लेनज़ का नियम: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Electromagnetic opposition to change}} | {{Short description|Electromagnetic opposition to change}} | ||
[[File:Lenz law demonstration.png|thumb|287x287px|लेन्ज़ का नियम लूप के माध्यम से चुंबकीय प्रवाह में परिवर्तन से अप्रत्यक्ष रूप से प्रेरित चालक लूप में विद्युत धारा की दिशा बताता है। परिदृश्य A, B, C, D और E संभव हैं। परिदृश्य F ऊर्जा के संरक्षण के कारण असंभव है। चालक में आवेश (इलेक्ट्रॉन) प्रवाह में परिवर्तन से सीधे गति में नहीं धकेले जाते हैं, बल्कि उत्प्रेरण और प्रेरित चुंबकीय क्षेत्र के कुल चुंबकीय क्षेत्र के चारों ओर एक गोलाकार [[विद्युत क्षेत्र]] (चित्रित नहीं) द्वारा धकेले जाते हैं। यह कुल चुंबकीय क्षेत्र विद्युत क्षेत्र को प्रेरित करता है।]] | [[File:Lenz law demonstration.png|thumb|287x287px|लेन्ज़ का नियम लूप के माध्यम से चुंबकीय प्रवाह में परिवर्तन से अप्रत्यक्ष रूप से प्रेरित चालक लूप में विद्युत धारा की दिशा बताता है। परिदृश्य A, B, C, D और E संभव हैं। परिदृश्य F ऊर्जा के संरक्षण के कारण असंभव है। चालक में आवेश (इलेक्ट्रॉन) प्रवाह में परिवर्तन से सीधे गति में नहीं धकेले जाते हैं, बल्कि उत्प्रेरण और प्रेरित चुंबकीय वैद्युत क्षेत्र के कुल चुंबकीय वैद्युत क्षेत्र के चारों ओर एक गोलाकार [[विद्युत क्षेत्र|विद्युत वैद्युत क्षेत्र]] (चित्रित नहीं) द्वारा धकेले जाते हैं। यह कुल चुंबकीय वैद्युत क्षेत्र विद्युत वैद्युत क्षेत्र को प्रेरित करता है।]] | ||
{{electromagnetism|cTopic=Electrodynamics}} | {{electromagnetism|cTopic=Electrodynamics}} | ||
लेन्ज़ का नियम इस तथ्य को संदर्भित करता है कि एक परिवर्तित [[चुंबकीय क्षेत्र]] द्वारा एक [[विद्युत कंडक्टर|विद्युत चालक]] में [[विद्युत प्रवाह]] की दिशा ऐसी होती है कि प्रेरित धारा द्वारा निर्मित चुंबकीय क्षेत्र प्रारंभिक चुंबकीय क्षेत्र में परिवर्तन का विरोध करता है। इसका नाम भौतिक विज्ञानी [[एमिल लेनज़|एमिल लेन्ज़]] के नाम पर रखा गया है, जिन्होंने इसे 1834 में तैयार किया था।<ref>Lenz, E. (1834), "[http://gallica.bnf.fr/ark:/12148/bpt6k151161/f499.image.r=lenz.langEN Ueber<!--[sic]--> die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme]", ''Annalen der Physik und Chemie'', '''107''' (31), pp. 483–494. A partial translation of the paper is available in Magie, W. M. (1963), ''A Source Book in Physics'', Harvard: Cambridge MA, pp. 511–513.</ref> | लेन्ज़ का नियम इस तथ्य को संदर्भित करता है कि एक परिवर्तित [[चुंबकीय क्षेत्र|चुंबकीय वैद्युत क्षेत्र]] द्वारा एक [[विद्युत कंडक्टर|विद्युत चालक]] में [[विद्युत प्रवाह]] की दिशा ऐसी होती है कि प्रेरित धारा द्वारा निर्मित चुंबकीय वैद्युत क्षेत्र प्रारंभिक चुंबकीय वैद्युत क्षेत्र में परिवर्तन का विरोध करता है। इसका नाम भौतिक विज्ञानी [[एमिल लेनज़|एमिल लेन्ज़]] के नाम पर रखा गया है, जिन्होंने इसे 1834 में तैयार किया था।<ref>Lenz, E. (1834), "[http://gallica.bnf.fr/ark:/12148/bpt6k151161/f499.image.r=lenz.langEN Ueber<!--[sic]--> die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme]", ''Annalen der Physik und Chemie'', '''107''' (31), pp. 483–494. A partial translation of the paper is available in Magie, W. M. (1963), ''A Source Book in Physics'', Harvard: Cambridge MA, pp. 511–513.</ref> | ||
यह एक वैज्ञानिक नियम है जो प्रेरित [[विद्युत]] धारा की दिशा को निर्दिष्ट करता है, लेकिन इसके परिमाण के बारे में कुछ भी संदर्भित नहीं करता है। लेन्ज़ का नियम विद्युत चुंबकत्व में कई प्रभावों की दिशा का पूर्वानुमान करता है, जैसे कि एक [[प्रारंभ करनेवाला|प्रेरक]] में प्रेरित वोल्टेज की दिशा या एक प्रतिवर्ती धारा द्वारा [[विद्युत चुम्बकीय कुंडल|विद्युत चुम्बकीय कुंडली]], या एक चुंबकीय क्षेत्र में गतिमान वस्तुओं पर भंवर धाराओं का कर्षण बल स्थानांतरित किया जाता है। | यह एक वैज्ञानिक नियम है जो प्रेरित [[विद्युत]] धारा की दिशा को निर्दिष्ट करता है, लेकिन इसके परिमाण के बारे में कुछ भी संदर्भित नहीं करता है। लेन्ज़ का नियम विद्युत चुंबकत्व में कई प्रभावों की दिशा का पूर्वानुमान करता है, जैसे कि एक [[प्रारंभ करनेवाला|प्रेरक]] में प्रेरित वोल्टेज की दिशा या एक प्रतिवर्ती धारा द्वारा [[विद्युत चुम्बकीय कुंडल|विद्युत चुम्बकीय कुंडली]], या एक चुंबकीय वैद्युत क्षेत्र में गतिमान वस्तुओं पर भंवर धाराओं का कर्षण बल स्थानांतरित किया जाता है। | ||
लेन्ज़ के नियम को न्यूटन के गति के नियमों के अनुरूप देखा जा सकता है, न्यूटन का तीसरा नियम [[शास्त्रीय यांत्रिकी|चिरसम्मत यांत्रिकी]] में न्यूटन का तीसरा नियम <ref name="Electromagnetics explained: | लेन्ज़ के नियम को न्यूटन के गति के नियमों के अनुरूप देखा जा सकता है, न्यूटन का तीसरा नियम [[शास्त्रीय यांत्रिकी|चिरसम्मत यांत्रिकी]] में न्यूटन का तीसरा नियम <ref name="Electromagnetics explained: | ||
a handbook for wireless/RF, EMC, and high-speed electronics">Schmitt, Ron. [https://archive.org/details/electromagnetics0000schm/page/75 <!-- quote="lenz's law" "newton's third law". --> ''Electromagnetics explained'']. 2002. Retrieved 16 July 2010.</ref><ref>{{cite book |url=https://books.google.com/books?id=8qHGRTC7h-MC&dq=Lenz%27s+law+newton%27s+third+law&pg=PT181 |title=An Introduction to Electrical Science |first=Adrian |last=Waygood |year=2013 |publisher=Taylor & Francis|isbn=9781135071134 }}</ref> | a handbook for wireless/RF, EMC, and high-speed electronics">Schmitt, Ron. [https://archive.org/details/electromagnetics0000schm/page/75 <!-- quote="lenz's law" "newton's third law". --> ''Electromagnetics explained'']. 2002. Retrieved 16 July 2010.</ref><ref>{{cite book |url=https://books.google.com/books?id=8qHGRTC7h-MC&dq=Lenz%27s+law+newton%27s+third+law&pg=PT181 |title=An Introduction to Electrical Science |first=Adrian |last=Waygood |year=2013 |publisher=Taylor & Francis|isbn=9781135071134 }}</ref> और रसायन विज्ञान में [[ले चेटेलियर का सिद्धांत]] न्यूटन के तीसरे नियम के रूप में जाना जाता है। <ref>{{cite journal |last1=Thomsen |first1=Volker B.E. |title=LeChâtelier's Principle in the Sciences |journal=J. Chem. Educ. |date=2000 |volume=77 |issue=2 |pages=173 |doi=10.1021/ed077p173 |bibcode=2000JChEd..77..173T |url=https://ui.adsabs.harvard.edu/abs/2000JChEd..77..173T/abstract}}</ref> | ||
Line 14: | Line 14: | ||
== परिभाषा == | == परिभाषा == | ||
लेन्ज़ का नियम कहता है कि: | लेन्ज़ का नियम कहता है कि: | ||
<blockquote>चुंबकीय क्षेत्र में परिवर्तन के कारण | <blockquote>चुंबकीय वैद्युत क्षेत्र में परिवर्तन के कारण विद्युत परिपथ में प्रेरित धारा प्रवाह में परिवर्तन का विरोध करने और गति का विरोध करने वाले यांत्रिक बल को लागू करने के लिए निर्देशित होती है।</blockquote> | ||
लेंज़ का नियम फैराडे के प्रेरण के नियम के | लेंज़ का नियम फैराडे के प्रेरण के नियम के जटिल समाधान में निहित है, कुंडली में प्रेरित EMF(विद्युत चुंबकीय प्रेरण) का परिमाण चुंबकीय वैद्युत क्षेत्र के परिवर्तन की दर के समानुपाती होता है,<ref>{{Cite web|title=फैराडे का विद्युत चुम्बकीय प्रेरण का नियम|url=https://www.electricalclassroom.com/faradays-law-of-induction/|access-date=2021-02-27|language=en-US}}</ref> जहाँ यह ऋणात्मक चिह्न द्वारा व्यंजक संरक्षित करता है: | ||
<math display=block>\mathcal{E}=-\frac{\mathrm{d} \Phi_\mathbf{B}}{\mathrm{d} t},</math> | <math display=block>\mathcal{E}=-\frac{\mathrm{d} \Phi_\mathbf{B}}{\mathrm{d} t},</math> | ||
जो इंगित करता है कि प्रेरित [[वैद्युतवाहक बल]] <math>\mathcal{E}</math> और [[चुंबकीय प्रवाह]] में परिवर्तन की दर <math>\Phi_\mathbf{B}</math> विपरीत संकेत हैं।<ref>{{cite book|last=Giancoli|first=Douglas C.|title=Physics: principles with applications|url=https://archive.org/details/physicsprinciple00gian|url-access=registration|year=1998|pages=[https://archive.org/details/physicsprinciple00gian/page/624 624]|edition=5th}}</ref> इसका | जो इंगित करता है कि प्रेरित [[वैद्युतवाहक बल]] <math>\mathcal{E}</math> और [[चुंबकीय प्रवाह]] में परिवर्तन की दर <math>\Phi_\mathbf{B}</math> विपरीत संकेत हैं।<ref>{{cite book|last=Giancoli|first=Douglas C.|title=Physics: principles with applications|url=https://archive.org/details/physicsprinciple00gian|url-access=registration|year=1998|pages=[https://archive.org/details/physicsprinciple00gian/page/624 624]|edition=5th}}</ref> इसका अभिप्राय यह है कि एक प्रेरित वैद्युत क्षेत्र के पीछे विद्युत चुंबकीय प्रेरण की दिशा परिवर्तित विद्युत धारा का विरोध करती है जो कि इसका प्रमुख कारण है। | ||
यदि धारा के चुंबकीय क्षेत्र में परिवर्तन i<sub>1</sub> | |||
डी.जे. ग्रिफिथ्स ने इसे इस प्रकार संक्षेप में प्रस्तुत किया कि प्रकृति प्रवाह में परिवर्तन का विरोध करती है।<ref>{{cite book |last1=Griffiths |first1=David |title=इलेक्ट्रोडायनामिक्स का परिचय|isbn=978-0-321-85656-2 |pages=315|year=2013 }}</ref> | |||
यदि धारा के चुंबकीय वैद्युत क्षेत्र में परिवर्तन i<sub>1</sub> और i<sub>2</sub> विद्युत प्रवाह प्रेरित करता है, तो i<sub>2</sub> की दिशा i<sub>1</sub> में परिवर्तन के विपरीत है. यदि ये धाराएँ दो समाक्षीय वृत्ताकार संवाहकों में हैं तो ℓ<sub>1</sub> और ℓ<sub>2</sub> क्रमशः दोनों प्रारंभ में 0 हैं, फिर धाराएं i<sub>1</sub> और i<sub>2</sub> में व्युत्क्रम घूर्णन होना चाहिए। परिणामस्वरूप विरोधी धाराएँ एक दूसरे को पीछे स्थानांतरित कर देगी। | |||
=== उदाहरण === | === उदाहरण === | ||
शक्तिशाली चुम्बकों से चुंबकीय वैद्युत क्षेत्र तांबे या एल्यूमीनियम पाइप में प्रति-घूर्णन धाराएँ बना सकते हैं। यह पाइप के माध्यम से चुंबक को गिराकर दिखाया गया है। पाइप के अंदर चुंबक का नीचे उतरना प्रत्यक्ष रूप से पाइप के बाहर गिराए जाने की तुलना में धीमा होता है। | |||
जब फैराडे के नियम के अनुसार चुंबकीय प्रवाह में परिवर्तन से एक वोल्टेज उत्पन्न होता है, तो प्रेरित वोल्टेज की ध्रुवता ऐसी होती है कि यह एक धारा उत्पन्न करता है जिसका चुंबकीय वैद्युत क्षेत्र उस परिवर्तन का विरोध करता है जो इसे उत्पन्न करता है। तार के किसी भी लूप के अंदर प्रेरित चुंबकीय वैद्युत क्षेत्र सदैव चुंबकीय प्रवाह को लूप में स्थिर रखने के लिए कार्य करता है। एक प्रेरित धारा की दिशा दाहिने हाथ के नियम का उपयोग करके निर्धारित की जा सकती है, यह दिखाने के लिए कि प्रवाह की कौन सी दिशा एक चुंबकीय वैद्युत क्षेत्र बनाएगी जो लूप के माध्यम से प्रवाह को बदलने की दिशा का विरोध करेगी।<ref>{{Cite web|title=फैराडे का नियम और लेन्ज़ का नियम|url=http://buphy.bu.edu/py106/notes/FaradaysLaw.html|access-date=2021-01-15|website=buphy.bu.edu}}</ref> उपरोक्त उदाहरणों में, यदि फ्लक्स बढ़ रहा है, तो प्रेरित वैद्युत क्षेत्र इसके विरोध में कार्य करता है। यदि यह घट रहा है, तो प्रेरित वैद्युत क्षेत्र परिवर्तन का विरोध करने के लिए लागू वैद्युत क्षेत्र की दिशा में कार्य करता है। | |||
== इन धाराओं में आवेशों की विस्तृत सहभागिता == | |||
[[File:19. Ленцово правило - постојан.ogv|thumb|280px|एल्यूमीनियम की वलयाकार आकृति विद्युत चुम्बकीय प्रेरण द्वारा चलती है, इस प्रकार लेन्ज़ के नियम का प्रदर्शन करती है।]] | |||
[[File:21. Ленцово правило – прстен 01.ogg|thumb|280px|लेन्ज़ के नियम को दो एल्यूमीनियम रिंगों के साथ दिखाने वाला प्रयोग, एक धुरी पर स्थापित तराजू जैसी डिवाइस पर किया जाता है, ताकि यह क्षैतिज समतल में स्वतंत्र रूप से स्थानांतरित हो सके। एक रिंग पूरी तरह से बंद है, जबकि दूसरे में एक ओपनिंग है, इसमें एक पूरा सर्कल नहीं बना रहा है। जब हम एक [[:en:magnet|बार चुंबक]] को पूरी तरह से बंद रिंग के पास रखते हैं, तो रिंग इसके द्वारा प्रतिकर्षित हो जाती है। हालाँकि, जब प्रणाली संक्रिया रुक जाता है, और हम बार चुंबक को हटा देते हैं, तो रिंग इससे आकर्षित होती है। पहले प्रकरण में, अंगूठी में निर्मित प्रेरित धारा चुंबक की निकटता के कारण चुंबकीय प्रवाह की वृद्धि का विरोध करती है, जबकि बाद में, चुंबक को वलयाकार आकृति से बाहर ले जाने से चुंबकीय प्रवाह कम हो जाता है, यह ऐसे प्रवाह को प्रेरित करता है जिसका [[चुंबकीय क्षेत्र]] प्रवाह की कमी का विरोध करता है। यह घटना तब अनुपस्थित होती है जब हम प्रयोग को उस वलयाकार आकृति के साथ दोहराते हैं जो चुंबक बार को डालने और हटाने से संलग्न नहीं होती है। इस वलयाकार आकृति में प्रेरित धाराएँ स्वयं को वलय में संलग्न नहीं कर सकती हैं, और यह एक बहुत ही कमजोर क्षेत्र है जो चुंबकीय प्रवाह के परिवर्तन का विरोध नहीं कर सकता है।]] | |||
विद्युत चुंबकत्व में, जब आवेश वैद्युत क्षेत्र रेखाओं के साथ-साथ चलते हैं तो उन पर कार्य किया जाता है, चाहे इसमें संभावित ऊर्जा (नकारात्मक कार्य) को संग्रहीत करना या गतिज ऊर्जा को बढ़ाना (सकारात्मक कार्य) सम्मिलित हो। | |||
जब आवेश q<sub>1</sub> पर शुद्ध धनात्मक कार्य लागू किया जाता है, यह गति प्राप्त करता है। q<sub>1</sub> पर शुद्ध कार्य जिससे एक चुंबकीय वैद्युत क्षेत्र उत्पन्न होता है जिसकी शक्ति (चुंबकीय प्रवाह घनत्व की इकाइयों में (1 टेस्ला (इकाई) = 1 वोल्ट-सेकंड प्रति वर्ग मीटर) q<sub>1</sub> की गति वृद्धि के समानुपाती होती है. यह चुंबकीय वैद्युत क्षेत्र निकटतम आवेश q<sub>2</sub> के साथ सहभागिता कर सकता है, इस संवेग को पास करते हुए बदले में q1 संवेग खो देता है। | |||
आवेश q<sub>2</sub>, q<sub>1</sub> पर भी कार्य कर सकता है, इसी तरह से जिससे यह q<sub>1</sub> से प्राप्त कुछ संवेग प्रतिकर्षित है. संवेग का यह अग्र-पश्च का घटक चुंबकीय [[अधिष्ठापन|प्रेरकत्व]] में योगदान देता है। वैद्युत विभव जितना अधिक होगा, q<sub>1</sub> और q<sub>2</sub> उतने ही एक दूसरे के निकट होंगे। जब q<sub>2</sub> एक प्रवाहकीय माध्यम के अंदर है जैसे तांबे या एल्यूमीनियम से बनी एक मोटी स्लैब, यह q<sub>1</sub> द्वारा लगाए गए बल पर अधिक आसानी से प्रतिक्रिया करता है. q<sub>1</sub> की ऊर्जा q<sub>2</sub> के विद्युत धारा द्वारा उत्पन्न ऊष्मा के रूप में तुरंत खपत होती है लेकिन दो विरोधी चुंबकीय क्षेत्रों में संग्रहीत नहीं होता है। चुंबकीय वैद्युत क्षेत्र की ऊर्जा घनत्व चुंबकीय वैद्युत क्षेत्र की तीव्रता के वर्ग के साथ भिन्न होती है; हालांकि, चुंबकीय रूप से गैर-रैखिक सामग्री जैसे [[ लौह-चुंबकीय |लौह-चुंबकीय]] और [[ अतिचालक |अतिचालक]] के प्रकरण में, यह चुंबकीय वैद्युत क्षेत्र संग्रहीत ऊर्जा में टूट जाती है। | |||
== गति का संरक्षण == | == गति का संरक्षण == | ||
गति को प्रक्रिया में संरक्षित किया जाना चाहिए, इसलिए यदि q<sub>1</sub> एक दिशा में धकेला जाता है, तो q<sub>2</sub> एक ही समय में एक ही बल द्वारा दूसरी दिशा में धकेला जाना चाहिए। हालाँकि, स्थिति और अधिक जटिल हो जाती है जब विद्युत चुम्बकीय तरंग प्रसार की परिमित गति पेश की जाती है ([[मंद क्षमता]] देखें)। इसका | गति को प्रक्रिया में संरक्षित किया जाना चाहिए, इसलिए यदि q<sub>1</sub> एक दिशा में धकेला जाता है, तो q<sub>2</sub> एक ही समय में एक ही बल द्वारा दूसरी दिशा में धकेला जाना चाहिए। हालाँकि, स्थिति और अधिक जटिल हो जाती है जब विद्युत चुम्बकीय तरंग प्रसार की परिमित गति पेश की जाती है ([[मंद क्षमता]] देखें)। इसका अभिप्राय यह है कि एक संक्षिप्त अवधि के लिए दो आवेशों का कुल संवेग संरक्षित नहीं होता है, जिसका अर्थ है कि अंतर को वैद्युत क्षेत्रों में संवेग द्वारा निश्चित मात्रा में लिया जाना चाहिए, जैसा कि रिचर्ड पी फेनमैन द्वारा दावा किया गया है।<ref name="The Feynman Lectures on Physics: Volume I, Chapter 10, page 9.">''[[The Feynman Lectures on Physics]]'': Volume I, Chapter 10, page 9.</ref> | ||
19वीं सदी के प्रसिद्ध विद्युतगतिकी [[जेम्स क्लर्क मैक्सवेल]] ने इसे विद्युत चुम्बकीय संवेग कहा।<ref>Maxwell, James C. [https://books.google.com/books?id=t5vCDCXPUswC&q=electromagnetic+momentum&pg=PA247 ''A treatise on electricity and magnetism, Volume 2'']. Retrieved 16 July 2010.</ref> फिर भी, जब लेन्ज़ का नियम विपरीत आवेशों पर लागू होता है तो वैद्युत क्षेत्रों का ऐसा समाधान आवश्यक हो सकता है। सामान्यतः यह माना जाता है कि संबंधित आवेशों का चिह्न एक ही है। यदि वे ऐसा नहीं करते हैं, तो एक प्रोटॉन और एक इलेक्ट्रॉन की परस्पर क्रिया भिन्न होती। एक चुंबकीय वैद्युत क्षेत्र उत्पन्न करने वाला एक इलेक्ट्रॉन एक विद्युत चुंबकीय प्रेरण उत्पन्न करेगा जो एक प्रोटॉन को इलेक्ट्रॉन के समान दिशा में त्वरित करने का कारण बनता है। सबसे पहले, यह गति के संरक्षण के नियम का उल्लंघन प्रतीत हो सकता है, लेकिन विद्युत चुम्बकीय क्षेत्र की गति को ध्यान में रखा जाता है, तो इस तरह की सहभागिता गति को संरक्षित करने के लिए देखी जाती है। | |||
==संदर्भ== | ==संदर्भ== | ||
Line 47: | Line 64: | ||
* {{YouTube|fxC-AEC0ROk|A dramatic demonstration of the effect}} with an [[aluminum]] block in an [[MRI]] | * {{YouTube|fxC-AEC0ROk|A dramatic demonstration of the effect}} with an [[aluminum]] block in an [[MRI]] | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:Commons category link is the pagename]] | [[Category:Commons category link is the pagename]] | ||
[[Category:Created On 24/03/2023]] | [[Category:Created On 24/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with reference errors]] | [[Category:Pages with reference errors]] | ||
Line 57: | Line 76: | ||
[[Category:Templates Vigyan Ready]] | [[Category:Templates Vigyan Ready]] | ||
[[Category:Templates that add a tracking category]] | [[Category:Templates that add a tracking category]] | ||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 16:20, 19 April 2023
Articles about |
Electromagnetism |
---|
लेन्ज़ का नियम इस तथ्य को संदर्भित करता है कि एक परिवर्तित चुंबकीय वैद्युत क्षेत्र द्वारा एक विद्युत चालक में विद्युत प्रवाह की दिशा ऐसी होती है कि प्रेरित धारा द्वारा निर्मित चुंबकीय वैद्युत क्षेत्र प्रारंभिक चुंबकीय वैद्युत क्षेत्र में परिवर्तन का विरोध करता है। इसका नाम भौतिक विज्ञानी एमिल लेन्ज़ के नाम पर रखा गया है, जिन्होंने इसे 1834 में तैयार किया था।[1]
यह एक वैज्ञानिक नियम है जो प्रेरित विद्युत धारा की दिशा को निर्दिष्ट करता है, लेकिन इसके परिमाण के बारे में कुछ भी संदर्भित नहीं करता है। लेन्ज़ का नियम विद्युत चुंबकत्व में कई प्रभावों की दिशा का पूर्वानुमान करता है, जैसे कि एक प्रेरक में प्रेरित वोल्टेज की दिशा या एक प्रतिवर्ती धारा द्वारा विद्युत चुम्बकीय कुंडली, या एक चुंबकीय वैद्युत क्षेत्र में गतिमान वस्तुओं पर भंवर धाराओं का कर्षण बल स्थानांतरित किया जाता है।
लेन्ज़ के नियम को न्यूटन के गति के नियमों के अनुरूप देखा जा सकता है, न्यूटन का तीसरा नियम चिरसम्मत यांत्रिकी में न्यूटन का तीसरा नियम [2][3] और रसायन विज्ञान में ले चेटेलियर का सिद्धांत न्यूटन के तीसरे नियम के रूप में जाना जाता है। [4]
परिभाषा
लेन्ज़ का नियम कहता है कि:
चुंबकीय वैद्युत क्षेत्र में परिवर्तन के कारण विद्युत परिपथ में प्रेरित धारा प्रवाह में परिवर्तन का विरोध करने और गति का विरोध करने वाले यांत्रिक बल को लागू करने के लिए निर्देशित होती है।
लेंज़ का नियम फैराडे के प्रेरण के नियम के जटिल समाधान में निहित है, कुंडली में प्रेरित EMF(विद्युत चुंबकीय प्रेरण) का परिमाण चुंबकीय वैद्युत क्षेत्र के परिवर्तन की दर के समानुपाती होता है,[5] जहाँ यह ऋणात्मक चिह्न द्वारा व्यंजक संरक्षित करता है:
डी.जे. ग्रिफिथ्स ने इसे इस प्रकार संक्षेप में प्रस्तुत किया कि प्रकृति प्रवाह में परिवर्तन का विरोध करती है।[7]
यदि धारा के चुंबकीय वैद्युत क्षेत्र में परिवर्तन i1 और i2 विद्युत प्रवाह प्रेरित करता है, तो i2 की दिशा i1 में परिवर्तन के विपरीत है. यदि ये धाराएँ दो समाक्षीय वृत्ताकार संवाहकों में हैं तो ℓ1 और ℓ2 क्रमशः दोनों प्रारंभ में 0 हैं, फिर धाराएं i1 और i2 में व्युत्क्रम घूर्णन होना चाहिए। परिणामस्वरूप विरोधी धाराएँ एक दूसरे को पीछे स्थानांतरित कर देगी।
उदाहरण
शक्तिशाली चुम्बकों से चुंबकीय वैद्युत क्षेत्र तांबे या एल्यूमीनियम पाइप में प्रति-घूर्णन धाराएँ बना सकते हैं। यह पाइप के माध्यम से चुंबक को गिराकर दिखाया गया है। पाइप के अंदर चुंबक का नीचे उतरना प्रत्यक्ष रूप से पाइप के बाहर गिराए जाने की तुलना में धीमा होता है।
जब फैराडे के नियम के अनुसार चुंबकीय प्रवाह में परिवर्तन से एक वोल्टेज उत्पन्न होता है, तो प्रेरित वोल्टेज की ध्रुवता ऐसी होती है कि यह एक धारा उत्पन्न करता है जिसका चुंबकीय वैद्युत क्षेत्र उस परिवर्तन का विरोध करता है जो इसे उत्पन्न करता है। तार के किसी भी लूप के अंदर प्रेरित चुंबकीय वैद्युत क्षेत्र सदैव चुंबकीय प्रवाह को लूप में स्थिर रखने के लिए कार्य करता है। एक प्रेरित धारा की दिशा दाहिने हाथ के नियम का उपयोग करके निर्धारित की जा सकती है, यह दिखाने के लिए कि प्रवाह की कौन सी दिशा एक चुंबकीय वैद्युत क्षेत्र बनाएगी जो लूप के माध्यम से प्रवाह को बदलने की दिशा का विरोध करेगी।[8] उपरोक्त उदाहरणों में, यदि फ्लक्स बढ़ रहा है, तो प्रेरित वैद्युत क्षेत्र इसके विरोध में कार्य करता है। यदि यह घट रहा है, तो प्रेरित वैद्युत क्षेत्र परिवर्तन का विरोध करने के लिए लागू वैद्युत क्षेत्र की दिशा में कार्य करता है।
इन धाराओं में आवेशों की विस्तृत सहभागिता
विद्युत चुंबकत्व में, जब आवेश वैद्युत क्षेत्र रेखाओं के साथ-साथ चलते हैं तो उन पर कार्य किया जाता है, चाहे इसमें संभावित ऊर्जा (नकारात्मक कार्य) को संग्रहीत करना या गतिज ऊर्जा को बढ़ाना (सकारात्मक कार्य) सम्मिलित हो।
जब आवेश q1 पर शुद्ध धनात्मक कार्य लागू किया जाता है, यह गति प्राप्त करता है। q1 पर शुद्ध कार्य जिससे एक चुंबकीय वैद्युत क्षेत्र उत्पन्न होता है जिसकी शक्ति (चुंबकीय प्रवाह घनत्व की इकाइयों में (1 टेस्ला (इकाई) = 1 वोल्ट-सेकंड प्रति वर्ग मीटर) q1 की गति वृद्धि के समानुपाती होती है. यह चुंबकीय वैद्युत क्षेत्र निकटतम आवेश q2 के साथ सहभागिता कर सकता है, इस संवेग को पास करते हुए बदले में q1 संवेग खो देता है।
आवेश q2, q1 पर भी कार्य कर सकता है, इसी तरह से जिससे यह q1 से प्राप्त कुछ संवेग प्रतिकर्षित है. संवेग का यह अग्र-पश्च का घटक चुंबकीय प्रेरकत्व में योगदान देता है। वैद्युत विभव जितना अधिक होगा, q1 और q2 उतने ही एक दूसरे के निकट होंगे। जब q2 एक प्रवाहकीय माध्यम के अंदर है जैसे तांबे या एल्यूमीनियम से बनी एक मोटी स्लैब, यह q1 द्वारा लगाए गए बल पर अधिक आसानी से प्रतिक्रिया करता है. q1 की ऊर्जा q2 के विद्युत धारा द्वारा उत्पन्न ऊष्मा के रूप में तुरंत खपत होती है लेकिन दो विरोधी चुंबकीय क्षेत्रों में संग्रहीत नहीं होता है। चुंबकीय वैद्युत क्षेत्र की ऊर्जा घनत्व चुंबकीय वैद्युत क्षेत्र की तीव्रता के वर्ग के साथ भिन्न होती है; हालांकि, चुंबकीय रूप से गैर-रैखिक सामग्री जैसे लौह-चुंबकीय और अतिचालक के प्रकरण में, यह चुंबकीय वैद्युत क्षेत्र संग्रहीत ऊर्जा में टूट जाती है।
गति का संरक्षण
गति को प्रक्रिया में संरक्षित किया जाना चाहिए, इसलिए यदि q1 एक दिशा में धकेला जाता है, तो q2 एक ही समय में एक ही बल द्वारा दूसरी दिशा में धकेला जाना चाहिए। हालाँकि, स्थिति और अधिक जटिल हो जाती है जब विद्युत चुम्बकीय तरंग प्रसार की परिमित गति पेश की जाती है (मंद क्षमता देखें)। इसका अभिप्राय यह है कि एक संक्षिप्त अवधि के लिए दो आवेशों का कुल संवेग संरक्षित नहीं होता है, जिसका अर्थ है कि अंतर को वैद्युत क्षेत्रों में संवेग द्वारा निश्चित मात्रा में लिया जाना चाहिए, जैसा कि रिचर्ड पी फेनमैन द्वारा दावा किया गया है।[9]
19वीं सदी के प्रसिद्ध विद्युतगतिकी जेम्स क्लर्क मैक्सवेल ने इसे विद्युत चुम्बकीय संवेग कहा।[10] फिर भी, जब लेन्ज़ का नियम विपरीत आवेशों पर लागू होता है तो वैद्युत क्षेत्रों का ऐसा समाधान आवश्यक हो सकता है। सामान्यतः यह माना जाता है कि संबंधित आवेशों का चिह्न एक ही है। यदि वे ऐसा नहीं करते हैं, तो एक प्रोटॉन और एक इलेक्ट्रॉन की परस्पर क्रिया भिन्न होती। एक चुंबकीय वैद्युत क्षेत्र उत्पन्न करने वाला एक इलेक्ट्रॉन एक विद्युत चुंबकीय प्रेरण उत्पन्न करेगा जो एक प्रोटॉन को इलेक्ट्रॉन के समान दिशा में त्वरित करने का कारण बनता है। सबसे पहले, यह गति के संरक्षण के नियम का उल्लंघन प्रतीत हो सकता है, लेकिन विद्युत चुम्बकीय क्षेत्र की गति को ध्यान में रखा जाता है, तो इस तरह की सहभागिता गति को संरक्षित करने के लिए देखी जाती है।
संदर्भ
- ↑ Lenz, E. (1834), "Ueber die Bestimmung der Richtung der durch elektodynamische Vertheilung erregten galvanischen Ströme", Annalen der Physik und Chemie, 107 (31), pp. 483–494. A partial translation of the paper is available in Magie, W. M. (1963), A Source Book in Physics, Harvard: Cambridge MA, pp. 511–513.
- ↑ Schmitt, Ron. Electromagnetics explained. 2002. Retrieved 16 July 2010.
- ↑ Waygood, Adrian (2013). An Introduction to Electrical Science. Taylor & Francis. ISBN 9781135071134.
- ↑ Thomsen, Volker B.E. (2000). "LeChâtelier's Principle in the Sciences". J. Chem. Educ. 77 (2): 173. Bibcode:2000JChEd..77..173T. doi:10.1021/ed077p173.
- ↑ "फैराडे का विद्युत चुम्बकीय प्रेरण का नियम" (in English). Retrieved 2021-02-27.
- ↑ Giancoli, Douglas C. (1998). Physics: principles with applications (5th ed.). pp. 624.
- ↑ Griffiths, David (2013). इलेक्ट्रोडायनामिक्स का परिचय. p. 315. ISBN 978-0-321-85656-2.
- ↑ "फैराडे का नियम और लेन्ज़ का नियम". buphy.bu.edu. Retrieved 2021-01-15.
- ↑ The Feynman Lectures on Physics: Volume I, Chapter 10, page 9.
- ↑ Maxwell, James C. A treatise on electricity and magnetism, Volume 2. Retrieved 16 July 2010.
बाहरी संबंध
- Media related to लेनज़ का नियम at Wikimedia Commons
- A dramatic demonstration of the effect on YouTube with an aluminum block in an MRI