विद्युत चुम्बकीय तरंग समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
[[विद्युत चुम्बकीय तरंग]] समीकरण दूसरे क्रम का आंशिक अंतर समीकरण है जो माध्यम | [[विद्युत चुम्बकीय तरंग]] समीकरण एक दूसरे क्रम का आंशिक अंतर समीकरण है जो एक माध्यम या निर्वात में विद्युत चुम्बकीय तरंगों के प्रसार का वर्णन करता है। यह स्केलर तरंग समीकरण या तरंग समीकरण का त्रि-आयामी रूप है। समीकरण का समांगी अवकल समीकरण रूप, तो [[विद्युत क्षेत्र]] ई या चुंबकीय क्षेत्र बी के संदर्भ में लिखा गया है, इस प्रकार {{math|'''E'''}} या [[चुंबकीय क्षेत्र]] {{math|'''B'''}}, रूप लेता है:<math display=block>\begin{align} | ||
\left(v_{\mathrm{ph}}^2\nabla^2 - \frac{\partial^2}{\partial t^2} \right) \mathbf{E} &= \mathbf{0} \\ | \left(v_{\mathrm{ph}}^2\nabla^2 - \frac{\partial^2}{\partial t^2} \right) \mathbf{E} &= \mathbf{0} \\ | ||
\left(v_{\mathrm{ph}}^2\nabla^2 - \frac{\partial^2}{\partial t^2} \right) \mathbf{B} &= \mathbf{0} | \left(v_{\mathrm{ph}}^2\nabla^2 - \frac{\partial^2}{\partial t^2} \right) \mathbf{B} &= \mathbf{0} | ||
\end{align}</math> | \end{align}</math>जहाँ<math display=block> v_{\mathrm{ph}} = \frac{1}{\sqrt {\mu\varepsilon}} </math>[[पारगम्यता (विद्युत चुंबकत्व)]] के साथ माध्यम {{mvar|μ}} में [[प्रकाश की गति]] (अर्थात [[चरण वेग]]) है, और [[परावैद्युतांक]] {{mvar|ε}}, और {{math|∇<sup>2</sup>}} [[वेक्टर लाप्लासियन|सदिश लाप्लासियन]] है। निर्वात में, {{math|1=''v''<sub>ph</sub> = ''c''<sub>0</sub> = {{val|299,792,458|u=m/s}}}},एक मौलिक [[भौतिक स्थिरांक]] को प्रदर्शित करता हैं।<ref>Current practice is to use {{math|''c''<sub>0</sub>}} to denote the speed of light in vacuum according to [[ISO 31]]. In the original Recommendation of 1983, the symbol {{mvar|c}} was used for this purpose. See [http://physics.nist.gov/Pubs/SP330/sp330.pdf NIST ''Special Publication 330'', Appendix 2, p. 45 ] {{Webarchive|url=https://web.archive.org/web/20160603215953/http://physics.nist.gov/Pubs/SP330/sp330.pdf |date=2016-06-03 }}</ref> इस प्रकार विद्युत चुंबकीय तरंग समीकरण मैक्सवेल के समीकरणों से उत्पन्न हुआ है। अधिकांशतः प्राचीन साहित्य में, {{math|'''B'''}} चुंबकीय प्रवाह घनत्व या चुंबकीय प्रेरण कहा जाता है। निम्नलिखित समीकरण के अनुसार | ||
<math display="block">\begin{align} | |||
\nabla \cdot \mathbf{E} &= 0\\ | \nabla \cdot \mathbf{E} &= 0\\ | ||
\nabla \cdot \mathbf{B} &= 0 | \nabla \cdot \mathbf{B} &= 0 | ||
\end{align}</math> | \end{align}</math>इसमें किसी भी विद्युत चुम्बकीय तरंग को मुख्यतः [[अनुप्रस्थ तरंग]] होनी चाहिए, जहाँ विद्युत क्षेत्र {{math|'''E'''}} हो और चुंबकीय क्षेत्र {{math|'''B'''}} दोनों तरंग प्रसार की दिशा के लंबवत रहती हैं। | ||
== विद्युत चुम्बकीय तरंग समीकरण की उत्पत्ति == | == विद्युत चुम्बकीय तरंग समीकरण की उत्पत्ति == | ||
[[File:Postcard-from-Maxwell-to-Tait.jpg|thumb|right|175px|मैक्सवेल से [[पीटर गुथरी टैट]] के लिए पोस्टकार्ड।]]अपने 1865 के पेपर में [[विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत|विद्युत चुम्बकीय क्षेत्र का गतिशील सिद्धांत]] शीर्षक से, [[जेम्स क्लर्क मैक्सवेल]] ने एम्पीयर के | [[File:Postcard-from-Maxwell-to-Tait.jpg|thumb|right|175px|मैक्सवेल से [[पीटर गुथरी टैट]] के लिए पोस्टकार्ड।]]अपने 1865 के पेपर में [[विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत|विद्युत चुम्बकीय क्षेत्र का गतिशील सिद्धांत]] शीर्षक से, [[जेम्स क्लर्क मैक्सवेल]] ने एम्पीयर के परिपथीय सिद्धांत में सुधार करके इसका उपयोग किया गया हैं, जिसे उन्होंने अपने 1861 के पेपर [[बल की भौतिक रेखाओं पर]] के भाग III में बनाया था। उनके 1864 के भाग VI में विद्युत चुम्बकीय सिद्धांत प्रकाश शीर्षक से,<ref>[//upload.wikimedia.org/wikipedia/commons/1/19/A_Dynamical_Theory_of_the_Electromagnetic_Field.pdf Maxwell 1864], page 497.</ref> मैक्सवेल ने विद्युत चुंबकत्व के कुछ अन्य समीकरणों के साथ विस्थापन धारा को जोड़ा और उन्होंने प्रकाश की गति के बराबर गति के साथ एक तरंग समीकरण प्राप्त किया था। उन्होंने टिप्पणी की: | ||
<blockquote>परिणामों के समझौते से प्रतीत होता है कि प्रकाश और चुंबकत्व ही पदार्थ के स्नेह हैं, और यह प्रकाश विद्युत चुम्बकीय | <blockquote>परिणामों के समझौते से ऐसा प्रतीत होता है कि प्रकाश और चुंबकत्व एक ही पदार्थ के स्नेह हैं, और यह प्रकाश एक विद्युत चुम्बकीय त्रुटि है जो विद्युत चुम्बकीय नियमों के अनुसार क्षेत्र के माध्यम से प्रसारित होता है।<ref>See [//upload.wikimedia.org/wikipedia/commons/1/19/A_Dynamical_Theory_of_the_Electromagnetic_Field.pdf Maxwell 1864], page 499.</ref> | ||
मैक्सवेल की विद्युत चुम्बकीय तरंग समीकरण की व्युत्पत्ति को आधुनिक भौतिकी शिक्षा में बहुत कम | मैक्सवेल की विद्युत चुम्बकीय तरंग समीकरण की व्युत्पत्ति को आधुनिक भौतिकी शिक्षा में एक बहुत कम भार विधि से बदल दिया गया है जिसमें एम्पीयर के परिपथ संबंधी नियम के सही संस्करण को फैराडे के प्रेरण के नियम के साथ जोड़ा गया है। | ||
आधुनिक पद्धति का उपयोग करके निर्वात में विद्युत चुम्बकीय तरंग समीकरण प्राप्त करने के लिए, हम मैक्सवेल के समीकरणों के आधुनिक 'हीवीसाइड' रूप से | आधुनिक पद्धति का उपयोग करके निर्वात में विद्युत चुम्बकीय तरंग समीकरण प्राप्त करने के लिए, हम मैक्सवेल के समीकरणों के आधुनिक 'हीवीसाइड' रूप से प्रारंभ करते हैं।एक निर्वात- और आवेश-मुक्त स्थान में, ये समीकरण हैं:<math display=block>\begin{align} | ||
<math display=block>\begin{align} | |||
\nabla \cdot \mathbf{E} & = 0 \\ | \nabla \cdot \mathbf{E} & = 0 \\ | ||
\nabla \times \mathbf{E} & = -\frac{\partial \mathbf{B}} {\partial t}\\ | \nabla \times \mathbf{E} & = -\frac{\partial \mathbf{B}} {\partial t}\\ | ||
\nabla \cdot \mathbf{B} & = 0 \\ | \nabla \cdot \mathbf{B} & = 0 \\ | ||
\nabla \times \mathbf{B} & = \mu_0 \varepsilon_0 \frac{ \partial \mathbf{E}} {\partial t}\\ | \nabla \times \mathbf{B} & = \mu_0 \varepsilon_0 \frac{ \partial \mathbf{E}} {\partial t}\\ | ||
\end{align}</math> | \end{align}</math>ये सामान्य मैक्सवेल के समीकरण हैं जो आवेश और धारा दोनों की स्थिति में विशेष रूप से शून्य पर सेट हैं। | ||
ये सामान्य मैक्सवेल के समीकरण हैं जो | कर्ल समीकरणों का [[कर्ल (गणित)]] उक्त समीकरण देता है:<math display="block">\begin{align} | ||
कर्ल समीकरणों का [[कर्ल (गणित)]] | |||
<math display=block>\begin{align} | |||
\nabla \times \left(\nabla \times \mathbf{E} \right) &= \nabla \times \left(-\frac{\partial \mathbf{B}}{\partial t} \right) = -\frac{\partial}{\partial t} \left(\nabla \times \mathbf{B} \right) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} \\ | \nabla \times \left(\nabla \times \mathbf{E} \right) &= \nabla \times \left(-\frac{\partial \mathbf{B}}{\partial t} \right) = -\frac{\partial}{\partial t} \left(\nabla \times \mathbf{B} \right) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} \\ | ||
\nabla \times \left(\nabla \times \mathbf{B} \right) &= \nabla \times \left(\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) =\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(\nabla \times \mathbf{E} \right) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} | \nabla \times \left(\nabla \times \mathbf{B} \right) &= \nabla \times \left(\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) =\mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(\nabla \times \mathbf{E} \right) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} | ||
\end{align}</math> | \end{align}</math>हम सदिश कैलकुलस पहचान कर्ल के कर्ल का उपयोग कर सकते हैं<math display="block">\nabla \times \left(\nabla \times \mathbf{V} \right) = \nabla \left(\nabla \cdot \mathbf{V} \right) - \nabla^2 \mathbf{V}</math>जहाँ {{math|'''V'''}} अंतरिक्ष का कोई सदिश फलन है। इस प्रकार उक्त समीकरण से-<math display="block">\nabla^2 \mathbf{V} = \nabla \cdot \left(\nabla \mathbf{V} \right)</math>जहाँ {{math|∇'''V'''}} [[डायाडिक्स]] है जो डायवर्जेंस ऑपरेटर द्वारा संचालित होने पर होता है {{math|∇ ⋅}} सदिश देता है। इस स्थिति को हम उक्त समीकरण से समझ सकते हैं।<math display="block">\begin{align} | ||
हम | |||
<math display=block>\nabla \times \left(\nabla \times \mathbf{V} \right) = \nabla \left(\nabla \cdot \mathbf{V} \right) - \nabla^2 \mathbf{V}</math> | |||
<math display=block>\nabla^2 \mathbf{V} = \nabla \cdot \left(\nabla \mathbf{V} \right)</math> | |||
<math display=block>\begin{align} | |||
\nabla \cdot \mathbf{E} &= 0\\ | \nabla \cdot \mathbf{E} &= 0\\ | ||
\nabla \cdot \mathbf{B} &= 0 | \nabla \cdot \mathbf{B} &= 0 | ||
\end{align}</math> | \end{align}</math>इस प्रकार पुनः सर्वसमिका में दाईं ओर का पहला पद लुप्त हो जाता है और हमें तरंग समीकरण प्राप्त होते हैं:<math display="block">\begin{align} | ||
<math display=block>\begin{align} | |||
\frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} &= 0\\ | \frac{1}{c_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} &= 0\\ | ||
\frac{1}{c_0^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} &= 0 | \frac{1}{c_0^2} \frac{\partial^2 \mathbf{B}}{\partial t^2} - \nabla^2 \mathbf{B} &= 0 | ||
\end{align}</math> | \end{align}</math>जहाँ<math display="block">c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.99792458 \times 10^8\;\textrm{m/s}</math>इस मुक्त स्थान में प्रकाश की गति को संलग्न किया जाता है। | ||
<math display=block>c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.99792458 \times 10^8\;\textrm{m/s}</math> | |||
मुक्त स्थान में प्रकाश की गति है। | |||
== समांगी तरंग समीकरण का सहपरिवर्ती रूप == | == समांगी तरंग समीकरण का सहपरिवर्ती रूप == | ||
[[File:Time dilation02.gif|right|frame|अनुप्रस्थ गति में समय फैलाव। आवश्यकता है कि प्रकाश की गति हर [[जड़त्वीय फ्रेम]] में स्थिर है, [[विशेष सापेक्षता]] की ओर ले जाती है।]]विशेष आपेक्षिकता में मैक्सवेल के समीकरणों के इन सूत्रीकरण को सहप्रसरण और सदिशों के विपरीत रूप में लिखा जा सकता है | [[File:Time dilation02.gif|right|frame|अनुप्रस्थ गति में समय फैलाव। आवश्यकता है कि प्रकाश की गति हर [[जड़त्वीय फ्रेम]] में स्थिर है, [[विशेष सापेक्षता]] की ओर ले जाती है।]]विशेष आपेक्षिकता में मैक्सवेल के समीकरणों के इन सूत्रीकरण को सहप्रसरण और सदिशों के विपरीत रूप में लिखा जा सकता है | ||
Line 62: | Line 40: | ||
<math display=block>\partial_{\mu} A^{\mu} = 0,</math> | <math display=block>\partial_{\mu} A^{\mu} = 0,</math> | ||
और | और इस प्रकार<math display=block>\Box = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}</math>यहाँ पर डी'अलेम्बर्ट ऑपरेटर है। | ||
< | == घुमावदार स्पेसटाइम में सजातीय तरंग समीकरण == | ||
<blockquote>{{main|घुमावदार स्पेसटाइम में मैक्सवेल के समीकरण}} | |||
विद्युत चुम्बकीय तरंग समीकरण को दो प्रकार से संशोधित किया जाता है, व्युत्पन्न को सहसंयोजक व्युत्पन्न के साथ परिवर्तित कर दिया जाता है और नया शब्द प्रकट होता है जो वक्रता पर निर्भर करता है।<math display="block"> -{A^{\alpha ; \beta}}_{; \beta} + {R^{\alpha}}_{\beta} A^{\beta} = 0 </math>जहाँ <math> {R^\alpha}_\beta </math> रिक्की वक्रता टेन्सर है और अर्धविराम सहपरिवर्ती विभेदन को इंगित करता है। | |||
{{ | |||
घुमावदार स्पेसटाइम में लॉरेंज गेज की स्थिति का सामान्यीकरण माना जाता है:<math display="block"> {A^\mu}_{; \mu} = 0. </math> | |||
घुमावदार स्पेसटाइम में लॉरेंज गेज की स्थिति का सामान्यीकरण माना जाता है: | |||
<math display=block> {A^\mu}_{; \mu} = 0. </math> | |||
== अमानवीय विद्युत चुम्बकीय तरंग समीकरण == | |||
{{main|अमानवीय विद्युत चुम्बकीय तरंग समीकरण}} | |||
स्थानीयकृत समय-भिन्न चार्ज और वर्तमान धारा घनत्व एक निर्वात में विद्युत चुम्बकीय तरंगों के स्रोत के रूप में कार्य कर सकते हैं। मैक्सवेल के समीकरणों को सूत्रों के साथ तरंग समीकरण के रूप में लिखा जा सकता है। तरंग समीकरणों में स्रोतों का योग आंशिक अवकल समीकरणों को विषम बना देता है। | |||
== सजातीय विद्युत चुम्बकीय तरंग समीकरण का हल == | |||
{{main|तरंग समीकरण}} | |||
वैद्युतचुंबकीय तरंग समीकरण का सामान्य समाधान रूप की तरंगों का [[सुपरपोज़िशन सिद्धांत]] है | वैद्युतचुंबकीय तरंग समीकरण का सामान्य समाधान रूप की तरंगों का [[सुपरपोज़िशन सिद्धांत]] है | ||
<math display=block>\begin{align} | <math display="block">\begin{align} | ||
\mathbf{E}(\mathbf{r}, t) &= g(\phi(\mathbf{r}, t)) = g(\omega t - \mathbf{k} \cdot \mathbf{r}) \\ | \mathbf{E}(\mathbf{r}, t) &= g(\phi(\mathbf{r}, t)) = g(\omega t - \mathbf{k} \cdot \mathbf{r}) \\ | ||
\mathbf{B}(\mathbf{r}, t) &= g(\phi(\mathbf{r}, t)) = g(\omega t - \mathbf{k} \cdot \mathbf{r}) | \mathbf{B}(\mathbf{r}, t) &= g(\phi(\mathbf{r}, t)) = g(\omega t - \mathbf{k} \cdot \mathbf{r}) | ||
\end{align}</math> | \end{align}</math> | ||
वस्तुतः | आयामहीन तर्क φ के वस्तुतः किसी किसी भी अच्छी तरह से व्यवहार किए गए फलन {{mvar|g}} दिया जाता हैं, जहाँ {{mvar|ω}} [[कोणीय आवृत्ति]] (प्रति सेकंड रेडियंस में) है, और {{math|1='''k''' = (''k<sub>x</sub>'', ''k<sub>y</sub>'', ''k<sub>z</sub>'')}} (रेडियन प्रति मीटर में) तरंग सदिश है। | ||
चूंकि | चूंकि फलन {{mvar|g}} हो सकता है और अधिकांशतः एक मोनोक्रोमैटिक [[ साइन लहर |साइन लहर]] होता है, इसमें साइनसॉइडल या आवधिक भी नहीं होता है। व्यवहारिक रूप से, {{mvar|g}} की अनंत आवधिकता नहीं हो सकती है क्योंकि किसी भी वास्तविक विद्युत चुम्बकीय तरंग का समय और स्थान में सदैव सीमित एक विस्तार होना चाहिए। परिणामस्वरूप, और [[फूरियर रूपांतरण]] के सिद्धांत के आधार पर, एक वास्तविक लहर में साइनसॉइडल आवृत्तियों के अनंत सेट की सुपरपोजिशन सम्मिलित होनी चाहिए। | ||
इसके | इसके अतिरिक्त, वैध समाधान के लिए, तरंग सदिश और कोणीय आवृत्ति स्वतंत्र नहीं हैं; उन्हें [[फैलाव संबंध]] का पालन करना चाहिए:<math display="block"> k = | \mathbf{k} | = { \omega \over c } = { 2 \pi \over \lambda } </math>जहाँ {{mvar|k}} तरंग संख्या है और {{mvar|λ}} [[तरंग दैर्ध्य]] है। चर {{mvar|c}} का उपयोग केवल इस समीकरण में किया जा सकता है जब विद्युत चुम्बकीय तरंग निर्वात में किया जाता हैं। | ||
<math display=block> k = | \mathbf{k} | = { \omega \over c } = { 2 \pi \over \lambda } </math> | |||
=== मोनोक्रोमैटिक, साइनसोइडल स्थिर-अवस्था === | === मोनोक्रोमैटिक, साइनसोइडल स्थिर-अवस्था === | ||
वियोज्य रूप में एकल आवृत्ति के साइनसोइडल तरंगों को | वियोज्य रूप में एकल आवृत्ति के साइनसोइडल तरंगों को उपयोग करने से तरंग समीकरण के समाधान का सबसे सरल समूह इस प्रकार है:<math display="block">\mathbf{E} (\mathbf{r}, t) = \Re \left \{ \mathbf{E}(\mathbf{r}) e^{i \omega t} \right \}</math>जहाँ | ||
<math display=block>\mathbf{E} (\mathbf{r}, t) = \Re \left \{ \mathbf{E}(\mathbf{r}) e^{i \omega t} \right \}</math> | |||
*{{mvar|i}} [[काल्पनिक इकाई]] है, | *{{mvar|i}} [[काल्पनिक इकाई]] है, | ||
*{{math|1=''ω'' = 2''π'' ''f'' }} [[रेडियंस प्रति सेकंड]] में कोणीय आवृत्ति है, | *{{math|1=''ω'' = 2''π'' ''f'' }} [[रेडियंस प्रति सेकंड]] में कोणीय आवृत्ति है, | ||
Line 113: | Line 78: | ||
=== विमान तरंग समाधान === | === विमान तरंग समाधान === | ||
{{main| | {{main|वैद्युतचुंबकीय तरंग समीकरण का साइनसॉइडल प्लेन-वेव सॉल्यूशंस}} | ||
<math display=block>\begin{align} | एक इकाई सामान्य सदिश द्वारा परिभाषित विमान पर विचार करें<math display="block"> \mathbf{n} = { \mathbf{k} \over k }. </math>तत्पश्चात् तरंग समीकरणों के तलीय प्रगामी तरंग समाधान हैं<math display="block">\begin{align} | ||
\mathbf{E}(\mathbf{r}) &= \mathbf{E}_0 e^{ -i \mathbf{k} \cdot \mathbf{r} } \\ | \mathbf{E}(\mathbf{r}) &= \mathbf{E}_0 e^{ -i \mathbf{k} \cdot \mathbf{r} } \\ | ||
\mathbf{B}(\mathbf{r}) &= \mathbf{B}_0 e^{ -i \mathbf{k} \cdot \mathbf{r} } | \mathbf{B}(\mathbf{r}) &= \mathbf{B}_0 e^{ -i \mathbf{k} \cdot \mathbf{r} } | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ {{math|1='''r''' = (''x'', ''y'', ''z'')}} स्थिति सदिश (मीटर में) है। | |||
ये प्राप्त होने वाला मान सामान्य सदिश की दिशा में यात्रा करने वाली प्लेनर तरंगों का प्रतिनिधित्व {{math|'''n'''}} से करते हैं, इस प्रकार यदि हम {{mvar|z}} दिशा की दिशा के रूप में {{math|'''n'''}} परिभाषित करते हैं, और यह {{mvar|x}} दिशा की दिशा के रूप में {{math|'''E'''}}, तो फैराडे के नियम के अनुसार चुंबकीय क्षेत्र निहित है {{mvar|y}} दिशा और विद्युत क्षेत्र से संबंध द्वारा होता है<math display="block">c^2{\partial B \over \partial z} = {\partial E \over \partial t}.</math>क्योंकि विद्युत और चुंबकीय क्षेत्रों का विचलन शून्य है, प्रसार की दिशा में कोई क्षेत्र नहीं हैं।<br />यह समाधान तरंग समीकरणों का रैखिक ध्रुवीकरण (तरंगों) का समाधान है। गोलाकार रूप से ध्रुवीकृत समाधान भी हैं जिनमें क्षेत्र सामान्य सदिश के बारे में घूमते हैं। | |||
=== वर्णक्रमीय अपघटन === | === वर्णक्रमीय अपघटन === | ||
निर्वात में मैक्सवेल के समीकरणों की रैखिकता के कारण, समाधानों को ज्या के अध्यारोपण में विघटित किया जा सकता है। यह अंतर समीकरणों के समाधान के लिए फूरियर रूपांतरण विधि का आधार है। विद्युत चुम्बकीय तरंग समीकरण का [[ उन लोगों के |उन लोगों के]] सोइडल समाधान रूप लेता है | निर्वात में मैक्सवेल के समीकरणों की रैखिकता के कारण, समाधानों को ज्या के अध्यारोपण में विघटित किया जा सकता है। यह अंतर समीकरणों के समाधान के लिए फूरियर रूपांतरण विधि का आधार है। विद्युत चुम्बकीय तरंग समीकरण का [[ उन लोगों के |उन लोगों के]] सोइडल समाधान रूप लेता है<math display="block">\begin{align} | ||
<math display=block>\begin{align} | |||
\mathbf{E} (\mathbf{r}, t) &= \mathbf{E}_0 \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \phi_0) \\ | \mathbf{E} (\mathbf{r}, t) &= \mathbf{E}_0 \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \phi_0) \\ | ||
\mathbf{B} (\mathbf{r}, t) &= \mathbf{B}_0 \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \phi_0) | \mathbf{B} (\mathbf{r}, t) &= \mathbf{B}_0 \cos(\omega t - \mathbf{k} \cdot \mathbf{r} + \phi_0) | ||
\end{align}</math> | \end{align}</math>जहाँ | ||
*{{mvar|t}} समय है (सेकंड में), | *{{mvar|t}} समय है (सेकंड में), | ||
*{{mvar|ω}} कोणीय आवृत्ति है (रेडियन प्रति सेकंड में), | *{{mvar|ω}} कोणीय आवृत्ति है (रेडियन प्रति सेकंड में), | ||
*{{math|1='''k''' = (''k<sub>x</sub>'', ''k<sub>y</sub>'', ''k<sub>z</sub>'')}} | *{{math|1='''k''' = (''k<sub>x</sub>'', ''k<sub>y</sub>'', ''k<sub>z</sub>'')}} तरंग सदिश है (रेडियन प्रति मीटर में), और | ||
*<math> \phi_0 </math> चरण (तरंगें) (रेडियंस में) है। | *<math> \phi_0 </math> चरण (तरंगें) (रेडियंस में) है। | ||
तरंग | तरंग सदिश कोणीय आवृत्ति से संबंधित है | ||
<math display=block> k = | \mathbf{k} | = { \omega \over c } = { 2 \pi \over \lambda } </math> | <math display="block"> k = | \mathbf{k} | = { \omega \over c } = { 2 \pi \over \lambda } </math> | ||
जहाँ {{mvar|k}} तरंग संख्या है और {{mvar|λ}} तरंग दैर्ध्य है। | |||
[[ विद्युत चुम्बकीय वर्णक्रम | विद्युत चुम्बकीय वर्णक्रम]] तरंग दैर्ध्य के | [[ विद्युत चुम्बकीय वर्णक्रम | विद्युत चुम्बकीय वर्णक्रम]] तरंग दैर्ध्य के फलन के रूप में क्षेत्र परिमाण (या ऊर्जा) का प्लॉट है। | ||
=== मल्टीपोल विस्तार === | === मल्टीपोल विस्तार === | ||
मोनोक्रोमैटिक क्षेत्रों को समय | मोनोक्रोमैटिक क्षेत्रों को समय <math>e^{-i \omega t}</math> के साथ बदलते हुए मानते हुए, यदि कोई मैक्सवेल के समीकरणों को {{math|'''B'''}} से समाप्त करने के लिए उपयोग करते है , विद्युत चुम्बकीय तरंग समीकरण [[हेल्महोल्ट्ज़ समीकरण]] {{math|'''E'''}} के लिए कम हो जाता है :<math display="block"> (\nabla^2 + k^2)\mathbf{E} = 0,\, \mathbf{B} = -\frac{i}{k} \nabla \times \mathbf{E},</math>साथ में {{math|1=''k'' = ''ω''/''c''}} जैसा कि ऊपर दिया गया है। वैकल्पिक रूप से, कोई समाप्त कर सकता है {{math|'''E'''}} के पक्ष में {{math|'''B'''}} प्राप्त करने के लिए:<math display="block"> (\nabla^2 + k^2)\mathbf{B} = 0,\, \mathbf{E} = -\frac{i}{k} \nabla \times \mathbf{B}.</math>आवृत्ति ω के साथ एक सामान्य विद्युत चुम्बकीय क्षेत्र {{mvar|ω}} को इन दो समीकरणों के समाधान के योग के रूप में लिखा जा सकता है। हेल्महोल्ट्ज़ समीकरण के त्रि-आयामी मान प्राप्त करने के लिए किया जाता हैं | हेल्महोल्ट्ज़ समीकरण के त्रि-आयामी समाधानों को [[गोलाकार हार्मोनिक्स]] में विस्तार के रूप में व्यक्त किया जा सकता है जिसमें गुणांक [[गोलाकार बेसेल कार्य|गोलाकार बेसेल कार्यों]] के समानुपाती होते हैं। चूंकि, इस विस्तार को प्रत्येक सदिश घटक {{math|'''E'''}} या {{math|'''B'''}} पर लागू किया जाता हैं इस प्रकार ऐसे समाधान प्रदान करेगा जो सामान्य रूप से विचलन-मुक्त ({{math|1=∇ ⋅ '''E''' = ∇ ⋅ '''B''' = 0}}) नहीं हैं, और इसलिए गुणांकों पर अतिरिक्त प्रतिबंधों की आवश्यकता होती है। | ||
<math display=block> (\nabla^2 + k^2)\mathbf{E} = 0,\, \mathbf{B} = -\frac{i}{k} \nabla \times \mathbf{E},</math> | |||
साथ {{math|1=''k'' = ''ω''/''c''}} जैसा कि ऊपर दिया गया है। वैकल्पिक रूप से, कोई समाप्त कर सकता है {{math|'''E'''}} के पक्ष में {{math|'''B'''}} प्राप्त करने के लिए: | |||
<math display=block> (\nabla^2 + k^2)\mathbf{B} = 0,\, \mathbf{E} = -\frac{i}{k} \nabla \times \mathbf{B}.</math> | |||
आवृत्ति के साथ सामान्य विद्युत चुम्बकीय क्षेत्र {{mvar|ω}} को इन दो समीकरणों के समाधान के योग के रूप में लिखा जा सकता है। हेल्महोल्ट्ज़ समीकरण | |||
मल्टीपोल | मल्टीपोल विस्तार इस कठिनाई को {{math|'''E'''}} या {{math|'''B'''}} नहीं, किन्तु {{math|'''r''' ⋅ '''E'''}} या {{math|'''r''' ⋅ '''B'''}} को गोलाकार हार्मोनिक्स में विस्तारित करके रोकता है। ये विस्तार अभी भी {{math|'''E'''}} और {{math|'''B'''}} के लिए मूल हेल्महोल्ट्ज समीकरणों को हल करते हैं क्योंकि विचलन मुक्त क्षेत्र {{math|'''F'''}} के लिए, {{math|1=∇<sup>2</sup> ('''r''' ⋅ '''F''') = '''r''' ⋅ (∇<sup>2</sup> '''F''')}}.एक सामान्य विद्युत चुम्बकीय क्षेत्र के लिए परिणामी भाव हैं: | ||
<math display=block>\begin{align} | <math display="block">\begin{align} | ||
\mathbf{E} &= e^{-i \omega t} \sum_{l,m} \sqrt{l(l+1)} \left[ a_E(l,m) \mathbf{E}_{l,m}^{(E)} + a_M(l,m) \mathbf{E}_{l,m}^{(M)} \right] \\ | \mathbf{E} &= e^{-i \omega t} \sum_{l,m} \sqrt{l(l+1)} \left[ a_E(l,m) \mathbf{E}_{l,m}^{(E)} + a_M(l,m) \mathbf{E}_{l,m}^{(M)} \right] \\ | ||
\mathbf{B} &= e^{-i \omega t} \sum_{l,m} \sqrt{l(l+1)} \left[ a_E(l,m) \mathbf{B}_{l,m}^{(E)} + a_M(l,m) \mathbf{B}_{l,m}^{(M)} \right]\,, | \mathbf{B} &= e^{-i \omega t} \sum_{l,m} \sqrt{l(l+1)} \left[ a_E(l,m) \mathbf{B}_{l,m}^{(E)} + a_M(l,m) \mathbf{B}_{l,m}^{(M)} \right]\,, | ||
\end{align}</math> | \end{align}</math>जहाँ <math>\mathbf{E}_{l,m}^{(E)}</math> और <math>\mathbf{B}_{l,m}^{(E)}</math> क्रम (l, m) के विद्युत बहुध्रुवीय क्षेत्र हैं, और <math>\mathbf{E}_{l,m}^{(M)}</math> और <math>\mathbf{B}_{l,m}^{(M)}</math> संगत चुंबकीय बहुध्रुव क्षेत्र हैं, और {{math|''a<sub>E</sub>''(''l'', ''m'')}} और {{math|''a<sub>M</sub>''(''l'', ''m'')}} विस्तार के गुणांक हैं। बहुध्रुव क्षेत्र किसके द्वारा दिए गए हैं<math display="block">\begin{align} | ||
<math display=block>\begin{align} | |||
\mathbf{B}_{l,m}^{(E)} &= \sqrt{l(l+1)} \left[B_l^{(1)} h_l^{(1)}(kr) + B_l^{(2)} h_l^{(2)}(kr)\right] \mathbf{\Phi}_{l,m} \\ | \mathbf{B}_{l,m}^{(E)} &= \sqrt{l(l+1)} \left[B_l^{(1)} h_l^{(1)}(kr) + B_l^{(2)} h_l^{(2)}(kr)\right] \mathbf{\Phi}_{l,m} \\ | ||
\mathbf{E}_{l,m}^{(E)} &= \frac{i}{k} \nabla \times \mathbf{B}_{l,m}^{(E)} \\ | \mathbf{E}_{l,m}^{(E)} &= \frac{i}{k} \nabla \times \mathbf{B}_{l,m}^{(E)} \\ | ||
\mathbf{E}_{l,m}^{(M)} &= \sqrt{l(l+1)} \left[E_l^{(1)} h_l^{(1)}(kr) + E_l^{(2)} h_l^{(2)}(kr)\right] \mathbf{\Phi}_{l,m} \\ | \mathbf{E}_{l,m}^{(M)} &= \sqrt{l(l+1)} \left[E_l^{(1)} h_l^{(1)}(kr) + E_l^{(2)} h_l^{(2)}(kr)\right] \mathbf{\Phi}_{l,m} \\ | ||
\mathbf{B}_{l,m}^{(M)} &= -\frac{i}{k} \nabla \times \mathbf{E}_{l,m}^{(M)}\,, | \mathbf{B}_{l,m}^{(M)} &= -\frac{i}{k} \nabla \times \mathbf{E}_{l,m}^{(M)}\,, | ||
\end{align}</math> | \end{align}</math>जहाँ {{math|''h''<sub>l</sub><sup>(1,2)</sup>(''x'')}} गोलाकार बेसेल फलन गोलाकार हैं, इसका फलन {{math|''E''<sub>l</sub><sup>(1,2)</sup>}} और {{math|''B''<sub>l</sub><sup>(1,2)</sup>}} सीमा स्थितियों द्वारा निर्धारित किया जाता है, और<math display="block">\mathbf{\Phi}_{l,m} = \frac{1}{\sqrt{l(l+1)}}(\mathbf{r} \times \nabla) Y_{l,m}</math> | ||
[[वेक्टर गोलाकार हार्मोनिक्स|सदिश गोलाकार हार्मोनिक्स]] सामान्यीकृत हैं जिससे कि | |||
<math display=block>\mathbf{\Phi}_{l,m} = \frac{1}{\sqrt{l(l+1)}}(\mathbf{r} \times \nabla) Y_{l,m}</math> | |||
[[वेक्टर गोलाकार हार्मोनिक्स]] सामान्यीकृत हैं जिससे कि | |||
<math display=block>\begin{align} | <math display="block">\int \mathbf{\Phi}^*_{l,m} \cdot \mathbf{\Phi}_{l', m'} d\Omega = \delta_{l,l'} \delta_{m, m'}.</math>विद्युतचुंबकीय क्षेत्र के बहुध्रुव विस्तार में गोलाकार समरूपता से जुड़ी कई समस्याओं में आवेदन मिलता है, उदाहरण के लिए एंटीना विकिरण पैटर्न, या परमाणु [[गामा क्षय]] होता हैं। इन अनुप्रयोगों में, अधिकांशतः निकट और दूर के क्षेत्र विकिरण क्षेत्र में विकीर्ण होने वाली शक्ति में रुचि होती है, जिसमें दूर-क्षेत्र को विकीर्ण करना भी सम्मिलित है। इस क्षेत्रों में, {{math|'''E'''}} और {{math|'''B'''}} क्षेत्र असम्बद्ध रूप से दृष्टिकोण करते हैं<math display="block">\begin{align} | ||
\mathbf{B} & \approx \frac{e^{i (kr-\omega t)}}{kr} \sum_{l,m} (-i)^{l+1} \left[a_E(l,m) \mathbf{\Phi}_{l,m} + a_M(l,m) \mathbf{\hat{r}} \times \mathbf{\Phi}_{l,m} \right] \\ | \mathbf{B} & \approx \frac{e^{i (kr-\omega t)}}{kr} \sum_{l,m} (-i)^{l+1} \left[a_E(l,m) \mathbf{\Phi}_{l,m} + a_M(l,m) \mathbf{\hat{r}} \times \mathbf{\Phi}_{l,m} \right] \\ | ||
\mathbf{E} & \approx \mathbf{B} \times \mathbf{\hat{r}}. | \mathbf{E} & \approx \mathbf{B} \times \mathbf{\hat{r}}. | ||
\end{align}</math> | \end{align}</math>समय-औसत विकीर्ण शक्ति का कोणीय वितरण तब दिया जाता है<math display="block">\frac{dP}{d\Omega} \approx \frac{1}{2k^2} \left| \sum_{l,m} (-i)^{l+1} \left[ a_E(l,m) \mathbf{\Phi}_{l,m} \times \mathbf{\hat{r}} + a_M(l,m) \mathbf{\Phi}_{l,m} \right] \right|^2.</math> | ||
समय-औसत विकीर्ण शक्ति का कोणीय वितरण तब दिया जाता है | |||
<math display=block>\frac{dP}{d\Omega} \approx \frac{1}{2k^2} \left| \sum_{l,m} (-i)^{l+1} \left[ a_E(l,m) \mathbf{\Phi}_{l,m} \times \mathbf{\hat{r}} + a_M(l,m) \mathbf{\Phi}_{l,m} \right] \right|^2.</math> | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 249: | Line 183: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
<references/> | <references /> | ||
== अग्रिम पठन == | == अग्रिम पठन == | ||
'''विद्युत चुंबकत्व''' | |||
==== जर्नल लेख ==== | ==== जर्नल लेख ==== | ||
* मैक्सवेल, जेम्स क्लर्क, [//upload.wikimedia.org/wikipedia/commons/1/19/A_Dynamical_Theory_of_the_Electromagnetic_Field.pdf | * मैक्सवेल, जेम्स क्लर्क, [//upload.wikimedia.org/wikipedia/commons/1/19/A_Dynamical_Theory_of_the_Electromagnetic_Field.pdf विद्युत चुंबकीय फील्ड का गतिशील सिद्धांत], लंदन की रॉयल सोसाइटी के दार्शनिक लेनदेन 155, 459-512 (1865) ). (यह लेख मैक्सवेल द्वारा रॉयल सोसाइटी के लिए 8 दिसंबर, 1864 की प्रस्तुति के साथ था।) | ||
==== स्नातक स्तर की पाठ्यपुस्तकें ==== | ==== स्नातक स्तर की पाठ्यपुस्तकें ==== | ||
Line 266: | Line 196: | ||
*{{cite book | author=Tipler, Paul | title=वैज्ञानिकों और इंजीनियरों के लिए भौतिकी: बिजली, चुंबकत्व, प्रकाश और प्राथमिक आधुनिक भौतिकी (5वां संस्करण)।| publisher=W. H. Freeman | year=2004 | isbn=0-7167-0810-8}} | *{{cite book | author=Tipler, Paul | title=वैज्ञानिकों और इंजीनियरों के लिए भौतिकी: बिजली, चुंबकत्व, प्रकाश और प्राथमिक आधुनिक भौतिकी (5वां संस्करण)।| publisher=W. H. Freeman | year=2004 | isbn=0-7167-0810-8}} | ||
* एडवर्ड एम. परसेल, बिजली और चुंबकत्व (मैकग्रा-हिल, न्यूयॉर्क, 1985)। {{ISBN|0-07-004908-4}}. | * एडवर्ड एम. परसेल, बिजली और चुंबकत्व (मैकग्रा-हिल, न्यूयॉर्क, 1985)। {{ISBN|0-07-004908-4}}. | ||
* हरमन ए. हॉस और जेम्स आर. मेल्चर, | * हरमन ए. हॉस और जेम्स आर. मेल्चर, विद्युत चुंबकीय फील्ड्स एंड एनर्जी (प्रेंटिस-हॉल, 1989) {{ISBN|0-13-249020-X}}. | ||
* बनेश हॉफमैन, रिलेटिविटी एंड इट्स रूट्स (फ्रीमैन, न्यूयॉर्क, 1983)। {{ISBN|0-7167-1478-7}}. | * बनेश हॉफमैन, रिलेटिविटी एंड इट्स रूट्स (फ्रीमैन, न्यूयॉर्क, 1983)। {{ISBN|0-7167-1478-7}}. | ||
* डेविड एच. स्टेलिन, ऐन डब्ल्यू. मोर्गेंथेलर, और जिन औ कोंग, | * डेविड एच. स्टेलिन, ऐन डब्ल्यू. मोर्गेंथेलर, और जिन औ कोंग, विद्युत चुंबकीय वेव्स (प्रेंटिस-हॉल, 1994) {{ISBN|0-13-225871-4}}. | ||
* चार्ल्स एफ स्टीवंस, द सिक्स कोर थ्योरीज़ ऑफ़ मॉडर्न फ़िज़िक्स, (एमआईटी प्रेस, 1995) {{ISBN|0-262-69188-4}}. | * चार्ल्स एफ स्टीवंस, द सिक्स कोर थ्योरीज़ ऑफ़ मॉडर्न फ़िज़िक्स, (एमआईटी प्रेस, 1995) {{ISBN|0-262-69188-4}}. | ||
* मार्कस ज़ैन, | * मार्कस ज़ैन, विद्युत चुंबकीय फील्ड थ्योरी: समस्या समाधान दृष्टिकोण, (जॉन विले एंड संस, 1979) {{ISBN|0-471-02198-9}} | ||
==== स्नातक स्तर की पाठ्यपुस्तकें ==== | ==== स्नातक स्तर की पाठ्यपुस्तकें ==== | ||
Line 278: | Line 208: | ||
* चार्ल्स डब्ल्यू. मिस्नर, किप थॉर्न|किप एस. थॉर्न, [[जॉन आर्चीबाल्ड व्हीलर]], ग्रेविटेशन, (1970) डब्ल्यू.एच. फ्रीमैन, न्यूयॉर्क; {{ISBN|0-7167-0344-0}}. (अवकल रूपों के संदर्भ में मैक्सवेल के समीकरणों का उपचार प्रदान करता है।) | * चार्ल्स डब्ल्यू. मिस्नर, किप थॉर्न|किप एस. थॉर्न, [[जॉन आर्चीबाल्ड व्हीलर]], ग्रेविटेशन, (1970) डब्ल्यू.एच. फ्रीमैन, न्यूयॉर्क; {{ISBN|0-7167-0344-0}}. (अवकल रूपों के संदर्भ में मैक्सवेल के समीकरणों का उपचार प्रदान करता है।) | ||
=== | === सदिश कलन === | ||
*पी। सी। मैथ्यूज | *पी। सी। मैथ्यूज सदिश कैलकुलस, स्प्रिंगर 1998, {{ISBN|3-540-76180-2}} | ||
*एच। एम. शाय, डिव ग्रैड कर्ल एंड दैट ऑल दैट: एन इनफॉर्मल टेक्स्ट ऑन | *एच। एम. शाय, डिव ग्रैड कर्ल एंड दैट ऑल दैट: एन इनफॉर्मल टेक्स्ट ऑन सदिश कैलकुलस, चौथा संस्करण (डब्ल्यू. डब्ल्यू. नॉर्टन एंड कंपनी, 2005) {{ISBN|0-393-92516-1}}. | ||
{{Physics-footer}} | {{Physics-footer}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 24/03/2023]] | [[Category:Created On 24/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Webarchive template wayback links]] | |||
[[Category:Wikipedia metatemplates]] |
Latest revision as of 19:11, 19 April 2023
विद्युत चुम्बकीय तरंग समीकरण एक दूसरे क्रम का आंशिक अंतर समीकरण है जो एक माध्यम या निर्वात में विद्युत चुम्बकीय तरंगों के प्रसार का वर्णन करता है। यह स्केलर तरंग समीकरण या तरंग समीकरण का त्रि-आयामी रूप है। समीकरण का समांगी अवकल समीकरण रूप, तो विद्युत क्षेत्र ई या चुंबकीय क्षेत्र बी के संदर्भ में लिखा गया है, इस प्रकार E या चुंबकीय क्षेत्र B, रूप लेता है:
विद्युत चुम्बकीय तरंग समीकरण की उत्पत्ति
अपने 1865 के पेपर में विद्युत चुम्बकीय क्षेत्र का गतिशील सिद्धांत शीर्षक से, जेम्स क्लर्क मैक्सवेल ने एम्पीयर के परिपथीय सिद्धांत में सुधार करके इसका उपयोग किया गया हैं, जिसे उन्होंने अपने 1861 के पेपर बल की भौतिक रेखाओं पर के भाग III में बनाया था। उनके 1864 के भाग VI में विद्युत चुम्बकीय सिद्धांत प्रकाश शीर्षक से,[2] मैक्सवेल ने विद्युत चुंबकत्व के कुछ अन्य समीकरणों के साथ विस्थापन धारा को जोड़ा और उन्होंने प्रकाश की गति के बराबर गति के साथ एक तरंग समीकरण प्राप्त किया था। उन्होंने टिप्पणी की:
परिणामों के समझौते से ऐसा प्रतीत होता है कि प्रकाश और चुंबकत्व एक ही पदार्थ के स्नेह हैं, और यह प्रकाश एक विद्युत चुम्बकीय त्रुटि है जो विद्युत चुम्बकीय नियमों के अनुसार क्षेत्र के माध्यम से प्रसारित होता है।[3]
मैक्सवेल की विद्युत चुम्बकीय तरंग समीकरण की व्युत्पत्ति को आधुनिक भौतिकी शिक्षा में एक बहुत कम भार विधि से बदल दिया गया है जिसमें एम्पीयर के परिपथ संबंधी नियम के सही संस्करण को फैराडे के प्रेरण के नियम के साथ जोड़ा गया है।
आधुनिक पद्धति का उपयोग करके निर्वात में विद्युत चुम्बकीय तरंग समीकरण प्राप्त करने के लिए, हम मैक्सवेल के समीकरणों के आधुनिक 'हीवीसाइड' रूप से प्रारंभ करते हैं।एक निर्वात- और आवेश-मुक्त स्थान में, ये समीकरण हैं:
ये सामान्य मैक्सवेल के समीकरण हैं जो आवेश और धारा दोनों की स्थिति में विशेष रूप से शून्य पर सेट हैं। कर्ल समीकरणों का कर्ल (गणित) उक्त समीकरण देता है:हम सदिश कैलकुलस पहचान कर्ल के कर्ल का उपयोग कर सकते हैंजहाँ V अंतरिक्ष का कोई सदिश फलन है। इस प्रकार उक्त समीकरण से-जहाँ ∇V डायाडिक्स है जो डायवर्जेंस ऑपरेटर द्वारा संचालित होने पर होता है ∇ ⋅ सदिश देता है। इस स्थिति को हम उक्त समीकरण से समझ सकते हैं।इस प्रकार पुनः सर्वसमिका में दाईं ओर का पहला पद लुप्त हो जाता है और हमें तरंग समीकरण प्राप्त होते हैं:जहाँइस मुक्त स्थान में प्रकाश की गति को संलग्न किया जाता है।समांगी तरंग समीकरण का सहपरिवर्ती रूप
विशेष आपेक्षिकता में मैक्सवेल के समीकरणों के इन सूत्रीकरण को सहप्रसरण और सदिशों के विपरीत रूप में लिखा जा सकता है
जहां विद्युत चुम्बकीय चार-क्षमता हैलॉरेंज गेज स्थिति के साथ:और इस प्रकारयहाँ पर डी'अलेम्बर्ट ऑपरेटर है।घुमावदार स्पेसटाइम में सजातीय तरंग समीकरण
विद्युत चुम्बकीय तरंग समीकरण को दो प्रकार से संशोधित किया जाता है, व्युत्पन्न को सहसंयोजक व्युत्पन्न के साथ परिवर्तित कर दिया जाता है और नया शब्द प्रकट होता है जो वक्रता पर निर्भर करता है।
जहाँ रिक्की वक्रता टेन्सर है और अर्धविराम सहपरिवर्ती विभेदन को इंगित करता है।
घुमावदार स्पेसटाइम में लॉरेंज गेज की स्थिति का सामान्यीकरण माना जाता है:अमानवीय विद्युत चुम्बकीय तरंग समीकरण
स्थानीयकृत समय-भिन्न चार्ज और वर्तमान धारा घनत्व एक निर्वात में विद्युत चुम्बकीय तरंगों के स्रोत के रूप में कार्य कर सकते हैं। मैक्सवेल के समीकरणों को सूत्रों के साथ तरंग समीकरण के रूप में लिखा जा सकता है। तरंग समीकरणों में स्रोतों का योग आंशिक अवकल समीकरणों को विषम बना देता है।
सजातीय विद्युत चुम्बकीय तरंग समीकरण का हल
वैद्युतचुंबकीय तरंग समीकरण का सामान्य समाधान रूप की तरंगों का सुपरपोज़िशन सिद्धांत है
आयामहीन तर्क φ के वस्तुतः किसी किसी भी अच्छी तरह से व्यवहार किए गए फलन g दिया जाता हैं, जहाँ ω कोणीय आवृत्ति (प्रति सेकंड रेडियंस में) है, और k = (kx, ky, kz) (रेडियन प्रति मीटर में) तरंग सदिश है।चूंकि फलन g हो सकता है और अधिकांशतः एक मोनोक्रोमैटिक साइन लहर होता है, इसमें साइनसॉइडल या आवधिक भी नहीं होता है। व्यवहारिक रूप से, g की अनंत आवधिकता नहीं हो सकती है क्योंकि किसी भी वास्तविक विद्युत चुम्बकीय तरंग का समय और स्थान में सदैव सीमित एक विस्तार होना चाहिए। परिणामस्वरूप, और फूरियर रूपांतरण के सिद्धांत के आधार पर, एक वास्तविक लहर में साइनसॉइडल आवृत्तियों के अनंत सेट की सुपरपोजिशन सम्मिलित होनी चाहिए।
इसके अतिरिक्त, वैध समाधान के लिए, तरंग सदिश और कोणीय आवृत्ति स्वतंत्र नहीं हैं; उन्हें फैलाव संबंध का पालन करना चाहिए:
जहाँ k तरंग संख्या है और λ तरंग दैर्ध्य है। चर c का उपयोग केवल इस समीकरण में किया जा सकता है जब विद्युत चुम्बकीय तरंग निर्वात में किया जाता हैं।मोनोक्रोमैटिक, साइनसोइडल स्थिर-अवस्था
वियोज्य रूप में एकल आवृत्ति के साइनसोइडल तरंगों को उपयोग करने से तरंग समीकरण के समाधान का सबसे सरल समूह इस प्रकार है:
जहाँ
- i काल्पनिक इकाई है,
- ω = 2π f रेडियंस प्रति सेकंड में कोणीय आवृत्ति है,
- f हेटर्स ़ में आवृत्ति है, और
- यूलर का सूत्र है।
विमान तरंग समाधान
एक इकाई सामान्य सदिश द्वारा परिभाषित विमान पर विचार करें
तत्पश्चात् तरंग समीकरणों के तलीय प्रगामी तरंग समाधान हैंजहाँ r = (x, y, z) स्थिति सदिश (मीटर में) है।
ये प्राप्त होने वाला मान सामान्य सदिश की दिशा में यात्रा करने वाली प्लेनर तरंगों का प्रतिनिधित्व n से करते हैं, इस प्रकार यदि हम z दिशा की दिशा के रूप में n परिभाषित करते हैं, और यह x दिशा की दिशा के रूप में E, तो फैराडे के नियम के अनुसार चुंबकीय क्षेत्र निहित है y दिशा और विद्युत क्षेत्र से संबंध द्वारा होता है
क्योंकि विद्युत और चुंबकीय क्षेत्रों का विचलन शून्य है, प्रसार की दिशा में कोई क्षेत्र नहीं हैं।
यह समाधान तरंग समीकरणों का रैखिक ध्रुवीकरण (तरंगों) का समाधान है। गोलाकार रूप से ध्रुवीकृत समाधान भी हैं जिनमें क्षेत्र सामान्य सदिश के बारे में घूमते हैं।वर्णक्रमीय अपघटन
निर्वात में मैक्सवेल के समीकरणों की रैखिकता के कारण, समाधानों को ज्या के अध्यारोपण में विघटित किया जा सकता है। यह अंतर समीकरणों के समाधान के लिए फूरियर रूपांतरण विधि का आधार है। विद्युत चुम्बकीय तरंग समीकरण का उन लोगों के सोइडल समाधान रूप लेता है
जहाँ
- t समय है (सेकंड में),
- ω कोणीय आवृत्ति है (रेडियन प्रति सेकंड में),
- k = (kx, ky, kz) तरंग सदिश है (रेडियन प्रति मीटर में), और
- चरण (तरंगें) (रेडियंस में) है।
तरंग सदिश कोणीय आवृत्ति से संबंधित है
जहाँ k तरंग संख्या है और λ तरंग दैर्ध्य है।विद्युत चुम्बकीय वर्णक्रम तरंग दैर्ध्य के फलन के रूप में क्षेत्र परिमाण (या ऊर्जा) का प्लॉट है।
मल्टीपोल विस्तार
मोनोक्रोमैटिक क्षेत्रों को समय के साथ बदलते हुए मानते हुए, यदि कोई मैक्सवेल के समीकरणों को B से समाप्त करने के लिए उपयोग करते है , विद्युत चुम्बकीय तरंग समीकरण हेल्महोल्ट्ज़ समीकरण E के लिए कम हो जाता है :
साथ में k = ω/c जैसा कि ऊपर दिया गया है। वैकल्पिक रूप से, कोई समाप्त कर सकता है E के पक्ष में B प्राप्त करने के लिए:आवृत्ति ω के साथ एक सामान्य विद्युत चुम्बकीय क्षेत्र ω को इन दो समीकरणों के समाधान के योग के रूप में लिखा जा सकता है। हेल्महोल्ट्ज़ समीकरण के त्रि-आयामी मान प्राप्त करने के लिए किया जाता हैं | हेल्महोल्ट्ज़ समीकरण के त्रि-आयामी समाधानों को गोलाकार हार्मोनिक्स में विस्तार के रूप में व्यक्त किया जा सकता है जिसमें गुणांक गोलाकार बेसेल कार्यों के समानुपाती होते हैं। चूंकि, इस विस्तार को प्रत्येक सदिश घटक E या B पर लागू किया जाता हैं इस प्रकार ऐसे समाधान प्रदान करेगा जो सामान्य रूप से विचलन-मुक्त (∇ ⋅ E = ∇ ⋅ B = 0) नहीं हैं, और इसलिए गुणांकों पर अतिरिक्त प्रतिबंधों की आवश्यकता होती है।मल्टीपोल विस्तार इस कठिनाई को E या B नहीं, किन्तु r ⋅ E या r ⋅ B को गोलाकार हार्मोनिक्स में विस्तारित करके रोकता है। ये विस्तार अभी भी E और B के लिए मूल हेल्महोल्ट्ज समीकरणों को हल करते हैं क्योंकि विचलन मुक्त क्षेत्र F के लिए, ∇2 (r ⋅ F) = r ⋅ (∇2 F).एक सामान्य विद्युत चुम्बकीय क्षेत्र के लिए परिणामी भाव हैं:
जहाँ और क्रम (l, m) के विद्युत बहुध्रुवीय क्षेत्र हैं, और और संगत चुंबकीय बहुध्रुव क्षेत्र हैं, और aE(l, m) और aM(l, m) विस्तार के गुणांक हैं। बहुध्रुव क्षेत्र किसके द्वारा दिए गए हैंजहाँ hl(1,2)(x) गोलाकार बेसेल फलन गोलाकार हैं, इसका फलन El(1,2) और Bl(1,2) सीमा स्थितियों द्वारा निर्धारित किया जाता है, औरसदिश गोलाकार हार्मोनिक्स सामान्यीकृत हैं जिससे किविद्युतचुंबकीय क्षेत्र के बहुध्रुव विस्तार में गोलाकार समरूपता से जुड़ी कई समस्याओं में आवेदन मिलता है, उदाहरण के लिए एंटीना विकिरण पैटर्न, या परमाणु गामा क्षय होता हैं। इन अनुप्रयोगों में, अधिकांशतः निकट और दूर के क्षेत्र विकिरण क्षेत्र में विकीर्ण होने वाली शक्ति में रुचि होती है, जिसमें दूर-क्षेत्र को विकीर्ण करना भी सम्मिलित है। इस क्षेत्रों में, E और B क्षेत्र असम्बद्ध रूप से दृष्टिकोण करते हैंसमय-औसत विकीर्ण शक्ति का कोणीय वितरण तब दिया जाता हैयह भी देखें
सिद्धांत और प्रयोग
- मैक्सवेल के समीकरण
- तरंग समीकरण
- आंशिक विभेदक समीकरण
- कम्प्यूटेशनल इलेक्ट्रोमैग्नेटिक्स
- विद्युत चुम्बकीय विकिरण
- प्रभार संरक्षण
- रोशनी
- विद्युत चुम्बकीय वर्णक्रम
- प्रकाशिकी
- विशेष सापेक्षता
- सामान्य सापेक्षता
- अमानवीय विद्युत चुम्बकीय तरंग समीकरण
- फोटॉन ध्रुवीकरण
- लारमोर फॉर्मूला
- श्रोडिंगर समीकरण के लिए सैद्धांतिक और प्रायोगिक औचित्य
अनुप्रयोग
- रेडियो तरंग
- ऑप्टिकल कंप्यूटिंग
- माइक्रोवेव
- होलोग्रफ़ी
- सूक्ष्मदर्शी
- दूरबीन
- गुरुत्वाकर्षण लेंस
- श्याम पिंडों से उत्पन्न विकिरण
जीवनी
- आंद्रे-मैरी एम्पीयर
- अल्बर्ट आइंस्टीन
- माइकल फैराडे
- हेनरिक हर्ट्ज़
- ओलिवर हीविसाइड
- जेम्स क्लर्क मैक्सवेल
- हेंड्रिक लोरेंत्ज़
टिप्पणियाँ
- ↑ Current practice is to use c0 to denote the speed of light in vacuum according to ISO 31. In the original Recommendation of 1983, the symbol c was used for this purpose. See NIST Special Publication 330, Appendix 2, p. 45 Archived 2016-06-03 at the Wayback Machine
- ↑ Maxwell 1864, page 497.
- ↑ See Maxwell 1864, page 499.
अग्रिम पठन
विद्युत चुंबकत्व
जर्नल लेख
- मैक्सवेल, जेम्स क्लर्क, विद्युत चुंबकीय फील्ड का गतिशील सिद्धांत, लंदन की रॉयल सोसाइटी के दार्शनिक लेनदेन 155, 459-512 (1865) ). (यह लेख मैक्सवेल द्वारा रॉयल सोसाइटी के लिए 8 दिसंबर, 1864 की प्रस्तुति के साथ था।)
स्नातक स्तर की पाठ्यपुस्तकें
- Griffiths, David J. (1998). इलेक्ट्रोडायनामिक्स का परिचय (तीसरा संस्करण). Prentice Hall. ISBN 0-13-805326-X.
- Tipler, Paul (2004). वैज्ञानिकों और इंजीनियरों के लिए भौतिकी: बिजली, चुंबकत्व, प्रकाश और प्राथमिक आधुनिक भौतिकी (5वां संस्करण)।. W. H. Freeman. ISBN 0-7167-0810-8.
- एडवर्ड एम. परसेल, बिजली और चुंबकत्व (मैकग्रा-हिल, न्यूयॉर्क, 1985)। ISBN 0-07-004908-4.
- हरमन ए. हॉस और जेम्स आर. मेल्चर, विद्युत चुंबकीय फील्ड्स एंड एनर्जी (प्रेंटिस-हॉल, 1989) ISBN 0-13-249020-X.
- बनेश हॉफमैन, रिलेटिविटी एंड इट्स रूट्स (फ्रीमैन, न्यूयॉर्क, 1983)। ISBN 0-7167-1478-7.
- डेविड एच. स्टेलिन, ऐन डब्ल्यू. मोर्गेंथेलर, और जिन औ कोंग, विद्युत चुंबकीय वेव्स (प्रेंटिस-हॉल, 1994) ISBN 0-13-225871-4.
- चार्ल्स एफ स्टीवंस, द सिक्स कोर थ्योरीज़ ऑफ़ मॉडर्न फ़िज़िक्स, (एमआईटी प्रेस, 1995) ISBN 0-262-69188-4.
- मार्कस ज़ैन, विद्युत चुंबकीय फील्ड थ्योरी: समस्या समाधान दृष्टिकोण, (जॉन विले एंड संस, 1979) ISBN 0-471-02198-9
स्नातक स्तर की पाठ्यपुस्तकें
- Jackson, John D. (1998). क्लासिकल इलेक्ट्रोडायनामिक्स (तीसरा संस्करण). Wiley. ISBN 0-471-30932-X.
- लेव डेविडोविच लैंडौ|लैंडौ, एल.डी., द क्लासिकल थ्योरी ऑफ़ फील्ड्स (सैद्धांतिक भौतिकी का पाठ्यक्रम: वॉल्यूम 2), (बटरवर्थ-हेनीमैन: ऑक्सफोर्ड, 1987)। ISBN 0-08-018176-7.
- Maxwell, James C. (1954). बिजली और चुंबकत्व पर एक ग्रंथ. Dover. ISBN 0-486-60637-6.
- चार्ल्स डब्ल्यू. मिस्नर, किप थॉर्न|किप एस. थॉर्न, जॉन आर्चीबाल्ड व्हीलर, ग्रेविटेशन, (1970) डब्ल्यू.एच. फ्रीमैन, न्यूयॉर्क; ISBN 0-7167-0344-0. (अवकल रूपों के संदर्भ में मैक्सवेल के समीकरणों का उपचार प्रदान करता है।)
सदिश कलन
- पी। सी। मैथ्यूज सदिश कैलकुलस, स्प्रिंगर 1998, ISBN 3-540-76180-2
- एच। एम. शाय, डिव ग्रैड कर्ल एंड दैट ऑल दैट: एन इनफॉर्मल टेक्स्ट ऑन सदिश कैलकुलस, चौथा संस्करण (डब्ल्यू. डब्ल्यू. नॉर्टन एंड कंपनी, 2005) ISBN 0-393-92516-1.