तनाव-ऊर्जा-संवेग स्यूडोटेन्सर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[सामान्य सापेक्षता]] के सिद्धांत में '''तनाव-ऊर्जा-संवेग स्यूडोटेन्सर''' या '''तनाव-ऊर्जा-संवेग छद्म प्रदिश''' लैंडौ-लाइफशिट्ज छद्म प्रदिश और गैर-गुरुत्वाकर्षण तनाव-ऊर्जा प्रदिश का एक विस्तार है जो गुरुत्वाकर्षण की ऊर्जा-गति को सम्मिलित करता है यह गुरुत्वाकर्षण पदार्थ की एक प्रणाली की ऊर्जा-गति को परिभाषित करने की स्वीकृति देता है विशेष रूप से यह कुल पदार्थ और गुरुत्वाकर्षण ऊर्जा-संवेग को सामान्य सापेक्षता की संरचना के भीतर एक संरक्षित धारा बनाने की स्वीकृति देता है ताकि कुल ऊर्जा-संवेग किसी भी संक्षिप्त स्पेस-टाइम हाइपरवॉल्यूम के हाइपरसफेस (3-आयामी सीमा) को पार कर सके ( 4-आयामी सबमेनिफोल्ड) समाप्त हो जाता है।
[[सामान्य सापेक्षता]] के सिद्धांत में '''तनाव-ऊर्जा-संवेग स्यूडोटेन्सर''' या '''तनाव-ऊर्जा-संवेग छद्म प्रदिश''' लैंडौ-लाइफशिट्ज छद्म प्रदिश और गैर-गुरुत्वाकर्षण तनाव-ऊर्जा प्रदिश का एक विस्तार है जो गुरुत्वाकर्षण की ऊर्जा गति को सम्मिलित करता है यह गुरुत्वाकर्षण पदार्थ की एक प्रणाली की ऊर्जा-गति को परिभाषित करने की स्वीकृति देता है विशेष रूप से यह कुल पदार्थ और गुरुत्वाकर्षण ऊर्जा संवेग को सामान्य सापेक्षता की संरचना के भीतर एक संरक्षित धारा बनाने की स्वीकृति देता है ताकि कुल ऊर्जा संवेग किसी भी संक्षिप्त स्थिति समय उच्च आयतन के ऊनविम पृष्ठ, 3-आयामी सीमा या 4-आयामी विविध मे समाप्त हो जाता है।


कुछ लोगों (जैसे इरविन श्रोडिंगर{{citation needed|date=October 2015}} ने इस व्युत्पत्ति पर इस आधार पर आपत्ति जताई है कि [[स्यूडोटेंसर|छद्म प्रदिश]] सामान्य सापेक्षता में अनुपयुक्त वस्तुएं हैं, लेकिन संरक्षण कानून में केवल छद्म प्रदिश के 4-[[विचलन]] के उपयोग की आवश्यकता है जो कि इसमें है स्थिति, एक प्रदिश (जो समाप्त भी हो जाता है)। इसके अतिरिक्त, अधिकांश छद्म प्रदिश जेट बंडलों के खंड हैं, जिन्हें अब{{By whom|date=April 2021}} सामान्य सापेक्षता में पूरी तरह से मान्य वस्तुओं के रूप में पहचाना जाता है।
कुछ लोगों जैसे इरविन श्रोडिंगर{{citation needed|date=October 2015}} ने इस व्युत्पत्ति के आधार पर आपत्ति को साझा किया कि [[स्यूडोटेंसर|छद्म प्रदिश]] सामान्य सापेक्षता में अनुपयुक्त वस्तुएं हैं लेकिन संरक्षण नियम में केवल छद्म प्रदिश के 4-[[विचलन]] के उपयोग की आवश्यकता है जो कि इसमें स्थिति है एक प्रदिश जो समाप्त भी हो जाता है इसके अतिरिक्त, अधिकांश छद्म प्रदिश जेट समूहों के भाग हैं जिन्हें सामान्य सापेक्षता में पूरी तरह से स्वीकृत वस्तुओं के रूप में पहचाना जाता है।{{By whom|date=April 2021}}


== लैंडौ-लिफ्शिट्ज छद्म प्रदिश<!--'Landau–Lifshitz pseudotensor' and 'Landau-Lifshitz pseudotensor' redirect here-->==
== लैंडौ-लिफ्शिट्ज छद्म प्रदिश==
संयुक्त पदार्थ (फोटॉन और न्यूट्रिनो सहित) के लिए एक तनाव-ऊर्जा-संवेग छद्म प्रदिश लैंडौ-लिफ्शिट्ज छद्म प्रदिश का उपयोग, साथ ही गुरुत्वाकर्षण, ऊर्जा-संवेग संरक्षण नियमों को सामान्य सापेक्षता में विस्तारित करने की स्वीकृति देता है।<ref name="LL">[[Lev Davidovich Landau]] and [[Evgeny Mikhailovich Lifshitz]], ''The Classical Theory of Fields'', (1951), Pergamon Press, {{ISBN|7-5062-4256-7}} chapter 11, section #96</ref> संयुक्त छद्म प्रदिश से पदार्थ तनाव-ऊर्जा-संवेग प्रदिश का घटाव गुरुत्वाकर्षण तनाव-ऊर्जा-संवेग छद्म प्रदिश में होता है।
संयुक्त पदार्थ (फोटॉन और न्यूट्रिनो सहित) के लिए तनाव-ऊर्जा-संवेग छद्म प्रदिश लैंडौ-लिफ्शिट्ज छद्म प्रदिश का उपयोग साथ ही गुरुत्वाकर्षण ऊर्जा-संवेग संरक्षण नियमों को सामान्य सापेक्षता में विस्तारित करने की स्वीकृति देता है<ref name="LL">[[Lev Davidovich Landau]] and [[Evgeny Mikhailovich Lifshitz]], ''The Classical Theory of Fields'', (1951), Pergamon Press, {{ISBN|7-5062-4256-7}} chapter 11, section #96</ref> संयुक्त छद्म प्रदिश से पदार्थ तनाव ऊर्जा संवेग प्रदिश का घटाव गुरुत्वाकर्षण तनाव ऊर्जा संवेग छद्म प्रदिश में होता है।


=== आवश्यकताएँ ===
=== आवश्यकताएँ ===
[[लेव डेविडोविच लैंडौ]] और [[एवगेनी मिखाइलोविच लाइफशिट्ज]] को गुरुत्वाकर्षण ऊर्जा संवेग छद्म प्रदिश की खोज में उनकी चार आवश्यकताओं का नेतृत्व किया गया था, <math>t_{LL}^{\mu \nu}\,</math>:<ref name="LL"/># कि यह पूरी तरह से आव्यूह टेन्सर (सामान्य सापेक्षता) से निर्मित हो, ताकि मूल रूप से विशुद्ध रूप से ज्यामितीय या गुरुत्वाकर्षण हो।
[[लेव डेविडोविच लैंडौ]] और [[एवगेनी मिखाइलोविच लाइफशिट्ज]] ने गुरुत्वाकर्षण ऊर्जा संवेग छद्म प्रदिश <math>t_{LL}^{\mu \nu}\,</math>की खोज में उनकी चार आवश्यकताओं का नेतृत्व किया गया था:<ref name="LL"/>
# कि यह इंडेक्स सिमेट्रिक हो, यानी <math>t_{LL}^{\mu \nu} = t_{LL}^{\nu \mu} \,</math>, (कोणीय गति को संरक्षित करने के लिए)
 
# कि, जब पदार्थ के तनाव-ऊर्जा प्रदिश में जोड़ा जाता है, <math>T^{\mu \nu}\,</math>, इसका कुल 4-डाइवर्जेंस समाप्त हो जाता है (यह किसी भी संरक्षित धारा के लिए आवश्यक है) ताकि हमारे पास कुल तनाव-ऊर्जा-संवेग के लिए एक संरक्षित अभिव्यक्ति हो।
# यह पूरी तरह से आव्यूह प्रदिश से निर्मित हो, ताकि मूल रूप से शुद्ध ज्यामितीय या गुरुत्वाकर्षण हो।
# कि यह संदर्भ के एक जड़त्वीय फ्रेम में स्थानीय रूप से समाप्त हो जाता है (जिसके लिए आवश्यक है कि इसमें केवल पहला क्रम हो और आव्यूह का दूसरा या उच्च क्रम व्युत्पन्न न हो)। ऐसा इसलिए है क्योंकि तुल्यता सिद्धांत की आवश्यकता है कि गुरुत्वाकर्षण बल क्षेत्र, क्रिस्टोफ़ेल प्रतीक, स्थानीय रूप से कुछ फ़्रेमों में समाप्त हो जाएं। यदि गुरुत्वाकर्षण ऊर्जा इसके बल क्षेत्र का एक कार्य है, जैसा कि अन्य बलों के लिए सामान्य है, तो संबंधित गुरुत्वाकर्षण छद्म प्रदिश को भी स्थानीय रूप से समाप्त हो जाना चाहिए।
# कोणीय गति को संरक्षित करने के लिए <math>t_{LL}^{\mu \nu} = t_{LL}^{\nu \mu} \,</math> सूचकांक सममित हो।
# जब पदार्थ के तनाव-ऊर्जा प्रदिश में <math>T^{\mu \nu}\,</math> जोड़ा जाता है तब इसका कुल 4 भिन्नता समाप्त हो जाती है यह किसी भी संरक्षित धारा के लिए आवश्यक है ताकि हमारे पास कुल तनाव ऊर्जा संवेग के लिए एक संरक्षित अभिव्यक्ति हो।
# यह संदर्भ के एक जड़त्वीय फ्रेम में स्थानीय रूप से समाप्त हो जाता है जिसके लिए आवश्यक है कि इसमें केवल पहला क्रम हो और आव्यूह का दूसरा या उच्च क्रम व्युत्पन्न न हो ऐसा इसलिए है क्योंकि तुल्यता सिद्धांत की आवश्यकता है कि गुरुत्वाकर्षण बल क्षेत्र, क्रिस्टोफ़ेल प्रतीक स्थानीय रूप से कुछ फ़्रेमों में समाप्त हो जाएं यदि गुरुत्वाकर्षण ऊर्जा इसके बल क्षेत्र का एक कार्य है जैसा कि अन्य बलों के लिए सामान्य है तो संबंधित गुरुत्वाकर्षण छद्म प्रदिश को भी स्थानीय रूप से समाप्त हो जाना चाहिए।


=== परिभाषा ===
=== परिभाषा ===
लैंडौ-लिफ्शिट्ज ने दिखाया कि एक अद्वितीय निर्माण है जो इन आवश्यकताओं को पूरा करता है, अर्थात्
लैंडौ-लिफ्शिट्ज ने दिखाया कि एक अद्वितीय निर्माण है जो इन आवश्यकताओं को पूर्ण करता है, अर्थात्<math display="block">t_{LL}^{\mu \nu} = - \frac{c^4}{8\pi G}G^{\mu \nu} + \frac{c^4}{16\pi G (-g)}\left((-g)\left(g^{\mu \nu} g^{\alpha \beta} - g^{\mu \alpha}g^{\nu \beta}\right)\right)_{,\alpha \beta}</math>जहाँ:
<math display="block">t_{LL}^{\mu \nu} = - \frac{c^4}{8\pi G}G^{\mu \nu} + \frac{c^4}{16\pi G (-g)}\left((-g)\left(g^{\mu \nu} g^{\alpha \beta} - g^{\mu \alpha}g^{\nu \beta}\right)\right)_{,\alpha \beta}</math>
* ''G<sup>μν</sup>'' [[आइंस्टीन टेंसर|आइंस्टीन प्रदिश]] है जो आव्यूह से निर्मित है।
कहाँ:
* ''G<sup>μν</sup>'' आव्यूह सदिश (सामान्य सापेक्षता) g<sub>''μν''</sub> का व्युत्क्रम है।
 
* {{nowrap|''g'' {{=}} det(''g''<sub>''μν''</sub>)}} आव्यूह प्रदिश का निर्धारक है इसलिए {{nowrap|''g'' < 0}}, <math>-g</math> के रूप में प्रकट होता है।
* जी<sup>μν</sup> [[आइंस्टीन टेंसर|आइंस्टीन प्रदिश]] है (जो आव्यूह से निर्मित है)
* <math display="inline">{}_{,\alpha \beta} = \frac{\partial^2}{\partial x^{\alpha} \partial x^{\beta}}\,</math> आंशिक व्युत्पन्न हैं, सहसंयोजक व्युत्पन्न नहीं है।
* जी<sup>μν</sup> मेट्रिक टेन्सर (सामान्य सापेक्षता) का प्रतिलोम है, g<sub>''μν''</sub>
* {{nowrap|''g'' {{=}} det(''g''<sub>''μν''</sub>)}} आव्यूह प्रदिश का निर्धारक है। {{nowrap|''g'' < 0}}, इसलिए इसकी उपस्थिति के रूप में <math>-g</math>.
* <math display="inline">{}_{,\alpha \beta} = \frac{\partial^2}{\partial x^{\alpha} \partial x^{\beta}}\,</math> आंशिक व्युत्पन्न हैं, सहसंयोजक व्युत्पन्न नहीं।
* G न्यूटन का गुरुत्वीय स्थिरांक है।
* G न्यूटन का गुरुत्वीय स्थिरांक है।


=== सत्यापन ===
=== सत्यापन ===
4 आवश्यकता शर्तों की जांच करने पर हम देख सकते हैं कि पहले 3 को प्रदर्शित करना अपेक्षाकृत आसान है:
4 आवश्यक शर्तों की जांच करने पर हम देख सकते हैं कि पहले 3 को प्रदर्शित करना अपेक्षाकृत आसान है:
# आइंस्टीन प्रदिश के बाद से, <math>G^{\mu \nu}\,</math>, खुद आव्यूह से बनाया गया है, इसलिए है <math>t_{LL}^{\mu \nu} </math>
# चूंकि आइंस्टीन प्रदिश <math>G^{\mu \nu}\,</math>आव्यूह से निर्मित है इसलिए <math>t_{LL}^{\mu \nu} </math> है।
# आइंस्टीन प्रदिश के बाद से, <math>G^{\mu \nu}\,</math>, सममित है तो है <math>t_{LL}^{\mu \nu} </math> चूंकि अतिरिक्त शर्तें निरीक्षण द्वारा सममित हैं।
# चूंकि आइंस्टीन प्रदिश <math>G^{\mu \nu}\,</math> सममित है इसलिए <math>t_{LL}^{\mu \nu} </math> अतिरिक्त शर्तों के निरीक्षण द्वारा सममित हैं।
# लैंडौ-लिफ्शिट्ज छद्म प्रदिश का निर्माण इस तरह से किया गया है कि जब पदार्थ के तनाव-ऊर्जा प्रदिश में जोड़ा जाता है, <math>T^{\mu \nu}\,</math>, इसका कुल 4-डाइवर्जेंस समाप्त हो जाता है: <math>\left(\left(-g\right)\left(T^{\mu \nu} + t_{LL}^{\mu \nu}\right)\right)_{,\mu} = 0 </math>. यह आइंस्टीन प्रदिश के रद्द होने के बाद होता है, <math>G^{\mu \nu}\,</math>, तनाव-ऊर्जा प्रदिश के साथ, <math>T^{\mu \nu}\,</math> [[आइंस्टीन फील्ड समीकरण]]ों द्वारा; एंटीसिमेट्रिक इंडेक्स पर प्रयुक्त आंशिक व्युत्पन्न की कम्यूटेटिविटी के कारण शेष शब्द बीजगणितीय रूप से समाप्त हो जाता है।
# लैंडौ-लिफ्शिट्ज छद्म प्रदिश का निर्माण इस प्रकार से किया गया है कि जब पदार्थ के तनाव-ऊर्जा प्रदिश में <math>T^{\mu \nu}\,</math>जोड़ा जाता है तब इसकी कुल 4 भिन्नता समाप्त हो जाती है और <math>\left(\left(-g\right)\left(T^{\mu \nu} + t_{LL}^{\mu \nu}\right)\right)_{,\mu} = 0 </math> आइंस्टीन प्रदिश के समाप्त होने के बाद <math>G^{\mu \nu}\,</math>तनाव-ऊर्जा प्रदिश के साथ <math>T^{\mu \nu}\,</math>[[आइंस्टीन फील्ड समीकरण|आइंस्टीन समीकरणों]] द्वारा प्रतिसममित सूचियों पर प्रयुक्त आंशिक व्युत्पन्न की क्रम विनिमेयता के कारण शेष शब्द बीजगणितीय रूप से समाप्त हो जाते हैं।
# लैंडौ-लिफ्शिट्ज छद्म प्रदिश आव्यूह में दूसरे व्युत्पन्न शब्दों को सम्मिलित करता प्रतीत होता है, लेकिन वास्तव में छद्म प्रदिश में स्पष्ट दूसरा व्युत्पन्न शब्द आइंस्टीन प्रदिश के भीतर निहित दूसरे व्युत्पन्न शब्दों के साथ रद्द हो जाता है, <math>G^{\mu \nu}\,</math>. यह तब अधिक स्पष्ट होता है जब छद्म प्रदिश को सीधे आव्यूह टेन्सर या [[लेवी-Civita कनेक्शन]] के संदर्भ में व्यक्त किया जाता है; आव्यूह में केवल पहले व्युत्पन्न शब्द ही जीवित रहते हैं और ये समाप्त हो जाते हैं जहां फ्रेम किसी भी चुने हुए बिंदु पर स्थानीय रूप से जड़त्वीय होता है। नतीजतन, संपूर्ण छद्म प्रदिश स्थानीय रूप से समाप्त हो जाता है (फिर से, किसी भी चुने हुए बिंदु पर) <math>t_{LL}^{\mu \nu} = 0</math>, जो गुरुत्वाकर्षण ऊर्जा-संवेग के निरूपण को प्रदर्शित करता है।<ref name="LL"/>
# लैंडौ-लिफ्शिट्ज छद्म प्रदिश आव्यूह में दूसरे व्युत्पन्न शब्दों को सम्मिलित करते हुए प्रतीत होता है लेकिन वास्तव में छद्म प्रदिश में स्पष्ट दूसरा व्युत्पन्न शब्द आइंस्टीन प्रदिश के भीतर निहित दूसरे व्युत्पन्न शब्दों <math>G^{\mu \nu}\,</math> के साथ समाप्त हो जाता है तब यह अधिक स्पष्ट होता है जब छद्म प्रदिश को प्रत्यक्ष आव्यूह प्रदिश या [[लेवी-Civita कनेक्शन|लेवी-सिविटा संयुग्म]] के संदर्भ में व्यक्त किया जाता है आव्यूह में केवल पहले व्युत्पन्न शब्द ही सम्मिलित रहते हैं और ये समाप्त हो जाते हैं जहां फ्रेम किसी भी चुने हुए बिंदु पर स्थानीय रूप से जड़त्वीय होता है जिसके परिणाम स्वरूप संपूर्ण छद्म प्रदिश स्थानीय रूप से समाप्त हो जाता है और पुनः किसी भी चुने हुए बिंदु <math>t_{LL}^{\mu \nu} = 0</math> पर गुरुत्वाकर्षण ऊर्जा-संवेग के निरूपण को प्रदर्शित करता है।<ref name="LL"/>
=== [[ब्रह्माण्ड संबंधी स्थिरांक]] ===
=== [[ब्रह्माण्ड संबंधी स्थिरांक|ब्रह्मांडीकीय नियतांक]] ===
जब लैंडौ-लिफ्शिट्ज छद्म प्रदिश तैयार किया गया था तो आमतौर पर यह माना जाता था कि ब्रह्माण्ड संबंधी स्थिरांक, <math>\Lambda \,</math>, शून्य था। आजकल त्वरित ब्रह्मांड | हम यह धारणा नहीं बनाते हैं, और अभिव्यक्ति को जोड़ने की आवश्यकता है <math>\Lambda </math> अवधि, देना:
जब लैंडौ-लिफ्शिट्ज छद्म प्रदिश तैयार किया गया था तो सामान्यतः यह माना जाता था कि ब्रह्मांडीकीय नियतांक <math>\Lambda \,</math> शून्य है वर्तमान मे हम यह धारणा नहीं बनाते हैं और अभिव्यक्ति <math>\Lambda </math> को जोड़ने की आवश्यकता है माना कि<math display="block">t_{LL}^{\mu \nu} = - \frac{c^4}{8\pi G} \left(G^{\mu \nu} + \Lambda g^{\mu \nu}\right) + \frac{c^4}{16\pi G (-g)} \left(\left(-g\right)\left(g^{\mu \nu}g^{\alpha \beta} - g^{\mu \alpha}g^{\nu \beta}\right)\right)_{,\alpha \beta}</math>
<math display="block">t_{LL}^{\mu \nu} = - \frac{c^4}{8\pi G} \left(G^{\mu \nu} + \Lambda g^{\mu \nu}\right) + \frac{c^4}{16\pi G (-g)} \left(\left(-g\right)\left(g^{\mu \nu}g^{\alpha \beta} - g^{\mu \alpha}g^{\nu \beta}\right)\right)_{,\alpha \beta}</math>
 
आइंस्टीन क्षेत्र समीकरणों के साथ संगति के लिए यह आवश्यक है।
 
आइंस्टीन क्षेत्र समीकरणों के साथ संगति के लिए आवश्यक है।


===आव्यूह और affine कनेक्शन संस्करण===
===आव्यूह और सजातीय संबंध संस्करण===
Landau और Lifshitz भी लैंडौ-लिफ्शिट्ज छद्म प्रदिश के लिए दो समकक्ष लेकिन लंबी अभिव्यक्तियाँ प्रदान करते हैं:
[[लेव डेविडोविच लैंडौ]] और [[एवगेनी मिखाइलोविच लाइफशिट्ज]] भी लैंडौ-लिफ्शिट्ज छद्म प्रदिश के लिए दो समकक्ष लंबी अभिव्यक्तियाँ प्रदान करते हैं:


* [[मीट्रिक टेंसर|आव्यूह प्रदिश]] संस्करण:<ref>Landau–Lifshitz equation 96.9</ref> <math display="block">\begin{align}
* [[मीट्रिक टेंसर|आव्यूह प्रदिश]] संस्करण:<ref>Landau–Lifshitz equation 96.9</ref> <math display="block">\begin{align}

Revision as of 12:51, 16 April 2023

सामान्य सापेक्षता के सिद्धांत में तनाव-ऊर्जा-संवेग स्यूडोटेन्सर या तनाव-ऊर्जा-संवेग छद्म प्रदिश लैंडौ-लाइफशिट्ज छद्म प्रदिश और गैर-गुरुत्वाकर्षण तनाव-ऊर्जा प्रदिश का एक विस्तार है जो गुरुत्वाकर्षण की ऊर्जा गति को सम्मिलित करता है यह गुरुत्वाकर्षण पदार्थ की एक प्रणाली की ऊर्जा-गति को परिभाषित करने की स्वीकृति देता है विशेष रूप से यह कुल पदार्थ और गुरुत्वाकर्षण ऊर्जा संवेग को सामान्य सापेक्षता की संरचना के भीतर एक संरक्षित धारा बनाने की स्वीकृति देता है ताकि कुल ऊर्जा संवेग किसी भी संक्षिप्त स्थिति समय उच्च आयतन के ऊनविम पृष्ठ, 3-आयामी सीमा या 4-आयामी विविध मे समाप्त हो जाता है।

कुछ लोगों जैसे इरविन श्रोडिंगर[citation needed] ने इस व्युत्पत्ति के आधार पर आपत्ति को साझा किया कि छद्म प्रदिश सामान्य सापेक्षता में अनुपयुक्त वस्तुएं हैं लेकिन संरक्षण नियम में केवल छद्म प्रदिश के 4-विचलन के उपयोग की आवश्यकता है जो कि इसमें स्थिति है एक प्रदिश जो समाप्त भी हो जाता है इसके अतिरिक्त, अधिकांश छद्म प्रदिश जेट समूहों के भाग हैं जिन्हें सामान्य सापेक्षता में पूरी तरह से स्वीकृत वस्तुओं के रूप में पहचाना जाता है।[by whom?]

लैंडौ-लिफ्शिट्ज छद्म प्रदिश

संयुक्त पदार्थ (फोटॉन और न्यूट्रिनो सहित) के लिए तनाव-ऊर्जा-संवेग छद्म प्रदिश लैंडौ-लिफ्शिट्ज छद्म प्रदिश का उपयोग साथ ही गुरुत्वाकर्षण ऊर्जा-संवेग संरक्षण नियमों को सामान्य सापेक्षता में विस्तारित करने की स्वीकृति देता है[1] संयुक्त छद्म प्रदिश से पदार्थ तनाव ऊर्जा संवेग प्रदिश का घटाव गुरुत्वाकर्षण तनाव ऊर्जा संवेग छद्म प्रदिश में होता है।

आवश्यकताएँ

लेव डेविडोविच लैंडौ और एवगेनी मिखाइलोविच लाइफशिट्ज ने गुरुत्वाकर्षण ऊर्जा संवेग छद्म प्रदिश की खोज में उनकी चार आवश्यकताओं का नेतृत्व किया गया था:[1]

  1. यह पूरी तरह से आव्यूह प्रदिश से निर्मित हो, ताकि मूल रूप से शुद्ध ज्यामितीय या गुरुत्वाकर्षण हो।
  2. कोणीय गति को संरक्षित करने के लिए सूचकांक सममित हो।
  3. जब पदार्थ के तनाव-ऊर्जा प्रदिश में जोड़ा जाता है तब इसका कुल 4 भिन्नता समाप्त हो जाती है यह किसी भी संरक्षित धारा के लिए आवश्यक है ताकि हमारे पास कुल तनाव ऊर्जा संवेग के लिए एक संरक्षित अभिव्यक्ति हो।
  4. यह संदर्भ के एक जड़त्वीय फ्रेम में स्थानीय रूप से समाप्त हो जाता है जिसके लिए आवश्यक है कि इसमें केवल पहला क्रम हो और आव्यूह का दूसरा या उच्च क्रम व्युत्पन्न न हो ऐसा इसलिए है क्योंकि तुल्यता सिद्धांत की आवश्यकता है कि गुरुत्वाकर्षण बल क्षेत्र, क्रिस्टोफ़ेल प्रतीक स्थानीय रूप से कुछ फ़्रेमों में समाप्त हो जाएं यदि गुरुत्वाकर्षण ऊर्जा इसके बल क्षेत्र का एक कार्य है जैसा कि अन्य बलों के लिए सामान्य है तो संबंधित गुरुत्वाकर्षण छद्म प्रदिश को भी स्थानीय रूप से समाप्त हो जाना चाहिए।

परिभाषा

लैंडौ-लिफ्शिट्ज ने दिखाया कि एक अद्वितीय निर्माण है जो इन आवश्यकताओं को पूर्ण करता है, अर्थात्

जहाँ:

  • Gμν आइंस्टीन प्रदिश है जो आव्यूह से निर्मित है।
  • Gμν आव्यूह सदिश (सामान्य सापेक्षता) gμν का व्युत्क्रम है।
  • g = det(gμν) आव्यूह प्रदिश का निर्धारक है इसलिए g < 0, के रूप में प्रकट होता है।
  • आंशिक व्युत्पन्न हैं, सहसंयोजक व्युत्पन्न नहीं है।
  • G न्यूटन का गुरुत्वीय स्थिरांक है।

सत्यापन

4 आवश्यक शर्तों की जांच करने पर हम देख सकते हैं कि पहले 3 को प्रदर्शित करना अपेक्षाकृत आसान है:

  1. चूंकि आइंस्टीन प्रदिश आव्यूह से निर्मित है इसलिए है।
  2. चूंकि आइंस्टीन प्रदिश सममित है इसलिए अतिरिक्त शर्तों के निरीक्षण द्वारा सममित हैं।
  3. लैंडौ-लिफ्शिट्ज छद्म प्रदिश का निर्माण इस प्रकार से किया गया है कि जब पदार्थ के तनाव-ऊर्जा प्रदिश में जोड़ा जाता है तब इसकी कुल 4 भिन्नता समाप्त हो जाती है और आइंस्टीन प्रदिश के समाप्त होने के बाद तनाव-ऊर्जा प्रदिश के साथ आइंस्टीन समीकरणों द्वारा प्रतिसममित सूचियों पर प्रयुक्त आंशिक व्युत्पन्न की क्रम विनिमेयता के कारण शेष शब्द बीजगणितीय रूप से समाप्त हो जाते हैं।
  4. लैंडौ-लिफ्शिट्ज छद्म प्रदिश आव्यूह में दूसरे व्युत्पन्न शब्दों को सम्मिलित करते हुए प्रतीत होता है लेकिन वास्तव में छद्म प्रदिश में स्पष्ट दूसरा व्युत्पन्न शब्द आइंस्टीन प्रदिश के भीतर निहित दूसरे व्युत्पन्न शब्दों के साथ समाप्त हो जाता है तब यह अधिक स्पष्ट होता है जब छद्म प्रदिश को प्रत्यक्ष आव्यूह प्रदिश या लेवी-सिविटा संयुग्म के संदर्भ में व्यक्त किया जाता है आव्यूह में केवल पहले व्युत्पन्न शब्द ही सम्मिलित रहते हैं और ये समाप्त हो जाते हैं जहां फ्रेम किसी भी चुने हुए बिंदु पर स्थानीय रूप से जड़त्वीय होता है जिसके परिणाम स्वरूप संपूर्ण छद्म प्रदिश स्थानीय रूप से समाप्त हो जाता है और पुनः किसी भी चुने हुए बिंदु पर गुरुत्वाकर्षण ऊर्जा-संवेग के निरूपण को प्रदर्शित करता है।[1]

ब्रह्मांडीकीय नियतांक

जब लैंडौ-लिफ्शिट्ज छद्म प्रदिश तैयार किया गया था तो सामान्यतः यह माना जाता था कि ब्रह्मांडीकीय नियतांक शून्य है वर्तमान मे हम यह धारणा नहीं बनाते हैं और अभिव्यक्ति को जोड़ने की आवश्यकता है माना कि


आइंस्टीन क्षेत्र समीकरणों के साथ संगति के लिए आवश्यक है।

आव्यूह और सजातीय संबंध संस्करण

लेव डेविडोविच लैंडौ और एवगेनी मिखाइलोविच लाइफशिट्ज भी लैंडौ-लिफ्शिट्ज छद्म प्रदिश के लिए दो समकक्ष लंबी अभिव्यक्तियाँ प्रदान करते हैं:

  • आव्यूह प्रदिश संस्करण:[2]
  • सजातीय प्रतीक संस्करण:[3]