संघट्ट सिद्धांत: Difference between revisions

From Vigyanwiki
Line 5: Line 5:
संघट्ट सिद्धांत रासायनिक गतिकी से निकटता से संबंधित है।
संघट्ट सिद्धांत रासायनिक गतिकी से निकटता से संबंधित है।


संघट्ट सिद्धांत प्रारम्भ में गैस प्रतिक्रिया प्रणाली के लिए बिना किसी कमजोर पड़ने के विकसित किया गया था। लेकिन अधिकांश प्रतिक्रियाओं में समाधान शामिल होते हैं, उदाहरण के लिए, अक्रिय गैस ले जाने वाली गैस प्रतिक्रियाएं, और समाधानों में लगभग सभी प्रतिक्रियाएं शामिल होते हैं। इन विलयनों में विलेय अणुओं की संघट्ट आवृत्ति अब विसरण या अलग-अलग अणुओं की [[एक प्रकार कि गति|ब्राउनियन गति]] द्वारा नियंत्रित होती है। विसरित अणुओं का प्रवाह फिक के विसरण के नियमों का पालन करता है। समाधान में कणों के लिए, संघट्ट की आवृत्ति और संबंधित स्कंदन दर की गणना करने के लिए उदाहरण मॉडल [[मैरियन स्मोलुचोव्स्की]] द्वारा 1916 के मौलिक प्रकाशन में प्रस्तावित [[स्मोलुचोव्स्की जमावट समीकरण|स्मोलुचोव्स्की स्कंदन समीकरण]] है।<ref name=Smoluchowski1916>{{cite journal
संघट्ट सिद्धांत प्रारम्भ में गैस प्रतिक्रिया प्रणाली के लिए बिना किसी ख़राब पड़ने के विकसित किया गया था। लेकिन अधिकांश प्रतिक्रियाओं में समाधान शामिल होते हैं, उदाहरण के लिए, अक्रिय गैस ले जाने वाली गैस प्रतिक्रियाएं, और समाधानों में लगभग सभी प्रतिक्रियाएं शामिल होते हैं। इन विलयनों में विलेय अणुओं की संघट्ट आवृत्ति अब विसरण या अलग-अलग अणुओं की [[एक प्रकार कि गति|ब्राउनियन गति]] द्वारा नियंत्रित होती है। विसरित अणुओं का प्रवाह फिक के विसरण के नियमों का पालन करता है। समाधान में कणों के लिए, संघट्ट की आवृत्ति और संबंधित स्कंदन दर की गणना करने के लिए उदाहरण मॉडल [[मैरियन स्मोलुचोव्स्की]] द्वारा 1916 के मौलिक प्रकाशन में प्रस्तावित [[स्मोलुचोव्स्की जमावट समीकरण|स्मोलुचोव्स्की स्कंदन समीकरण]] है।<ref name=Smoluchowski1916>{{cite journal
|last=Smoluchowski
|last=Smoluchowski
|first=Marian
|first=Marian
Line 45: Line 45:
* ''k''<sub>B</sub> बोल्ट्ज़मैन स्थिर इकाई J⋅K<sup>−1</sup> है।
* ''k''<sub>B</sub> बोल्ट्ज़मैन स्थिर इकाई J⋅K<sup>−1</sup> है।
* T पूर्ण तापमान (इकाई K) है।
* T पूर्ण तापमान (इकाई K) है।
* μ<sub>AB</sub>अभिकारकों A और B का घटा हुआ द्रव्यमान है, <math> \mu_\text{AB} = \frac{{m_\text{A}}{m_\text{B}}}{{m_\text{A}} + {m_\text{B}}} </math> (यूनिट किग्रा)।
* μ<sub>AB</sub>अभिकारकों A और B का घटा हुआ द्रव्यमान है, <math> \mu_\text{AB} = \frac{{m_\text{A}}{m_\text{B}}}{{m_\text{A}} + {m_\text{B}}} </math> (इकाई किग्रा)।
* ''N''<sub>A</sub> अवोगाद्रो स्थिरांक है।
* ''N''<sub>A</sub> अवोगाद्रो स्थिरांक है।
* [A] इकाई  mol⋅L<sup>−1</sup> में A की मोलर सांद्रता है।
* [A] इकाई  mol⋅L<sup>−1</sup> में A की मोलर सांद्रता है।
Line 60: Line 60:
: A + B → C
: A + B → C


संघट्ट सिद्धांत में यह माना जाता है कि दो कण A और B टकराएंगे यदि उनके नाभिक एक निश्चित दूरी से अधिक निकट हो जाते हैं। एक अणु A के आस-पास का क्षेत्र जिसमें वह एक निकटवर्ती B अणु से टकरा सकता है, अनुप्रस्थ परिच्छेद (भौतिकी) कहलाता है (σ<sub>AB</sub>) प्रतिक्रिया का और, सरल शब्दों में, एक वृत्त के अनुरूप क्षेत्र है जिसका त्रिज्या (<math>r_{AB}</math>) दोनों प्रतिक्रियाशील अणुओं की त्रिज्या का योग है, जिन्हें गोलाकार माना जाता है।
संघट्ट सिद्धांत में यह माना जाता है कि दो कण A और B टकराएंगे यदि उनके नाभिक एक निश्चित दूरी से अधिक निकट हो जाते हैं। अणु A के आस-पास का क्षेत्र जिसमें वह निकटवर्ती B अणु से टकरा सकता है, अनुप्रस्थ परिच्छेद (भौतिकी) कहलाता है (σ<sub>AB</sub>) प्रतिक्रिया का और, सरल शब्दों में, वृत्त के अनुरूप क्षेत्र है जिसका त्रिज्या (<math>r_{AB}</math>) दोनों प्रतिक्रियाशील अणुओं की त्रिज्या का योग है, जिन्हें गोलाकार माना जाता है। गतिमान अणु इसलिए एक आयतन को अवधि करेगा <math>\pi r^{2}_{AB} c_A</math> प्रति सेकंड के रूप में यह चलता है, जहाँ <math>c_A</math> कण का औसत वेग है। (यह पूरी तरह से ठोस गेंदों की संघट्ट की चिरसम्मत धारणा का प्रतिनिधित्व करता है। चूंकि अणु कूलम्ब और विनिमय अन्योन्य क्रिया पर आधारित इलेक्ट्रॉनों और नाभिकों की क्वान्टम यांत्रिकीय कई-कण प्रणालियां हैं, आम तौर पर वे न तो घूर्णी समरूपता का पालन करते हैं और न ही उनके पास वर्ग क्षमता होती है। इसलिए, आम तौर पर अधिक अनुप्रस्थ परिच्छेद को B लक्ष्यों के प्रति क्षेत्रीय घनत्व के A कणों की किरण की प्रतिक्रिया संभावना के रूप में परिभाषित किया जाता है, जो परिभाषा को A और B के बीच अन्योन्य क्रिया की प्रकृति से स्वतंत्र बनाता है। नतीजतन, त्रिज्या <math>r_{AB}</math> उनकी अंतःक्रियात्मक क्षमता के लंबाई पैमाने से संबंधित है।)
एक गतिमान अणु इसलिए एक आयतन को स्वीप करेगा <math>\pi r^{2}_{AB} c_A</math> प्रति सेकंड के रूप में यह चलता है, जहाँ <math>c_A</math> कण का औसत वेग है। (यह पूरी तरह से ठोस गेंदों की संघट्ट की शास्त्रीय धारणा का प्रतिनिधित्व करता है। चूंकि अणु कूलम्ब और एक्सचेंज इंटरेक्शन पर आधारित इलेक्ट्रॉनों और नाभिकों की क्वांटम-मैकेनिकल कई-कण प्रणालियां हैं, आम तौर पर वे न तो घूर्णी समरूपता का पालन करते हैं और न ही उनके पास बॉक्स क्षमता होती है। इसलिए, अधिक आम तौर पर अनुप्रस्थ परिच्छेद को बी लक्ष्यों के प्रति क्षेत्रीय घनत्व के कणों की किरण की प्रतिक्रिया संभावना के रूप में परिभाषित किया जाता है, जो परिभाषा को और बी के बीच बातचीत की प्रकृति से स्वतंत्र बनाता है। नतीजतन, त्रिज्या <math>r_{AB}</math> उनकी अंतःक्रियात्मक क्षमता के लंबाई पैमाने से संबंधित है।)


गैसों के गतिज सिद्धांत से यह ज्ञात होता है कि A के एक अणु का मैक्सवेल-बोल्ट्ज़मान वितरण (मूल माध्य वर्ग वेग से भिन्न) होता है। <math>c_A = \sqrt \frac{8 k_\text{B} T}{\pi m_A}</math>, जहाँ <math>k_\text{B}</math> बोल्ट्जमैन स्थिरांक है, और <math>m_A</math> अणु का द्रव्यमान है।
गैसों के गतिज सिद्धांत से यह ज्ञात होता है कि A के अणु का मैक्सवेल-बोल्ट्ज़मान वितरण (मूल माध्य वर्ग वेग से भिन्न) <math>c_A = \sqrt \frac{8 k_\text{B} T}{\pi m_A}</math> होता है, जहाँ <math>k_\text{B}</math> बोल्ट्जमैन स्थिरांक है, और <math>m_A</math> अणु का द्रव्यमान है।


द्वि-पिंड समस्या के समाधान में कहा गया है कि दो अलग-अलग गतिमान पिंडों को एक पिंड के रूप में माना जा सकता है, जिसमें दोनों का द्रव्यमान कम होता है और द्रव्यमान के केंद्र के वेग के साथ चलता है, इसलिए, इस प्रणाली में <math>\mu_{AB}</math> की जगह इस्तेमाल करना चाहिए <math>m_A</math>.
द्वि-पिंड समस्या के समाधान में कहा गया है कि दो अलग-अलग गतिमान पिंडों को एक पिंड के रूप में माना जा सकता है, जिसमें दोनों का द्रव्यमान कम होता है और द्रव्यमान के केंद्र के वेग के साथ चलता है, इसलिए, इस प्रणाली में <math>\mu_{AB}</math> की जगह <math>m_A</math>इस्तेमाल करना चाहिए।इस प्रकार, किसी दिए गए अणु A के लिए, यह सफ़री <math>t=l/c_A=1/(n_B\sigma_{AB}c_A)</math> करता है अणु B से टकराने से पहले यदि सभी B बिना किसी गति के तय हो जाते हैं, जहां <math>l</math> औसत सफ़री दूरी है। चूँकि B भी चलता है, A और B के कम द्रव्यमान का उपयोग करके सापेक्ष वेग की गणना की जा सकती है।
इस प्रकार, किसी दिए गए अणु A के लिए, यह यात्रा करता है <math>t=l/c_A=1/(n_B\sigma_{AB}c_A)</math> एक अणु बी से टकराने से पहले यदि सभी बी बिना किसी गति के तय हो जाते हैं, जहां <math>l</math> औसत यात्रा दूरी है। चूँकि B भी चलता है, A और B के कम द्रव्यमान का उपयोग करके सापेक्ष वेग की गणना की जा सकती है।


इसलिए, कुल संघट्ट आवृत्ति,<ref name="frequency">{{GoldBookRef | file = C01166| title = collision frequency}}</ref> सभी A अणुओं का, सभी B अणुओं के साथ, है
इसलिए, कुल संघट्ट आवृत्ति,<ref name="frequency">{{GoldBookRef | file = C01166| title = collision frequency}}</ref> सभी A अणुओं का, सभी B अणुओं के साथ, है


:<math> Z = n_\text{A} n_\text{B} \sigma_{AB} \sqrt\frac{8 k_\text{B} T}{\pi \mu_{AB}} = 10^6N_A^2[A][B] \sigma_{AB} \sqrt\frac{8 k_\text{B} T}{\pi \mu_{AB}} = z[A][B],</math>
:<math> Z = n_\text{A} n_\text{B} \sigma_{AB} \sqrt\frac{8 k_\text{B} T}{\pi \mu_{AB}} = 10^6N_A^2[A][B] \sigma_{AB} \sqrt\frac{8 k_\text{B} T}{\pi \mu_{AB}} = z[A][B],</math>
मैक्सवेल-बोल्ट्ज़मैन वितरण से यह निष्कर्ष निकाला जा सकता है कि सक्रियण ऊर्जा की तुलना में अधिक ऊर्जा वाले संघट्टों का अंश है <math>e^{\frac{-E_\text{a}}{RT}}</math>. अतः आदर्श गैसों के लिए द्विआणविक अभिक्रिया की दर होगी
मैक्सवेल-बोल्ट्ज़मैन वितरण से यह निष्कर्ष निकाला जा सकता है कि सक्रियण ऊर्जा <math>e^{\frac{-E_\text{a}}{RT}}</math>की तुलना में अधिक ऊर्जा वाले संघट्टों का अंश है अतः आदर्श गैसों के लिए द्विआणविक अभिक्रिया की दर होगी


:<math>r = z \rho [A][B] \exp\left( \frac{-E_\text{a}}{RT} \right),</math> आणविक प्रतिक्रियाओं की इकाई संख्या में<sup>-1</sup>⋅m<sup>−3</sup>,
:<math>r = z \rho [A][B] \exp\left( \frac{-E_\text{a}}{RT} \right),</math> आणविक प्रतिक्रियाओं की इकाई s<sup>−1</sup>⋅m<sup>−3</sup> संख्या में है,


जहाँ:
जहाँ:
* Z इकाई s के साथ संघट्ट की आवृत्ति है<sup>-1</sup>⋅m<sup>−3</sup>. Z बिना [A][B] के Z है।
* Z इकाई s<sup>−1</sup>⋅m<sup>−3</sup> के साथ संघट्ट की आवृत्ति है। Z बिना [A][B] के Z है।
* <math>\rho</math> त्रिविम कारक है, जिस पर अगले खंड में विस्तार से चर्चा की जाएगी,
* <math>\rho</math> त्रिविम कारक है, जिस पर अगले खंड में विस्तार से चर्चा की जाएगी,
* <sub>a</sub>इकाई J/mol में प्रतिक्रिया की सक्रियण ऊर्जा (प्रति मोल) है,
* ''E<sub>a</sub>'' इकाई J/mol में प्रतिक्रिया की सक्रियण ऊर्जा (प्रति मोल) है,
* T इकाई K में पूर्ण तापमान है,
* T इकाई K में पूर्ण तापमान है,
* R इकाई J/mol/K में गैस स्थिरांक है।
* R इकाई J/mol/K में गैस स्थिरांक है।
* [] यूनिट मोल / एल में की मोलर सांद्रता है,
* [A] इकाई mol/L में A की मोलर सांद्रता है,
* [बी] इकाई मोल/एल में बी की मोलर सांद्रता है।
* [B] इकाई mol/L में B की मोलर सांद्रता है।


गुणनफल zρ अर्हेनियस समीकरण के पूर्व-घातीय कारक के बराबर है।
गुणनफल zρ अर्हेनियस समीकरण के पूर्व-घातीय कारक के बराबर है।


=== सिद्धांत की वैधता और त्रिविम कारक ===
=== सिद्धांत की वैधता और त्रिविम कारक ===
एक बार एक सिद्धांत तैयार हो जाने के बाद, इसकी वैधता का परीक्षण किया जाना चाहिए, अर्थात प्रयोगों के परिणामों के साथ इसकी भविष्यवाणियों की तुलना करें।
एक बार सिद्धांत तैयार हो जाने के बाद, इसकी वैधता का परीक्षण किया जाना चाहिए, अर्थात प्रयोगों के परिणामों के साथ इसकी पूर्वानुमान की तुलना करना होता है।


जब दर स्थिरांक के व्यंजक रूप की तुलना प्राथमिक द्विआण्विक अभिक्रिया के [[दर समीकरण]] से की जाती है, <math>r = k(T) [A][B]</math>, यह देखने में आया है
जब दर स्थिरांक के व्यंजक रूप की तुलना प्राथमिक द्विआण्विक अभिक्रिया के [[दर समीकरण]] से की जाती है, <math>r = k(T) [A][B]</math>, यह देखने में आया है
: <math>k(T) = N_A \sigma_{AB}\rho \sqrt \frac{8 k_\text{B} T}{\pi \mu_{AB}} \exp \left( \frac{-E_\text{a}}{RT} \right)</math>
: <math>k(T) = N_A \sigma_{AB}\rho \sqrt \frac{8 k_\text{B} T}{\pi \mu_{AB}} \exp \left( \frac{-E_\text{a}}{RT} \right)</math>
यूनिट एम<sup>−1</sup>⋅s<sup>-1</sup> (= डीएम<sup>3</sup>⋅mol<sup>−1</sup>⋅s<sup>-1</sup>), k सहित सभी आयाम इकाई dm के साथ<sub>B</sub>.
इकाई M<sup>−1</sup>⋅s<sup>−1</sup> (= dm<sup>3</sup>⋅mol<sup>−1</sup>⋅s<sup>−1</sup>), ''k''<sub>B</sub> सहित सभी आयाम इकाई dm के साथ है।
 
यह अभिव्यक्ति अरहेनियस समीकरण के समान है और आण्विक आधार पर अरहेनियस समीकरण के लिए पहली सैद्धांतिक व्याख्या देती है। पूर्व-घातीय कारक की कमजोर तापमान निर्भरता घातीय कारक की तुलना में इतनी छोटी है कि इसे प्रयोगात्मक रूप से मापा नहीं जा सकता है, अर्थात यह दर स्थिर के तापमान अध्ययन के आधार पर स्थापित करने के लिए संभव नहीं है, चाहे अनुमानित टी<sup>½</sup> पूर्वघातांकी कारक की निर्भरता प्रयोगात्मक रूप से देखी गई है।<ref name="Connors">Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers.</ref>
 


यह अभिव्यक्ति अरहेनियस समीकरण के समान है और आण्विक आधार पर अरहेनियस समीकरण के लिए पहली सैद्धांतिक व्याख्या देती है। पूर्व-घातीय कारक की ख़राब तापमान निर्भरता घातीय कारक की तुलना में इतनी छोटी है कि इसे प्रयोगात्मक रूप से मापा नहीं जा सकता है, अर्थात यह दर स्थिर के तापमान अध्ययन के आधार पर स्थापित करने के लिए संभव नहीं है, चाहे अनुमानित ''T''<sup>½</sup> पूर्वघातांकी कारक की निर्भरता प्रयोगात्मक रूप से देखी गई है।<ref name="Connors">Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers.</ref>
==== स्टेरिक कारक ====
==== स्टेरिक कारक ====
यदि अनुमानित दर स्थिरांक के मूल्यों की तुलना ज्ञात दर स्थिरांक के मूल्यों से की जाती है, तो यह देखा गया है कि संघट्ट सिद्धांत स्थिरांक का सही अनुमान लगाने में विफल रहता है, और अणु जितने जटिल होते हैं, उतने ही विफल हो जाते हैं। इसका कारण यह है कि कणों को गोलाकार और सभी दिशाओं में प्रतिक्रिया करने में सक्षम माना गया है, जो कि सत्य नहीं है, क्योंकि संघट्ट का उन्मुखीकरण हमेशा प्रतिक्रिया के लिए उचित नहीं होता है। उदाहरण के लिए, [[ईथीलीन]] की [[हाइड्रोजनीकरण]] प्रतिक्रिया में एच<sub>2</sub> अणु को परमाणुओं के बीच आबंधन क्षेत्र तक पहुंचना चाहिए, और सभी संभावित टकरावों में से कुछ ही इस आवश्यकता को पूरा करते हैं।
यदि अनुमानित दर स्थिरांक के मूल्यों की तुलना ज्ञात दर स्थिरांक के मूल्यों से की जाती है, तो यह देखा गया है कि संघट्ट सिद्धांत स्थिरांक का सही अनुमान लगाने में विफल रहता है, और अणु जितने जटिल होते हैं, उतने ही विफल हो जाते हैं। इसका कारण यह है कि कणों को गोलाकार और सभी दिशाओं में प्रतिक्रिया करने में सक्षम माना गया है, जो कि सत्य नहीं है, क्योंकि संघट्ट का उन्मुखीकरण हमेशा प्रतिक्रिया के लिए उचित नहीं होता है। उदाहरण के लिए, [[ईथीलीन]] की [[हाइड्रोजनीकरण]] प्रतिक्रिया में एच<sub>2</sub> अणु को परमाणुओं के बीच आबंधन क्षेत्र तक पहुंचना चाहिए, और सभी संभावित टकरावों में से कुछ ही इस आवश्यकता को पूरा करते हैं।
Line 196: Line 192:
* <math>Z_{AB}</math> 1 L विलयन में इकाई मोल संघट्ट/s में है।
* <math>Z_{AB}</math> 1 L विलयन में इकाई मोल संघट्ट/s में है।
* <math>N_\text{A}</math> अवोगाद्रो स्थिरांक है।
* <math>N_\text{A}</math> अवोगाद्रो स्थिरांक है।
* <math>A</math> यूनिट एम में संघट्ट क्रॉस-सेक्शन का क्षेत्र है<sup>2</उप>।
* <math>A</math> इकाई एम में संघट्ट क्रॉस-सेक्शन का क्षेत्र है<sup>2</उप>।
* <math>\beta</math> ए और बी पर प्रतिक्रियाशील सतह क्षेत्र के इकाई रहित अंशों का उत्पाद है।
* <math>\beta</math> ए और बी पर प्रतिक्रियाशील सतह क्षेत्र के इकाई रहित अंशों का उत्पाद है।
* <math>D_r</math> A और B, इकाई m के बीच सापेक्ष प्रसार स्थिरांक है<sup>2/से.
* <math>D_r</math> A और B, इकाई m के बीच सापेक्ष प्रसार स्थिरांक है<sup>2/से.

Revision as of 21:42, 2 April 2023

संघट्ट सिद्धांत द्वारा समझाई गई एकाग्रता घटना के साथ प्रतिक्रिया दर में वृद्धि होती है

संघट्ट सिद्धांत रसायन विज्ञान का एक सिद्धांत है जिसका उपयोग रासायनिक प्रतिक्रियाओं की दरों की पूर्वानुमान करने के लिए किया जाता है। इसमें कहा गया है कि जब अभिकर्मक के उपयुक्त कण सही अभिविन्यास के साथ एक दूसरे से टकराते हैं, तो संघट्ट की निश्चित मात्रा के परिणामस्वरूप प्रत्यक्ष या उल्लेखनीय परिवर्तन होता है; इन सफल परिवर्तनों को सफल संघट्ट कहा जाता है। पहले से मौजूद बंधनों को तोड़ने और सभी नए आबंधन बनाने के लिए सफल संघट्ट में पर्याप्त ऊर्जा होनी चाहिए, जिसे सक्रियण ऊर्जा के रूप में भी जाना जाता है। इसका परिणाम प्रतिक्रिया के उत्पादों में होता है। संक्रमण अवस्था सिद्धांत का उपयोग करके सक्रियण ऊर्जा की अक्सर पूर्वानुमान की जाती है। अभिकारक की सांद्रता बढ़ने से अधिक संघट्ट होती है और इसलिए अधिक सफल संघट्ट होती है। तापमान बढ़ने से समाधान में अणुओं की औसत गतिज ऊर्जा बढ़ जाती है, जिससे संघट्ट की संख्या में वृद्धि होती है जिसमें पर्याप्त ऊर्जा होती है। 1916 में मैक्स ट्रॉट्ज़ और 1918 में विलियम लुईस (भौतिक रसायनज्ञ) द्वारा स्वतंत्र रूप से संघट्ट सिद्धांत प्रस्तावित किया गया था[1][2] [3]

जब उत्प्रेरक प्रतिक्रियाशील अणुओं के बीच संघट्ट में शामिल होता है, तो रासायनिक परिवर्तन होने के लिए कम ऊर्जा की आवश्यकता होती है, और इसलिए अधिक संघट्ट में प्रतिक्रिया होने के लिए पर्याप्त ऊर्जा होती है। प्रतिक्रिया दर इसलिए बढ़ जाती है।

संघट्ट सिद्धांत रासायनिक गतिकी से निकटता से संबंधित है।

संघट्ट सिद्धांत प्रारम्भ में गैस प्रतिक्रिया प्रणाली के लिए बिना किसी ख़राब पड़ने के विकसित किया गया था। लेकिन अधिकांश प्रतिक्रियाओं में समाधान शामिल होते हैं, उदाहरण के लिए, अक्रिय गैस ले जाने वाली गैस प्रतिक्रियाएं, और समाधानों में लगभग सभी प्रतिक्रियाएं शामिल होते हैं। इन विलयनों में विलेय अणुओं की संघट्ट आवृत्ति अब विसरण या अलग-अलग अणुओं की ब्राउनियन गति द्वारा नियंत्रित होती है। विसरित अणुओं का प्रवाह फिक के विसरण के नियमों का पालन करता है। समाधान में कणों के लिए, संघट्ट की आवृत्ति और संबंधित स्कंदन दर की गणना करने के लिए उदाहरण मॉडल मैरियन स्मोलुचोव्स्की द्वारा 1916 के मौलिक प्रकाशन में प्रस्तावित स्मोलुचोव्स्की स्कंदन समीकरण है।[4] इस मॉडल में, संघट्ट सिद्धांत की कण गति की अनुकरण करने के लिए अनंत समय सीमा पर फ़िक के प्रवाह का उपयोग किया जाता है। जिक्सिन चेन ने 2022 में प्रसार प्रवाह के लिए परिमित-समय के समाधान का प्रस्ताव दिया जो समाधान में दो कणों की अनुमानित संघट्ट आवृत्ति को महत्वपूर्ण रूप से बदल देता है।[5]

दर समीकरण

संघट्ट सिद्धांत द्वारा पूर्वानुमान की गई द्विपक्षीय गैस-चरण प्रतिक्रिया, A + B → उत्पाद के लिए दर है[6]

जहाँ:

  • k (अणुओं की संख्या)−1 s-1⋅m3 की इकाइयों में दर स्थिरांक है।
  • nA, m−3 की इकाइयों में गैस में A का संख्या घनत्व है।
  • nB, m−3 की इकाइयों में गैस में B संख्या घनत्व है। उदा. गैस के साथ गैस मिश्रण के लिए A सान्द्रता 0.1 mol⋅L−1 गैस के साथ गैस मिश्रण के लिए B सांद्रता 0.2 mol⋅L-1, A के घनत्व की संख्या 0.1×6.02×1023÷10−3 = 6.02×1025 m−3 है, संख्या B का घनत्व 0.2×6.02×1023÷10−3 = 1.2×1026 m−3 है।
  • Z, m−3⋅s−1 की इकाइयों में संघट्ट की आवृत्ति है।
  • स्टेरिक कारक है।[7]
  • Ea , J⋅mol−1 की इकाइयों में प्रतिक्रिया की सक्रियण ऊर्जा है।
  • T, K की इकाइयों में तापमान है।
  • R, J mol−1K−1 की इकाइयों में गैस स्थिरांक है।

r(T) की इकाई को (1000×NA) से विभाजित करने के बाद mol⋅L−1⋅s−1 परिवर्तित किया जा सकता है, जहां NA अवोगाद्रो स्थिरांक है।

A और B के बीच प्रतिक्रिया के लिए, संघट्ट की आवृत्ति की गणना हार्ड-गोले मॉडल के साथ टकराव की इकाई संख्या प्रति m3 प्रति सेकंड के साथ की जाती है:

जहाँ:

  • σAB प्रतिक्रिया अनुप्रस्थ परिच्छेद (भौतिकी) है (इकाई m2), वह क्षेत्र जब दो अणु आपस में टकराते हैं, सरलीकृत हो जाते हैं , जहां rA की त्रिज्या A और rB इकाई मीटर में B की त्रिज्या है।
  • kB बोल्ट्ज़मैन स्थिर इकाई J⋅K−1 है।
  • T पूर्ण तापमान (इकाई K) है।
  • μABअभिकारकों A और B का घटा हुआ द्रव्यमान है, (इकाई किग्रा)।
  • NA अवोगाद्रो स्थिरांक है।
  • [A] इकाई mol⋅L−1 में A की मोलर सांद्रता है।
  • [B] इकाई mol⋅L−1 में B की मोलर सांद्रता है।

यदि आयाम से संबंधित सभी इकाइयाँ dm में परिवर्तित हो जाती हैं, अर्थात mol⋅dm−3 [A] और [B] के लिए, dm2, σAB के लिए, dm2⋅kg⋅s−2⋅K−1 बोल्ट्जमान स्थिरांक के लिए, तब

इकाई mol⋅dm−3⋅s−1 है।

मात्रात्मक अंतर्दृष्टि

व्युत्पत्ति

द्विध्रुवीय प्राथमिक प्रतिक्रिया पर विचार करें:

A + B → C

संघट्ट सिद्धांत में यह माना जाता है कि दो कण A और B टकराएंगे यदि उनके नाभिक एक निश्चित दूरी से अधिक निकट हो जाते हैं। अणु A के आस-पास का क्षेत्र जिसमें वह निकटवर्ती B अणु से टकरा सकता है, अनुप्रस्थ परिच्छेद (भौतिकी) कहलाता है (σAB) प्रतिक्रिया का और, सरल शब्दों में, वृत्त के अनुरूप क्षेत्र है जिसका त्रिज्या () दोनों प्रतिक्रियाशील अणुओं की त्रिज्या का योग है, जिन्हें गोलाकार माना जाता है। गतिमान अणु इसलिए एक आयतन को अवधि करेगा प्रति सेकंड के रूप में यह चलता है, जहाँ कण का औसत वेग है। (यह पूरी तरह से ठोस गेंदों की संघट्ट की चिरसम्मत धारणा का प्रतिनिधित्व करता है। चूंकि अणु कूलम्ब और विनिमय अन्योन्य क्रिया पर आधारित इलेक्ट्रॉनों और नाभिकों की क्वान्टम यांत्रिकीय कई-कण प्रणालियां हैं, आम तौर पर वे न तो घूर्णी समरूपता का पालन करते हैं और न ही उनके पास वर्ग क्षमता होती है। इसलिए, आम तौर पर अधिक अनुप्रस्थ परिच्छेद को B लक्ष्यों के प्रति क्षेत्रीय घनत्व के A कणों की किरण की प्रतिक्रिया संभावना के रूप में परिभाषित किया जाता है, जो परिभाषा को A और B के बीच अन्योन्य क्रिया की प्रकृति से स्वतंत्र बनाता है। नतीजतन, त्रिज्या उनकी अंतःक्रियात्मक क्षमता के लंबाई पैमाने से संबंधित है।)

गैसों के गतिज सिद्धांत से यह ज्ञात होता है कि A के अणु का मैक्सवेल-बोल्ट्ज़मान वितरण (मूल माध्य वर्ग वेग से भिन्न) होता है, जहाँ बोल्ट्जमैन स्थिरांक है, और अणु का द्रव्यमान है।

द्वि-पिंड समस्या के समाधान में कहा गया है कि दो अलग-अलग गतिमान पिंडों को एक पिंड के रूप में माना जा सकता है, जिसमें दोनों का द्रव्यमान कम होता है और द्रव्यमान के केंद्र के वेग के साथ चलता है, इसलिए, इस प्रणाली में की जगह इस्तेमाल करना चाहिए।इस प्रकार, किसी दिए गए अणु A के लिए, यह सफ़री करता है अणु B से टकराने से पहले यदि सभी B बिना किसी गति के तय हो जाते हैं, जहां औसत सफ़री दूरी है। चूँकि B भी चलता है, A और B के कम द्रव्यमान का उपयोग करके सापेक्ष वेग की गणना की जा सकती है।

इसलिए, कुल संघट्ट आवृत्ति,[8] सभी A अणुओं का, सभी B अणुओं के साथ, है

मैक्सवेल-बोल्ट्ज़मैन वितरण से यह निष्कर्ष निकाला जा सकता है कि सक्रियण ऊर्जा की तुलना में अधिक ऊर्जा वाले संघट्टों का अंश है अतः आदर्श गैसों के लिए द्विआणविक अभिक्रिया की दर होगी

आणविक प्रतिक्रियाओं की इकाई s−1⋅m−3 संख्या में है,

जहाँ:

  • Z इकाई s−1⋅m−3 के साथ संघट्ट की आवृत्ति है। Z बिना [A][B] के Z है।
  • त्रिविम कारक है, जिस पर अगले खंड में विस्तार से चर्चा की जाएगी,
  • Ea इकाई J/mol में प्रतिक्रिया की सक्रियण ऊर्जा (प्रति मोल) है,
  • T इकाई K में पूर्ण तापमान है,
  • R इकाई J/mol/K में गैस स्थिरांक है।
  • [A] इकाई mol/L में A की मोलर सांद्रता है,
  • [B] इकाई mol/L में B की मोलर सांद्रता है।

गुणनफल zρ अर्हेनियस समीकरण के पूर्व-घातीय कारक के बराबर है।

सिद्धांत की वैधता और त्रिविम कारक

एक बार सिद्धांत तैयार हो जाने के बाद, इसकी वैधता का परीक्षण किया जाना चाहिए, अर्थात प्रयोगों के परिणामों के साथ इसकी पूर्वानुमान की तुलना करना होता है।

जब दर स्थिरांक के व्यंजक रूप की तुलना प्राथमिक द्विआण्विक अभिक्रिया के दर समीकरण से की जाती है, , यह देखने में आया है

इकाई M−1⋅s−1 (= dm3⋅mol−1⋅s−1), kB सहित सभी आयाम इकाई dm के साथ है।

यह अभिव्यक्ति अरहेनियस समीकरण के समान है और आण्विक आधार पर अरहेनियस समीकरण के लिए पहली सैद्धांतिक व्याख्या देती है। पूर्व-घातीय कारक की ख़राब तापमान निर्भरता घातीय कारक की तुलना में इतनी छोटी है कि इसे प्रयोगात्मक रूप से मापा नहीं जा सकता है, अर्थात यह दर स्थिर के तापमान अध्ययन के आधार पर स्थापित करने के लिए संभव नहीं है, चाहे अनुमानित T½ पूर्वघातांकी कारक की निर्भरता प्रयोगात्मक रूप से देखी गई है।[9]

स्टेरिक कारक

यदि अनुमानित दर स्थिरांक के मूल्यों की तुलना ज्ञात दर स्थिरांक के मूल्यों से की जाती है, तो यह देखा गया है कि संघट्ट सिद्धांत स्थिरांक का सही अनुमान लगाने में विफल रहता है, और अणु जितने जटिल होते हैं, उतने ही विफल हो जाते हैं। इसका कारण यह है कि कणों को गोलाकार और सभी दिशाओं में प्रतिक्रिया करने में सक्षम माना गया है, जो कि सत्य नहीं है, क्योंकि संघट्ट का उन्मुखीकरण हमेशा प्रतिक्रिया के लिए उचित नहीं होता है। उदाहरण के लिए, ईथीलीन की हाइड्रोजनीकरण प्रतिक्रिया में एच2 अणु को परमाणुओं के बीच आबंधन क्षेत्र तक पहुंचना चाहिए, और सभी संभावित टकरावों में से कुछ ही इस आवश्यकता को पूरा करते हैं।

इस समस्या को कम करने के लिए, एक नई अवधारणा पेश की जानी चाहिए: steric factor ρ। इसे प्रायोगिक मूल्य और अनुमानित एक (या आवृत्ति कारक (रसायन विज्ञान) और संघट्ट आवृत्ति के बीच के अनुपात) के बीच के अनुपात के रूप में परिभाषित किया गया है:

और यह अक्सर एकता से कम होता है।[7]

आमतौर पर, प्रतिक्रियाशील अणु जितने अधिक जटिल होते हैं, स्टेरिक कारक उतना ही कम होता है। फिर भी, कुछ प्रतिक्रियाएँ एकता से अधिक स्थैतिक कारकों को प्रदर्शित करती हैं: हापून प्रतिक्रियाएँ, जिसमें परमाणु शामिल होते हैं जो इलेक्ट्रॉनों का आदान-प्रदान करते हैं, आयनों का उत्पादन करते हैं। एकता से विचलन के अलग-अलग कारण हो सकते हैं: अणु गोलाकार नहीं होते हैं, इसलिए विभिन्न ज्यामिति संभव हैं; सभी गतिज ऊर्जा को सही स्थान पर नहीं पहुँचाया जाता है; एक विलायक की उपस्थिति (जब समाधान के लिए लागू), आदि।

Experimental rate constants compared to the ones predicted by collision theory for gas phase reactions
Reaction A, s−1M−1 Z, s−1M−1 Steric factor
2ClNO → 2Cl + 2NO 9.4×109 5.9×1010 0.16
2ClO → Cl2 + O2 6.3×107 2.5×1010 2.3×10−3
H2 + C2H4 → C2H6 1.24×106 7.3×1011 1.7×10−6
Br2 + K → KBr + Br 1.0×1012 2.1×1011 4.3

समाधान में प्रतिक्रियाओं के लिए संघट्ट सिद्धांत लागू किया जा सकता है; उस स्थिति में, विलायक पिंजरे का प्रतिक्रियाशील अणुओं पर प्रभाव पड़ता है, और एक ही मुठभेड़ में कई संघट्ट हो सकते हैं, जिससे पूर्वानुमानित पूर्व-घातीय कारक बहुत बड़े हो जाते हैं। एकता से अधिक ρ मूल्यों को अनुकूल एन्ट्रापी योगदानों के लिए जिम्मेदार ठहराया जा सकता है।

Experimental rate constants compared to the ones predicted by collision theory for reactions in solution[10]
Reaction Solvent A, 1011 s−1⋅M−1 Z, 1011 s−1⋅M−1 Steric factor
C2H5Br + OH ethanol 4.30 3.86 1.11
C2H5O + CH3I ethanol 2.42 1.93 1.25
ClCH2CO2 + OH water 4.55 2.86 1.59
C3H6Br2 + I methanol 1.07 1.39 0.77
HOCH2CH2Cl + OH water 25.5 2.78 9.17
4-CH3C6H4O + CH3I ethanol 8.49 1.99 4.27
CH3(CH2)2Cl + I acetone 0.085 1.57 0.054
C5H5N + CH3I C2H2Cl4 2.0 10×10−6


पतला समाधानों के लिए वैकल्पिक संघट्ट मॉडल

पतला गैस या तरल समाधान में संघट्ट सीधे संघट्ट के बजाय प्रसार द्वारा नियंत्रित होता है, जिसकी गणना फिक के प्रसार के नियमों से की जा सकती है। समाधानों में संघट्ट की आवृत्ति की गणना करने के लिए सैद्धांतिक मॉडल मैरियन स्मोलुचोव्स्की द्वारा अनंत समय सीमा पर 1916 के एक मौलिक प्रकाशन में प्रस्तावित किए गए हैं,[4] और जिक्सिन चेन 2022 में एक परिमित समय सन्निकटन पर।[5] शुद्ध गैस और समाधान में दर समीकरणों की तुलना करने की एक योजना को सही चित्र में दिखाया गया है।

समान दर समीकरणों के साथ सीधी संघट्ट और विसरित संघट्ट की तुलना करने वाली योजना।

गैस या तरल चरण में एक पतला समाधान के लिए, स्वच्छ गैस के लिए विकसित संघट्ट समीकरण तब उपयुक्त नहीं होता है जब प्रसार संघट्ट की आवृत्ति को नियंत्रित करता है, यानी दो अणुओं के बीच सीधी संघट्ट अब हावी नहीं होती है। किसी भी दिए गए अणु A के लिए, प्रतिक्रिया करने के लिए B अणु को खोजने से पहले, इसे बहुत सारे विलायक अणुओं से टकराना पड़ता है, मान लीजिए कि अणु C है। इस प्रकार संघट्ट की संभावना की गणना ब्राउनियन गति मॉडल का उपयोग करके की जानी चाहिए, जिसे स्मोलुचोव्स्की मॉडल और जेचेन मॉडल में विभिन्न समीकरण उत्पन्न करने वाली विभिन्न सीमा स्थितियों का उपयोग करके एक विसारक प्रवाह के लिए अनुमानित किया जा सकता है।

विसारक संघट्ट के लिए, अनंत समय सीमा पर जब आणविक प्रवाह की गणना फिक के प्रसार के नियमों से की जा सकती है, 1916 में स्मोलुचोव्स्की ने एक पतला समाधान में अणु ए और बी के बीच संघट्ट की आवृत्ति प्राप्त की:[4]

जहाँ:
  • संघट्ट आवृत्ति है, इकाई #collision/s 1 मीटर में3 समाधान।
  • संघट्ट क्रॉस-सेक्शन की त्रिज्या है, इकाई मी।
  • A और B, इकाई m के बीच सापेक्ष प्रसार स्थिरांक है2/से, और .
  • और समाधान में क्रमशः अणुओं ए और बी की संख्या सांद्रता हैं, इकाई #अणु/एम3</उप>।

या

जहाँ:
  • 1 L विलयन में इकाई मोल संघट्ट/s में है।
  • अवोगाद्रो स्थिरांक है।
  • A और B, इकाई m के बीच सापेक्ष प्रसार स्थिरांक है2/से.
  • और क्रमशः A और B की मोलर सांद्रता हैं, इकाई mol/L।
  • विसरित संघट्ट दर स्थिरांक है, इकाई L mol-1 एस-1.

1916 में प्रस्तावित किए जाने के बाद से स्मोलुचोव्स्की मॉडल में बहुत सारे विस्तार और संशोधन हुए हैं।

2022 में, चेन का तर्क है कि क्योंकि विसारक प्रवाह समय के साथ विकसित हो रहा है और अणुओं के बीच की दूरी एक निश्चित एकाग्रता पर एक परिमित मूल्य है, प्रवाह के विकास को काटने के लिए एक महत्वपूर्ण समय होना चाहिए जो मूल्य को बहुत बड़ा देगा Smoluchowski द्वारा प्रस्तावित अनंत समाधान की तुलना में।[5] इसलिए वह दो अणुओं के लिए औसत समय का उपयोग समाधान में स्थानों को महत्वपूर्ण कट-ऑफ टाइम के रूप में करने का प्रस्ताव करता है, यानी, पहले पड़ोसी के आने का समय, हालांकि एक वैकल्पिक समय औसत मुक्त पथ समय या औसत पहला यात्री समय हो सकता है। यह परिकल्पना एक तनु विलयन में विसरित संघट्ट के भग्न प्रतिक्रिया गतिज दर समीकरण उत्पन्न करती है:[5] : जहाँ:

  • 1 L विलयन में इकाई मोल संघट्ट/s में है।
  • अवोगाद्रो स्थिरांक है।
  • इकाई एम में संघट्ट क्रॉस-सेक्शन का क्षेत्र है2</उप>।
  • ए और बी पर प्रतिक्रियाशील सतह क्षेत्र के इकाई रहित अंशों का उत्पाद है।
  • A और B, इकाई m के बीच सापेक्ष प्रसार स्थिरांक है2/से.
  • और क्रमशः A और B की मोलर सांद्रता हैं, इकाई mol/L।
  • विसरित संघट्ट दर स्थिर है, इकाई एल4/3 तिल-4/3 एस-1.

यह भी देखें

संदर्भ

  1. Trautz, Max. Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv − 3/2 R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser, Zeitschrift für anorganische und allgemeine Chemie, Volume 96, Issue 1, Pages 1–28, (1916).
  2. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "collision theory". doi:10.1351/goldbook.C01170
  3. William Cudmore McCullagh Lewis, XLI.—Studies in catalysis. Part IX. The calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems, J. Chem. Soc., Trans., 1918, 113, 471-492.
  4. 4.0 4.1 4.2 Smoluchowski, Marian (1916). "Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen". Phys. Z. (in German). 17: 557–571, 585–599. Bibcode:1916ZPhy...17..557S.{{cite journal}}: CS1 maint: unrecognized language (link)
  5. 5.0 5.1 5.2 5.3 Chen, Jixin (2022). "Why Should the Reaction Order of a Bimolecular Reaction be 2.33 Instead of 2?". J. Phys. Chem. A (in English). 126: 9719–9725. doi:10.1021/acs.jpca.2c07500.
  6. "6.1.6: The Collision Theory". 2 October 2013.
  7. 7.0 7.1 IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "steric factor". doi:10.1351/goldbook.S05998
  8. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "collision frequency". doi:10.1351/goldbook.C01166
  9. Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers.
  10. Moelwyn-Hughes.[clarification needed]


बाहरी संबंध