किया गया है मूल्यों के साथ , और n आई.आई.डी. प्रतियां का . प्रतिगमन मॉडल का उद्देश्य जोड़ी के लिए एक अच्छा मॉडल खोजना है, जो एक औसत दर्जे का कार्य है g से को ऐसा है कि इसके करीब है Y.

शास्त्रीय प्रतिगमन सेटिंग में, की निकटता को Y द्वारा मापा जाता है L2 जोखिम, जिसे माध्य चुकता त्रुटि (MSE) भी कहा जाता है। एमएपीई प्रतिगमन संदर्भ में,[1]की निकटता को Y को MAPE के माध्यम से मापा जाता है, और MAPE प्रतिगमन का उद्देश्य एक मॉडल खोजना है ऐसा है कि:

जहाँ माना जाने वाला मॉडल का वर्ग है (उदाहरण के लिए रैखिक मॉडल)।

व्यवहार में

व्यवहार में अनुभवजन्य जोखिम न्यूनीकरण रणनीति द्वारा अनुमान लगाया जा सकता है, जिससे

व्यावहारिक दृष्टिकोण से, प्रतिगमन मॉडल के लिए गुणवत्ता फ़ंक्शन के रूप में एमएपीई का उपयोग भारित औसत पूर्ण त्रुटि (एमएई) प्रतिगमन करने के बराबर है, जिसे मात्रात्मक प्रतिगमन भी कहा जाता है। यह संपत्ति तुच्छ है

नतीजतन, एमएपीई का उपयोग व्यवहार में बहुत आसान है, उदाहरण के लिए वजन की अनुमति देने वाले मात्रात्मक प्रतिगमन के लिए मौजूदा पुस्तकालयों का उपयोग करना।

संगति

प्रतिगमन विश्लेषण के लिए नुकसान समारोह के रूप में एमएपीई का उपयोग व्यावहारिक दृष्टिकोण और सैद्धांतिक दोनों पर संभव है, क्योंकि एक इष्टतम मॉडल के अस्तित्व और अनुभवजन्य जोखिम न्यूनीकरण की स्थिरता (सांख्यिकी) साबित हो सकती है।[1]


डब्ल्यूएमएपीई

WMAPE (कभी-कभी स्पेलिंग wMAPE) भारित माध्य निरपेक्ष प्रतिशत त्रुटि के लिए है।[2] यह प्रतिगमन या पूर्वानुमान मॉडल के प्रदर्शन का मूल्यांकन करने के लिए उपयोग किया जाने वाला एक उपाय है। यह एमएपीई का एक रूप है जिसमें औसत पूर्ण प्रतिशत त्रुटियों को भारित अंकगणितीय माध्य के रूप में माना जाता है। आम तौर पर पूर्ण प्रतिशत त्रुटियां वास्तविक द्वारा भारित होती हैं (उदाहरण के लिए बिक्री पूर्वानुमान के मामले में, त्रुटियों को बिक्री मात्रा द्वारा भारित किया जाता है)।[3]. प्रभावी रूप से, यह 'अनंत त्रुटि' के मुद्दे पर काबू पा लेता है।[4]इसका सूत्र है:[4]

जहाँ वजन है, वास्तविक डेटा का एक वेक्टर है और पूर्वानुमान या भविष्यवाणी है। हालाँकि, यह प्रभावी रूप से बहुत सरल सूत्र को सरल करता है:

भ्रामक रूप से, कभी-कभी जब लोग डब्ल्यूएमएपीई का उल्लेख करते हैं तो वे एक अलग मॉडल के बारे में बात कर रहे होते हैं जिसमें उपरोक्त डब्ल्यूएमएपीई सूत्र के अंश और भाजक को फिर से कस्टम वजन के दूसरे सेट द्वारा भारित किया जाता है। . शायद इसे डबल वेटेड MAPE (wwMAPE) कहना अधिक सटीक होगा। इसका सूत्र है:


मुद्दे

हालांकि एमएपीई की अवधारणा बहुत सरल और ठोस लगती है, व्यावहारिक अनुप्रयोग में इसकी बड़ी कमियां हैं,[5] और एमएपीई की कमियों और भ्रामक परिणामों पर कई अध्ययन हैं।[6][7]

  • इसका उपयोग नहीं किया जा सकता है यदि शून्य या करीब-शून्य मान हैं (जो कभी-कभी होता है, उदाहरण के लिए मांग डेटा में) क्योंकि शून्य से एक विभाजन होगा या एमएपीई के मूल्य अनंत तक चल रहे हैं।[8]
  • उन पूर्वानुमानों के लिए जो बहुत कम हैं, प्रतिशत त्रुटि 100% से अधिक नहीं हो सकती है, लेकिन उन पूर्वानुमानों के लिए जो बहुत अधिक हैं, प्रतिशत त्रुटि की कोई ऊपरी सीमा नहीं है।
  • एमएपीई नकारात्मक त्रुटियों पर भारी जुर्माना लगाता है, सकारात्मक त्रुटियों की तुलना में।[9] परिणामस्वरूप, जब MAPE का उपयोग भविष्यवाणी विधियों की सटीकता की तुलना करने के लिए किया जाता है तो यह पक्षपाती होता है कि यह व्यवस्थित रूप से एक ऐसी विधि का चयन करेगा जिसका पूर्वानुमान बहुत कम है। इस अल्पज्ञात लेकिन गंभीर मुद्दे को सटीकता अनुपात के लघुगणक (वास्तविक मूल्य के लिए अनुमानित अनुपात) के आधार पर सटीकता माप का उपयोग करके दूर किया जा सकता है। . यह दृष्टिकोण बेहतर सांख्यिकीय गुणों की ओर जाता है और उन भविष्यवाणियों की ओर भी ले जाता है जिनकी व्याख्या ज्यामितीय माध्य के रूप में की जा सकती है।[5]* लोग अक्सर सोचते हैं कि MAPE माध्यिका पर अनुकूलित होगा। लेकिन उदाहरण के लिए, एक लॉग नॉर्मल का माध्यिका होता है जहां पर यह एमएपीई अनुकूलित है .

एमएपीई के साथ इन मुद्दों को दूर करने के लिए साहित्य में कुछ अन्य उपाय प्रस्तावित हैं:


यह भी देखें

बाहरी संबंध


संदर्भ

  1. 1.0 1.1 de Myttenaere, B Golden, B Le Grand, F Rossi (2015). "Mean absolute percentage error for regression models", Neurocomputing 2016 arXiv:1605.02541
  2. Forecast Accuracy: MAPE, WAPE, WMAPE https://www.baeldung.com/cs/mape-vs-wape-vs-wmape%7Ctitle=Understanding Forecast Accuracy: MAPE, WAPE, WMAPE. {{cite web}}: Check |url= value (help); Missing or empty |title= (help)
  3. Weighted Mean Absolute Percentage Error https://ibf.org/knowledge/glossary/weighted-mean-absolute-percentage-error-wmape-299%7Ctitle=WMAPE: Weighted Mean Absolute Percentage Error. {{cite web}}: Check |url= value (help); Missing or empty |title= (help)
  4. 4.0 4.1 "सांख्यिकीय पूर्वानुमान त्रुटियां".
  5. 5.0 5.1 Tofallis (2015). "A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation", Journal of the Operational Research Society, 66(8):1352-1362. archived preprint
  6. Hyndman, Rob J., and Anne B. Koehler (2006). "Another look at measures of forecast accuracy." International Journal of Forecasting, 22(4):679-688 doi:10.1016/j.ijforecast.2006.03.001.
  7. 7.0 7.1 Kim, Sungil and Heeyoung Kim (2016). "A new metric of absolute percentage error for intermittent demand forecasts." International Journal of Forecasting, 32(3):669-679 doi:10.1016/j.ijforecast.2015.12.003.
  8. Kim, Sungil; Kim, Heeyoung (1 July 2016). "आंतरायिक मांग पूर्वानुमानों के लिए पूर्ण प्रतिशत त्रुटि का एक नया मीट्रिक". International Journal of Forecasting. 32 (3): 669–679. doi:10.1016/j.ijforecast.2015.12.003.
  9. Makridakis, Spyros (1993) "Accuracy measures: theoretical and practical concerns." International Journal of Forecasting, 9(4):527-529 doi:10.1016/0169-2070(93)90079-3