सॉफ्ट एरर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Distinguish|कोमल त्रुटि}}
{{Distinguish|कोमल त्रुटि}}


[[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] और [[ कम्प्यूटिंग |कम्प्यूटिंग]] में, सॉफ्ट एरर एक प्रकार की एरर होती है, जहां सिग्नल या डेटम गलत होता है। एररसं विक्ट: दोष के कारण हो सकती हैं, सामान्यतः या तो रचना या निर्माण में [[गलती]], या टूटा हुआ घटक समझा जाता है। सॉफ्ट एरर भी एक संकेत या डेटा है जो गलत है, किन्तु ऐसी गलती या टूट-फूट का संकेत नहीं माना जाता है। सॉफ्ट एरर देखने के बाद, इसका कोई निहितार्थ नहीं है कि प्रणाली पहले की तुलना में कम विश्वसनीय है। सॉफ्ट एरर का एक कारण [[ब्रह्मांड किरण]] से परेशान एकल घटना है।
[[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] और [[ कम्प्यूटिंग |कम्प्यूटिंग]] में, सॉफ्ट एरर एक प्रकार की एरर होती है, जहां सिग्नल या डेटम गलत होता है। एरर्सं विक्ट: दोष के कारण हो सकती हैं, सामान्यतः या तो रचना या निर्माण में [[गलती]], या टूटा हुआ घटक समझा जाता है। सॉफ्ट एरर भी एक संकेत या डेटा है जो गलत है, किन्तु ऐसी गलती या टूट-फूट का संकेत नहीं माना जाता है। सॉफ्ट एरर देखने के बाद, इसका कोई निहितार्थ नहीं है कि प्रणाली पहले की तुलना में कम विश्वसनीय है। सॉफ्ट एरर का एक कारण [[ब्रह्मांड किरण]] से परेशान एकल घटना है।


कंप्यूटर के मेमोरी प्रणाली में, एक सॉफ्ट एरर प्रोग्राम या डेटा वैल्यू में निर्देश को बदल देता है। सॉफ्ट एररस को सामान्यतः कंप्यूटर को [[कोल्ड बूटिंग|शीत बूटिंग]] करके ठीक किया जा सकता है। सॉफ्ट एरर प्रणाली के हार्डवेयर को हानि नहीं पहुंचाएगा; एकमात्र हानि उस डेटा को है जिसे संसाधित किया जा रहा है।
कंप्यूटर के मेमोरी प्रणाली में, एक सॉफ्ट एरर प्रोग्राम या डेटा वैल्यू में निर्देश को बदल देता है। सॉफ्ट एरर्स को सामान्यतः कंप्यूटर को [[कोल्ड बूटिंग|शीत बूटिंग]] करके ठीक किया जा सकता है। सॉफ्ट एरर प्रणाली के हार्डवेयर को हानि नहीं पहुंचाएगा; एकमात्र हानि उस डेटा को है जिसे संसाधित किया जा रहा है।


सॉफ्ट एरर दो प्रकार के होते हैं, ''चिप-लेवल सॉफ्ट एरर'' और ''प्रणाली-लेवल सॉफ्ट एरर होती है'' । चिप-स्तर की सॉफ्ट एररसं तब होती हैं जब कण चिप से टकराते हैं, उदाहरण के लिए, जब कॉस्मिक किरण से वायु बौछार (भौतिकी) डाई (एकीकृत परिपथ) पर उतरती है। यदि सॉफ्ट एरर क्रिटिकल चार्ज वाला कोई कण [[मेमोरी सेल (कंप्यूटिंग)]] से टकराता है, तो यह सेल को एक अलग मान में स्थिति बदलने का कारण बन सकता है। इस उदाहरण में परमाणु प्रतिक्रिया इतनी छोटी है कि यह चिप की भौतिक संरचना को हानि नहीं पहुंचाती है। प्रणाली-स्तरीय सॉफ्ट एररसं तब होती हैं जब संसाधित किया जा रहा डेटा ध्वनि घटना से प्रभावित होता है, सामान्यतः जब डेटा डेटा बस में होता है। कंप्यूटर ध्वनि को डेटा बिट के रूप में समझने की कोशिश करता है, जिससे प्रोग्राम कोड को संबोधित करने या संसाधित करने में एररसं हो सकती हैं। खराब डेटा बिट को मेमोरी में भी सहेजा जा सकता है और बाद में समस्याएं उत्पन्न कर सकता है।
सॉफ्ट एरर दो प्रकार के होते हैं, ''चिप-लेवल सॉफ्ट एरर'' और ''प्रणाली-लेवल सॉफ्ट एरर होती है'' । चिप-स्तर की सॉफ्ट एरर्सं तब होती हैं जब कण चिप से टकराते हैं, उदाहरण के लिए, जब कॉस्मिक किरण से वायु बौछार (भौतिकी) डाई (एकीकृत परिपथ) पर उतरती है। यदि सॉफ्ट एरर क्रिटिकल चार्ज वाला कोई कण [[मेमोरी सेल (कंप्यूटिंग)]] से टकराता है, तो यह सेल को एक अलग मान में स्थिति बदलने का कारण बन सकता है। इस उदाहरण में परमाणु प्रतिक्रिया इतनी छोटी है कि यह चिप की भौतिक संरचना को हानि नहीं पहुंचाती है।प्रणाली-स्तरीय सॉफ्ट एरर्सं तब होती हैं जब संसाधित किया जा रहा डेटा ध्वनि घटना से प्रभावित होता है, सामान्यतः जब डेटा डेटा बस में होता है। कंप्यूटर ध्वनि को डेटा बिट के रूप में समझने की कोशिश करता है, जिससे प्रोग्राम कोड को संबोधित करने या संसाधित करने में एरर्सं हो सकती हैं। खराब डेटा बिट को मेमोरी में भी सहेजा जा सकता है और बाद में समस्याएं उत्पन्न कर सकता है।


यदि पता चला है, तो गलत डेटा के स्थान पर सही डेटा को फिर से लिखकर एक सॉफ्ट एरर को ठीक किया जा सकता है। अत्यधिक विश्वसनीय प्रणालियाँ चलते-फिरते सॉफ्ट एररस को ठीक करने के लिए [[त्रुटि सुधार|एरर सुधार]] का उपयोग करती हैं। चूंकि, कई प्रणालियों में, सही डेटा निर्धारित करना असंभव हो सकता है, या यहां तक ​​कि यह पता लगाना भी कि कोई एरर उपस्थित है। इसके अतिरिक्त, सुधार होने से पहले, प्रणाली [[क्रैश (कंप्यूटिंग)]] हो सकता है, जिस स्थिति में [[पुनर्प्राप्ति प्रक्रिया]] में [[रिबूट (कंप्यूटर)]] सम्मिलित होना चाहिए। सॉफ्ट एरर में डेटा में बदलाव सम्मिलित हैं{{mdashb}} भंडारण परिपथ में [[इलेक्ट्रॉनों]], उदाहरण के लिए{{mdashb}}किन्तु स्वयं भौतिक परिपथ, [[परमाणुओं]] में परिवर्तन नहीं होता है। यदि डेटा को दोबारा लिखा जाता है, तो परिपथ फिर से पूरी तरह से काम करेगा। डिजिटल लॉजिक, एनालॉग परिपथ, मैग्नेटिक स्टोरेज और अन्य स्थानों पर सॉफ्ट एरर ट्रांसमिशन लाइनों पर हो सकते हैं, किन्तु सामान्यतः अर्धचालक स्टोरेज में जाने जाते हैं।
यदि पता चला है, तो गलत डेटा के स्थान पर सही डेटा को फिर से लिखकर एक सॉफ्ट एरर को ठीक किया जा सकता है। अत्यधिक विश्वसनीय प्रणालियाँ चलते-फिरते सॉफ्ट एरर्स को ठीक करने के लिए [[त्रुटि सुधार|एरर सुधार]] का उपयोग करती हैं। चूंकि, कई प्रणालियों में, सही डेटा निर्धारित करना असंभव हो सकता है, या यहां तक ​​कि यह पता लगाना भी कि कोई एरर उपस्थित है। इसके अतिरिक्त, सुधार होने से पहले, प्रणाली [[क्रैश (कंप्यूटिंग)]] हो सकता है, जिस स्थिति में [[पुनर्प्राप्ति प्रक्रिया]] में [[रिबूट (कंप्यूटर)]] सम्मिलित होना चाहिए। सॉफ्ट एरर में डेटा में बदलाव सम्मिलित हैं{{mdashb}} भंडारण परिपथ में [[इलेक्ट्रॉनों]], उदाहरण के लिए{{mdashb}}किन्तु स्वयं भौतिक परिपथ, [[परमाणुओं]] में परिवर्तन नहीं होता है। यदि डेटा को दोबारा लिखा जाता है, तो परिपथ फिर से पूरी तरह से काम करेगा। डिजिटल लॉजिक, एनालॉग परिपथ, मैग्नेटिक स्टोरेज और अन्य स्थानों पर सॉफ्ट एरर ट्रांसमिशन लाइनों पर हो सकते हैं, किन्तु सामान्यतः अर्धचालक स्टोरेज में जाने जाते हैं।


== क्रिटिकल चार्ज ==
== क्रिटिकल चार्ज ==
परिपथ सॉफ्ट एरर का अनुभव करता है या नहीं, आने वाले कण की ऊर्जा, प्रभाव की ज्यामिति, हड़ताल का स्थान और तर्क परिपथ के रचना पर निर्भर करता है। उच्च [[समाई]] और उच्च तर्क वोल्टेज वाले लॉजिक परिपथ में एरर होने की संभावना कम होती है। कैपेसिटेंस और वोल्टेज के इस संयोजन को क्रिटिकल [[ बिजली का आवेश |बिजली का आवेश]] पैरामीटर, Q<sub>crit</sub> द्वारा वर्णित किया गया है Q<sub>crit</sub> तर्क स्तर को बदलने के लिए आवश्यक न्यूनतम इलेक्ट्रॉन आवेश अस्तव्यस्तता। एक उच्च Q<sub>crit</sub> कारण कम सॉफ्ट एरर। दुर्भाग्य से, एक उच्च Q<sub>crit</sub> इसका कारण एक धीमा लॉजिक गेट और एक उच्च शक्ति अपव्यय भी है। चिप फीचर आकार और आपूर्ति वोल्टेज में कमी, कई कारणों से वांछनीय, Q<sub>crit</sub> घट जाती है |. इस प्रकार, चिप प्रौद्योगिकी की प्रगति के रूप में सॉफ्ट एररस का महत्व बढ़ जाता है।
परिपथ सॉफ्ट एरर का अनुभव करता है या नहीं, आने वाले कण की ऊर्जा, प्रभाव की ज्यामिति, हड़ताल का स्थान और तर्क परिपथ के रचना पर निर्भर करता है। उच्च [[समाई]] और उच्च तर्क वोल्टेज वाले लॉजिक परिपथ में एरर होने की संभावना कम होती है। कैपेसिटेंस और वोल्टेज के इस संयोजन को क्रिटिकल [[ बिजली का आवेश |विद्दुतका आवेश]] पैरामीटर, Q<sub>crit</sub> द्वारा वर्णित किया गया है Q<sub>crit</sub> तर्क स्तर को बदलने के लिए आवश्यक न्यूनतम इलेक्ट्रॉन आवेश अस्तव्यस्तता। एक उच्च Q<sub>crit</sub> कारण कम सॉफ्ट एरर। दुर्भाग्य से, एक उच्च Q<sub>crit</sub> इसका कारण एक धीमा लॉजिक गेट और एक उच्च शक्ति अपव्यय भी है। चिप फीचर आकार और आपूर्ति वोल्टेज में कमी, कई कारणों से वांछनीय, Q<sub>crit</sub> घट जाती है |. इस प्रकार, चिप प्रौद्योगिकी की प्रगति के रूप में सॉफ्ट एरर्स का महत्व बढ़ जाता है।


लॉजिक परिपथ में, Q<sub>crit</sub> एक परिपथ नोड पर आवश्यक प्रेरित चार्ज की न्यूनतम मात्रा के रूप में परिभाषित किया जाता है, जिससे वोल्टेज पल्स उस नोड से आउटपुट तक फैलता है और पर्याप्त अवधि और परिमाण का विश्वसनीय रूप से लैच किया जा सकता है। चूँकि एक लॉजिक परिपथ में कई नोड होते हैं जो टकरा सकते हैं, और प्रत्येक नोड अद्वितीय समाई और आउटपुट से दूरी का हो सकता है, Q<sub>crit</sub> सामान्यतः प्रति-नोड के आधार पर विशेषता होती है।
लॉजिक परिपथ में, Q<sub>crit</sub> एक परिपथ नोड पर आवश्यक प्रेरित चार्ज की न्यूनतम मात्रा के रूप में परिभाषित किया जाता है, जिससे वोल्टेज पल्स उस नोड से आउटपुट तक फैलता है और पर्याप्त अवधि और परिमाण का विश्वसनीय रूप से लैच किया जा सकता है। चूँकि एक लॉजिक परिपथ में कई नोड होते हैं जो टकरा सकते हैं, और प्रत्येक नोड अद्वितीय समाई और आउटपुट से दूरी का हो सकता है, Q<sub>crit</sub> सामान्यतः प्रति-नोड के आधार पर विशेषता होती है।
Line 17: Line 17:


=== संकुल क्षय से अल्फा कण ===
=== संकुल क्षय से अल्फा कण ===
1970 के दशक में [[गतिशील रैम]] की प्रारंभिक के साथ सॉफ्ट एरर व्यापक रूप से ज्ञात हो गए थे । इन प्रारंभिक उपकरणों में, सिरेमिक चिप संकुलिंग सामग्री में थोड़ी मात्रा में [[रेडियोधर्मी]] संदूषक होते थे। अत्यधिक सॉफ्ट एररस से बचने के लिए बहुत कम क्षय दर की आवश्यकता होती है, और तब से चिप कंपनियों को कभी-कभी संदूषण की समस्या का सामना करना पड़ा है। आवश्यक भौतिक शुद्धता को बनाए रखना अत्यंत कठिन है। महत्वपूर्ण संकुलिंग सामग्री के लिए अल्फा कण उत्सर्जन दर को 0.001 गणना प्रति घंटे प्रति सेमी से कम के स्तर पर नियंत्रित करना<sup>2</sup> (सीपीएच/सेमी<sup>2</sup>) अधिकांश परिपथों के विश्वसनीय प्रदर्शन के लिए आवश्यक है। तुलना के लिए, सामान्य जूते के तलवे की गणना दर 0.1 और 10 सीपीएच/सेमी<sup>2 के बीच होती है |
1970 के दशक में [[गतिशील रैम]] की प्रारंभिक के साथ सॉफ्ट एरर व्यापक रूप से ज्ञात हो गए थे । इन प्रारंभिक उपकरणों में, सिरेमिक चिप संकुलिंग सामग्री में थोड़ी मात्रा में [[रेडियोधर्मी]] संदूषक होते थे। अत्यधिक सॉफ्ट एरर्स से बचने के लिए बहुत कम क्षय दर की आवश्यकता होती है, और तब से चिप कंपनियों को कभी-कभी संदूषण की समस्या का सामना करना पड़ा है। आवश्यक भौतिक शुद्धता को बनाए रखना अत्यंत कठिन है। महत्वपूर्ण संकुलिंग सामग्री के लिए अल्फा कण उत्सर्जन दर को 0.001 गणना प्रति घंटे प्रति सेमी से कम के स्तर पर नियंत्रित करना<sup>2</sup> (सीपीएच/सेमी<sup>2</sup>) अधिकांश परिपथों के विश्वसनीय प्रदर्शन के लिए आवश्यक है। तुलना के लिए, सामान्य जूते के तलवे की गणना दर 0.1 और 10 सीपीएच/सेमी<sup>2 के Bच होती है |


संकुल रेडियोधर्मी क्षय सामान्यतः [[अल्फा कण]] उत्सर्जन द्वारा सॉफ्ट एरर का कारण बनता है। सकारात्मक आवेशित अल्फा कण अर्धचालक के माध्यम से यात्रा करता है और वहां इलेक्ट्रॉनों के वितरण को बाधित करता है। यदि अस्तव्यस्तता अधिक बड़ी है, तो डिजिटल डेटा सिग्नल (सूचना सिद्धांत) 0 से 1 या इसके विपरीत बदल सकता है। [[संयोजन तर्क]] में, यह प्रभाव क्षणिक होता है, शायद नैनोसेकंड के एक अंश तक रहता है, और इसके कारण संयोजन तर्क में सॉफ्ट एरर की चुनौती पर ध्यान नहीं दिया जाता है। [[ कुंडी (इलेक्ट्रॉनिक) |कुंडी (इलेक्ट्रॉनिक)]] और [[रैंडम एक्सेस मेमोरी]] जैसे अनुक्रमिक तर्क में, यह क्षणिक अस्तव्यस्तता भी अनिश्चित समय के लिए संग्रहीत हो सकती है, जिसे बाद में पढ़ा जा सकता है। इस प्रकार, रचनार सामान्यतः स्टोरेज परिपथ में समस्या के बारे में अधिक जागरूक होते हैं।
संकुल रेडियोधर्मी क्षय सामान्यतः [[अल्फा कण]] उत्सर्जन द्वारा सॉफ्ट एरर का कारण बनता है। सकारात्मक आवेशित अल्फा कण अर्धचालक के माध्यम से यात्रा करता है और वहां इलेक्ट्रॉनों के वितरण को बाधित करता है। यदि अस्तव्यस्तता अधिक बड़ी है, तो डिजिटल डेटा सिग्नल (सूचना सिद्धांत) 0 से 1 या इसके विपरीत बदल सकता है। [[संयोजन तर्क]] में, यह प्रभाव क्षणिक होता है, शायद नैनोसेकंड के एक अंश तक रहता है, और इसके कारण संयोजन तर्क में सॉफ्ट एरर की चुनौती पर ध्यान नहीं दिया जाता है। [[ कुंडी (इलेक्ट्रॉनिक) |कुंडी (इलेक्ट्रॉनिक)]] और [[रैंडम एक्सेस मेमोरी]] जैसे अनुक्रमिक तर्क में, यह क्षणिक अस्तव्यस्तता भी अनिश्चित समय के लिए संग्रहीत हो सकती है, जिसे बाद में पढ़ा जा सकता है। इस प्रकार, रचनार सामान्यतः स्टोरेज परिपथ में समस्या के बारे में अधिक जागरूक होते हैं।


2011 का [[ब्लैक हैट ब्रीफिंग]] पेपर इंटरनेट के [[डोमेन की नामांकन प्रणाली]] में इस तरह के बिट-फ्लिप के वास्तविक जीवन के सुरक्षा प्रभावों पर चर्चा करता है। विभिन्न सामान्य डोमेन के लिए बिट-फ्लिप परिवर्तनों के कारण प्रति दिन 3,434 गलत अनुरोधों तक पेपर पाया गया था । इनमें से कई बिट-फ्लिप शायद हार्डवेयर समस्याओं के कारण हो सकते हैं, किन्तु कुछ को अल्फा कणों के लिए जिम्मेदार ठहराया जा सकता है।<ref>{{cite web |url=https://media.blackhat.com/bh-us-11/Dinaburg/BH_US_11_Dinaburg_Bitsquatting_WP.pdf |title=बिटक्वाटिंग - बिना शोषण के डीएनएस हाइजैकिंग|author=Artem Dinaburg |date=July 2011 |access-date=2011-12-26  |archive-date=2018-06-11  |archive-url=https://web.archive.org/web/20180611050923/https://media.blackhat.com/bh-us-11/Dinaburg/BH_US_11_Dinaburg_Bitsquatting_WP.pdf |url-status=dead }}</ref> [[ bitsquating |बित्स्क्वातिंग]] के रूप में दुर्भावनापूर्ण अभिनेताओं द्वारा इन बिट-फ्लिप एररस का लाभ उठाया जा सकता है।
2011 का [[ब्लैक हैट ब्रीफिंग]] पेपर इंटरनेट के [[डोमेन की नामांकन प्रणाली]] में इस तरह के बिट-फ्लिप के वास्तविक जीवन के सुरक्षा प्रभावों पर चर्चा करता है। विभिन्न सामान्य डोमेन के लिए बिट-फ्लिप परिवर्तनों के कारण प्रति दिन 3,434 गलत अनुरोधों तक पेपर पाया गया था । इनमें से कई बिट-फ्लिप शायद हार्डवेयर समस्याओं के कारण हो सकते हैं, किन्तु कुछ को अल्फा कणों के लिए जिम्मेदार ठहराया जा सकता है।<ref>{{cite web |url=https://media.blackhat.com/bh-us-11/Dinaburg/BH_US_11_Dinaburg_Bitsquatting_WP.pdf |title=बिटक्वाटिंग - बिना शोषण के डीएनएस हाइजैकिंग|author=Artem Dinaburg |date=July 2011 |access-date=2011-12-26  |archive-date=2018-06-11  |archive-url=https://web.archive.org/web/20180611050923/https://media.blackhat.com/bh-us-11/Dinaburg/BH_US_11_Dinaburg_Bitsquatting_WP.pdf |url-status=dead }}</ref> [[ bitsquating |बित्स्क्वातिंग]] के रूप में दुर्भावनापूर्ण अभिनेताओं द्वारा इन बिट-फ्लिप एरर्स का लाभ उठाया जा सकता है।


[[इसहाक असिमोव]] को 1950 के दशक के उपन्यास में अल्फा-पार्टिकल रैम एररस की आकस्मिक भविष्यवाणी पर उन्हें बधाई देने वाला एक पत्र मिला था ।<ref>[[Gold (Asimov)|Gold]] (1995): "This letter is to inform you and congratulate you on another remarkable scientific prediction of the future; namely your foreseeing of the dynamic random-access memory (DRAM) logic upset problem caused by alpha particle emission, first observed in 1977, but written about by you in Caves of Steel in 1957." [Note: Actually, 1952.] ... "These failures are caused by trace amounts of radioactive elements present in the packaging material used to encapsulate the silicon devices ... in your book, Caves of Steel, published in the 1950s, you use an alpha particle emitter to 'murder' one of the robots in the story, by destroying ('randomizing') its positronic brain. This is, of course, as good a way of describing a logic upset as any I've heard ... our millions of dollars of research, culminating in several international awards for the most important scientific contribution in the field of reliability of semiconductor devices in 1978 and 1979, was predicted in substantially accurate form twenty years [Note: twenty-five years, actually] before the events took place</ref>
[[इसहाक असिमोव]] को 1950 के दशक के उपन्यास में अल्फा-पार्टिकल रैम एरर्स की आकस्मिक पूर्वानुमान पर उन्हें बधाई देने वाला एक पत्र मिला था ।<ref>[[Gold (Asimov)|Gold]] (1995): "This letter is to inform you and congratulate you on another remarkable scientific prediction of the future; namely your foreseeing of the dynamic random-access memory (DRAM) logic upset problem caused by alpha particle emission, first observed in 1977, but written about by you in Caves of Steel in 1957." [Note: Actually, 1952.] ... "These failures are caused by trace amounts of radioactive elements present in the packaging material used to encapsulate the silicon devices ... in your book, Caves of Steel, published in the 1950s, you use an alpha particle emitter to 'murder' one of the robots in the story, by destroying ('randomizing') its positronic brain. This is, of course, as good a way of describing a logic upset as any I've heard ... our millions of dollars of research, culminating in several international awards for the most important scientific contribution in the field of reliability of semiconductor devices in 1978 and 1979, was predicted in substantially accurate form twenty years [Note: twenty-five years, actually] before the events took place</ref>


=== ऊर्जावान न्यूट्रॉन और प्रोटॉन बनाने वाली ब्रह्मांडीय किरणें ===
=== ऊर्जावान न्यूट्रॉन और प्रोटॉन बनाने वाली ब्रह्मांडीय किरणें ===
एक बार इलेक्ट्रॉनिक्स उद्योग ने यह निर्धारित कर लिया कि संकुल संदूषकों को कैसे नियंत्रित किया जाए, यह स्पष्ट हो गया कि अन्य कारण भी काम कर रहे थे। जेम्स एफ. ज़िगलर ने [[आईबीएम]] में काम के एक कार्यक्रम का नेतृत्व किया, जिसकी परिणति कई पत्रों (ज़ीग्लर और लैनफोर्ड, 1979) के प्रकाशन में हुई, जिसमें दिखाया गया कि ब्रह्मांडीय किरणें भी सॉफ्ट एररसं उत्पन्न कर सकती हैं। दरअसल, आधुनिक उपकरणों में कॉस्मिक किरणें प्रमुख कारण हो सकती हैं। यद्यपि ब्रह्मांडीय किरण का प्राथमिक कण सामान्यतः पृथ्वी की सतह तक नहीं पहुंचता है, यह ऊर्जावान माध्यमिक कणों की वायु बौछार (भौतिकी) बनाता है। पृथ्वी की सतह पर सॉफ्ट एररस को उत्पन्न करने में सक्षम कणों का लगभग 95% ऊर्जावान न्यूट्रॉन हैं, शेष प्रोटॉन और पियोन से बना है। <ref name="Ziegler1996">
एक बार इलेक्ट्रॉनिक्स उद्योग ने यह निर्धारित कर लिया कि संकुल संदूषकों को कैसे नियंत्रित किया जाए, यह स्पष्ट हो गया कि अन्य कारण भी काम कर रहे थे। जेम्स एफ. ज़िगलर ने [[आईबीएम|आईBएम]] में काम के एक कार्यक्रम का नेतृत्व किया, जिसकी परिणति कई पत्रों (ज़ीग्लर और लैनफोर्ड, 1979) के प्रकाशन में हुई, जिसमें दिखाया गया कि ब्रह्मांडीय किरणें भी सॉफ्ट एरर्सं उत्पन्न कर सकती हैं। दरअसल, आधुनिक उपकरणों में कॉस्मिक किरणें प्रमुख कारण हो सकती हैं। यद्यपि ब्रह्मांडीय किरण का प्राथमिक कण सामान्यतः पृथ्वी की सतह तक नहीं पहुंचता है, यह ऊर्जावान माध्यमिक कणों की वायु बौछार (भौतिकी) बनाता है। पृथ्वी की सतह पर सॉफ्ट एरर्स को उत्पन्न करने में सक्षम कणों का लगभग 95% ऊर्जावान न्यूट्रॉन हैं, शेष प्रोटॉन और पियोन से बना है। <ref name="Ziegler1996">
{{cite journal |last1=Ziegler |first1=J. F. |title=Terrestrial cosmic rays |journal = [[IBM Journal of Research and Development]] |volume=40 |issue=1 |pages=19–39 |date=January 1996 |doi=10.1147/rd.401.0019 | ISSN = 0018-8646 }}</ref>
{{cite journal |last1=Ziegler |first1=J. F. |title=Terrestrial cosmic rays |journal = [[IBM Journal of Research and Development]] |volume=40 |issue=1 |pages=19–39 |date=January 1996 |doi=10.1147/rd.401.0019 | ISSN = 0018-8646 }}</ref>


आईबीएम ने 1996 में अनुमान लगाया था कि डेस्कटॉप कंप्यूटर के लिए प्रति 256 एमआईबी रैम प्रति माह एरर अपेक्षित थी। <ref name="cosmicRayAlert" /> ऊर्जावान न्यूट्रॉन के इस प्रवाह को सामान्यतः सॉफ्ट एरर साहित्य में ब्रह्मांडीय किरणों के रूप में जाना जाता है। न्यूट्रॉन अनावेशित होते हैं और अपने आप एक परिपथ को परेशान नहीं कर सकते हैं, किन्तु चिप में एक परमाणु के नाभिक द्वारा [[न्यूट्रॉन कैप्चर]] कब्जा कर लेते हैं। इस प्रक्रिया के परिणामस्वरूप आवेशित सेकेंडरी का उत्पादन हो सकता है, जैसे कि अल्फा कण और ऑक्सीजन नाभिक, जो तब सॉफ्ट एररसँ उत्पन्न कर सकते हैं।
आईBएम ने 1996 में अनुमान लगाया था कि डेस्कटॉप कंप्यूटर के लिए प्रति 256 एमआईB रैम प्रति माह एरर अपेक्षित थी। <ref name="cosmicRayAlert" /> ऊर्जावान न्यूट्रॉन के इस प्रवाह को सामान्यतः सॉफ्ट एरर साहित्य में ब्रह्मांडीय किरणों के रूप में जाना जाता है। न्यूट्रॉन अनावेशित होते हैं और अपने आप एक परिपथ को परेशान नहीं कर सकते हैं, किन्तु चिप में एक परमाणु के नाभिक द्वारा [[न्यूट्रॉन कैप्चर]] कब्जा कर लेते हैं। इस प्रक्रिया के परिणामस्वरूप आवेशित सेकेंडरी का उत्पादन हो सकता है, जैसे कि अल्फा कण और ऑक्सीजन नाभिक, जो तब सॉफ्ट एरर्सँ उत्पन्न कर सकते हैं।


कॉस्मिक किरण प्रवाह ऊंचाई पर निर्भर करता है। समुद्र तल पर 40.7°N, 74°W ([[न्यूयॉर्क शहर]], एनवाई, यूएसए) के सामान्य संदर्भ स्थान के लिए फ्लक्स लगभग 14 न्यूट्रॉन/सेमी<sup>2</sup>/घंटा है । प्रणाली को गुफा में दफनाने से कॉस्मिक-रे प्रेरित सॉफ्ट एरर की दर नगण्य स्तर तक कम हो जाती है। वायुमंडल के निचले स्तरों में, समुद्र तल से ऊंचाई में प्रत्येक 1000 मीटर (1.3 प्रति 1000 फीट) वृद्धि के लिए प्रवाह लगभग 2.2 गुना बढ़ जाता है। पहाड़ों की चोटी पर संचालित कंप्यूटर समुद्र तल की तुलना में सॉफ्ट एररस की उच्च दर के परिमाण का अनुभव करते हैं। विमान में उतार-चढ़ाव की दर समुद्र तल से 300 गुना अधिक हो सकती है। यह संकुल क्षय प्रेरित सॉफ्ट एरर के विपरीत है, जो स्थान के साथ नहीं बदलते हैं। <ref name="GordonGoldhagen2004">{{cite journal |last1=Gordon |first1=M. S. |last2=Goldhagen |first2=P. |last3=Rodbell |first3=K. P. |last4=Zabel |first4=T. H. |last5=Tang |first5=H. H. K. |last6=Clem |first6=J. M. |last7=Bailey |first7=P. |title=जमीन पर कॉस्मिक-रे प्रेरित न्यूट्रॉन के प्रवाह और ऊर्जा स्पेक्ट्रम का मापन|journal=IEEE Transactions on Nuclear Science |volume=51 |issue=6 |date=2004 |pages=3427–3434 |issn=0018-9499 |doi=10.1109/TNS.2004.839134 |bibcode=2004ITNS...51.3427G|s2cid=9573484 }}</ref>
कॉस्मिक किरण प्रवाह ऊंचाई पर निर्भर करता है। समुद्र तल पर 40.7°N, 74°W ([[न्यूयॉर्क शहर]], एनवाई, यूएसए) के सामान्य संदर्भ स्थान के लिए फ्लक्स लगभग 14 न्यूट्रॉन/सेमी<sup>2</sup>/घंटा है । प्रणाली को गुफा में दफनाने से कॉस्मिक-रे प्रेरित सॉफ्ट एरर की दर नगण्य स्तर तक कम हो जाती है। वायुमंडल के निचले स्तरों में, समुद्र तल से ऊंचाई में प्रत्येक 1000 मीटर (1.3 प्रति 1000 फीट) वृद्धि के लिए प्रवाह लगभग 2.2 गुना बढ़ जाता है। पहाड़ों की चोटी पर संचालित कंप्यूटर समुद्र तल की तुलना में सॉफ्ट एरर्स की उच्च दर के परिमाण का अनुभव करते हैं। विमान में उतार-चढ़ाव की दर समुद्र तल से 300 गुना अधिक हो सकती है। यह संकुल क्षय प्रेरित सॉफ्ट एरर के विपरीत है, जो स्थान के साथ नहीं बदलते हैं। <ref name="GordonGoldhagen2004">{{cite journal |last1=Gordon |first1=M. S. |last2=Goldhagen |first2=P. |last3=Rodbell |first3=K. P. |last4=Zabel |first4=T. H. |last5=Tang |first5=H. H. K. |last6=Clem |first6=J. M. |last7=Bailey |first7=P. |title=जमीन पर कॉस्मिक-रे प्रेरित न्यूट्रॉन के प्रवाह और ऊर्जा स्पेक्ट्रम का मापन|journal=IEEE Transactions on Nuclear Science |volume=51 |issue=6 |date=2004 |pages=3427–3434 |issn=0018-9499 |doi=10.1109/TNS.2004.839134 |bibcode=2004ITNS...51.3427G|s2cid=9573484 }}</ref>


मूर के नियम के अनुसार, [[इंटेल]] को उम्मीद है कि ब्रह्मांडीय किरणों के कारण होने वाली एररसं बढ़ जाएंगी और रचना में सीमित कारक बन जाएंगी। <ref name="cosmicRayAlert">{{cite magazine |last=Simonite |first=Tom |date=March 2008 |title=Should every computer chip have a cosmic ray detector? |url=https://www.newscientist.com/blog/technology/2008/03/do-we-need-cosmic-ray-alerts-for.html |magazine=[[New Scientist]] |archive-url=https://web.archive.org/web/20111202020146/https://www.newscientist.com/blog/technology/2008/03/do-we-need-cosmic-ray-alerts-for.html |archive-date=2 December 2011 |access-date=26 November 2019}}</ref>
मूर के नियम के अनुसार, [[इंटेल]] को उम्मीद है कि ब्रह्मांडीय किरणों के कारण होने वाली एरर्सं बढ़ जाएंगी और रचना में सीमित कारक बन जाएंगी। <ref name="cosmicRayAlert">{{cite magazine |last=Simonite |first=Tom |date=March 2008 |title=Should every computer chip have a cosmic ray detector? |url=https://www.newscientist.com/blog/technology/2008/03/do-we-need-cosmic-ray-alerts-for.html |magazine=[[New Scientist]] |archive-url=https://web.archive.org/web/20111202020146/https://www.newscientist.com/blog/technology/2008/03/do-we-need-cosmic-ray-alerts-for.html |archive-date=2 December 2011 |access-date=26 November 2019}}</ref>


कॉस्मिक-रे सॉफ्ट एरर की औसत दर सनस्पॉट गतिविधि के व्युत्क्रमानुपाती होती है। अर्थात्, सौर कलंक चक्र के सक्रिय भाग के समय कॉस्मिक-रे सॉफ्ट एररस की औसत संख्या घट जाती है और शांत भाग के समय बढ़ जाती है। यह प्रति-सहज ज्ञान युक्त परिणाम दो कारणों से होता है। सूर्य सामान्यतः 1 जीईवी से अधिक ऊर्जा वाले ब्रह्मांडीय किरण कणों का उत्पादन नहीं करता है जो पृथ्वी के ऊपरी वायुमंडल में प्रवेश करने और कणों की बौछार बनाने में सक्षम हैं, इसलिए सौर प्रवाह में परिवर्तन सीधे एररस की संख्या को प्रभावित नहीं करते हैं। इसके अतिरिक्त, सक्रिय सूर्य अवधि के समय सौर प्रवाह में वृद्धि से पृथ्वी के चुंबकीय क्षेत्र को फिर से आकार देने का प्रभाव पड़ता है, जो उच्च ऊर्जा वाली ब्रह्मांडीय किरणों के खिलाफ कुछ अतिरिक्त परिरक्षण प्रदान करता है, जिसके परिणामस्वरूप बारिश उत्पन्न करने वाले कणों की संख्या में कमी आती है। न्यूयॉर्क शहर में ऊर्जावान न्यूट्रॉन प्रवाह के ± 7% मॉडुलन के परिणामस्वरूप प्रभाव किसी भी स्थितिया में अधिक छोटा है अन्य स्थान इसी तरह प्रभावित हैं।
कॉस्मिक-रे सॉफ्ट एरर की औसत दर सनस्पॉट गतिविधि के व्युत्क्रमानुपाती होती है। अर्थात्, सौर कलंक चक्र के सक्रिय भाग के समय कॉस्मिक-रे सॉफ्ट एरर्स की औसत संख्या घट जाती है और शांत भाग के समय बढ़ जाती है। यह प्रति-सहज ज्ञान युक्त परिणाम दो कारणों से होता है। सूर्य सामान्यतः 1 जीईवी से अधिक ऊर्जा वाले ब्रह्मांडीय किरण कणों का उत्पादन नहीं करता है जो पृथ्वी के ऊपरी वायुमंडल में प्रवेश करने और कणों की बौछार बनाने में सक्षम हैं, इसलिए सौर प्रवाह में परिवर्तन सीधे एरर्स की संख्या को प्रभावित नहीं करते हैं। इसके अतिरिक्त, सक्रिय सूर्य अवधि के समय सौर प्रवाह में वृद्धि से पृथ्वी के चुंबकीय क्षेत्र को फिर से आकार देने का प्रभाव पड़ता है, जो उच्च ऊर्जा वाली ब्रह्मांडीय किरणों के खिलाफ कुछ अतिरिक्त परिरक्षण प्रदान करता है, जिसके परिणामस्वरूप बारिश उत्पन्न करने वाले कणों की संख्या में कमी आती है। न्यूयॉर्क शहर में ऊर्जावान न्यूट्रॉन प्रवाह के ± 7% मॉडुलन के परिणामस्वरूप प्रभाव किसी भी स्थितिया में अधिक छोटा है अन्य स्थान इसी तरह प्रभावित हैं।


एक प्रयोग ने प्रति छोटा परिमाण चिप में समय में 5,950 विफलता (फिट = प्रति अरब घंटे की विफलता) के रूप में समुद्र तल पर सॉफ्ट एरर दर को मापा। जब उसी परीक्षण समुच्चयअप को भूमिगत तिजोरी में ले जाया गया, जिसे ओवर द्वारा परिरक्षित किया गया था {{Convert|50|feet|m}} चट्टान की जिसने सभी ब्रह्मांडीय किरणों को प्रभावी ढंग से समाप्त कर दिया, शून्य सॉफ्ट एररसं अंकित की गईं। <ref>{{cite web|author-last=Dell|author-first=Timothy J.|date=1997|title=पीसी सर्वर मेन मेमोरी के लिए चिपकिल-करेक्ट ईसीसी के लाभों पर एक श्वेत पत्र|url=https://asset-pdf.scinapse.io/prod/48011110/48011110.pdf|url-status=live|access-date=2021-11-03|website=ece.umd.edu|page=13}}</ref> इस परीक्षण में, कॉस्मिक किरणों के कारण होने वाली एरर दर की तुलना में, सॉफ्ट एरर के अन्य सभी कारण मापने के लिए बहुत छोटे हैं।
एक प्रयोग ने प्रति छोटा परिमाण चिप में समय में 5,950 विफलता (फिट = प्रति अरब घंटे की विफलता) के रूप में समुद्र तल पर सॉफ्ट एरर दर को मापा। जब उसी परीक्षण समुच्चयअप को भूमिगत तिजोरी में ले जाया गया, जिसे ओवर द्वारा परिरक्षित किया गया था {{Convert|50|feet|m}} चट्टान की जिसने सभी ब्रह्मांडीय किरणों को प्रभावी ढंग से समाप्त कर दिया, शून्य सॉफ्ट एरर्सं अंकित की गईं। <ref>{{cite web|author-last=Dell|author-first=Timothy J.|date=1997|title=पीसी सर्वर मेन मेमोरी के लिए चिपकिल-करेक्ट ईसीसी के लाभों पर एक श्वेत पत्र|url=https://asset-pdf.scinapse.io/prod/48011110/48011110.pdf|url-status=live|access-date=2021-11-03|website=ece.umd.edu|page=13}}</ref> इस परीक्षण में, कॉस्मिक किरणों के कारण होने वाली एरर दर की तुलना में, सॉफ्ट एरर के अन्य सभी कारण मापने के लिए बहुत छोटे हैं।
   
   
ब्रह्मांडीय किरणों द्वारा उत्पादित ऊर्जावान न्यूट्रॉन अपनी अधिकांश गतिज ऊर्जा खो सकते हैं और अपने परिवेश के साथ थर्मल संतुलन तक पहुंच सकते हैं क्योंकि वे सामग्री द्वारा बिखरे हुए हैं। परिणामी न्यूट्रॉन को केवल [[थर्मल न्यूट्रॉन]] के रूप में जाना जाता है और 25 डिग्री सेल्सियस पर लगभग 25 मिलीइलेक्ट्रॉन-वोल्ट की औसत गतिज ऊर्जा होती है। थर्मल न्यूट्रॉन भी पर्यावरणीय विकिरण स्रोतों जैसे कि प्राकृतिक रूप से पाए जाने वाले यूरेनियम या थोरियम के क्षय से उत्पन्न होते हैं। कॉस्मिक-रे वर्षा के अतिरिक्त अन्य स्रोतों से थर्मल न्यूट्रॉन प्रवाह अभी भी भूमिगत स्थान में ध्यान देने योग्य हो सकता है और कुछ परिपथों के लिए सॉफ्ट एररस में महत्वपूर्ण योगदानकर्ता हो सकता है।
ब्रह्मांडीय किरणों द्वारा उत्पादित ऊर्जावान न्यूट्रॉन अपनी अधिकांश गतिज ऊर्जा खो सकते हैं और अपने परिवेश के साथ थर्मल संतुलन तक पहुंच सकते हैं क्योंकि वे सामग्री द्वारा बिखरे हुए हैं। परिणामी न्यूट्रॉन को केवल [[थर्मल न्यूट्रॉन]] के रूप में जाना जाता है और 25 डिग्री सेल्सियस पर लगभग 25 मिLiइलेक्ट्रॉन-वोल्ट की औसत गतिज ऊर्जा होती है। थर्मल न्यूट्रॉन भी पर्यावरणीय विकिरण स्रोतों जैसे कि प्राकृतिक रूप से पाए जाने वाले यूरेनियम या थोरियम के क्षय से उत्पन्न होते हैं। कॉस्मिक-रे वर्षा के अतिरिक्त अन्य स्रोतों से थर्मल न्यूट्रॉन प्रवाह अभी भी भूमिगत स्थान में ध्यान देने योग्य हो सकता है और कुछ परिपथों के लिए सॉफ्ट एरर्स में महत्वपूर्ण योगदानकर्ता हो सकता है।


=== [[थर्मल न्यूट्रॉन]] ===
=== [[थर्मल न्यूट्रॉन]] ===
न्यूट्रॉन जो गतिज ऊर्जा खो चुके हैं जब तक वे अपने परिवेश के साथ थर्मल संतुलन में नहीं हैं, कुछ परिपथों के लिए सॉफ्ट एररस का एक महत्वपूर्ण कारण है। कम ऊर्जा पर कई न्यूट्रॉन कैप्चर प्रतिक्रियाएं अधिक संभावित हो जाती हैं और कुछ सामग्रियों के विखंडन के परिणामस्वरूप आवेशित सेकेंडरी विखंडन उपोत्पाद के रूप में बनते हैं। कुछ परिपथों के लिए के नाभिक द्वारा एक तापीय न्यूट्रॉन का कब्जा बोरॉन<sup>10</sup> का बी समस्थानिक विशेष रूप से महत्वपूर्ण है। यह परमाणु प्रतिक्रिया अल्फा कण, लिथियम का एक कुशल उत्पादक है ली नाभिक और [[गामा किरण]]। आवेशित कणों में से कोई भी (अल्फा या ली<sup>7</sup>) एक महत्वपूर्ण परिपथ नोड के बहुत करीब, लगभग 5 माइक्रोमीटर में उत्पन्न होने पर एक सॉफ्ट एरर का कारण बन सकता है। कैप्चर क्रॉस सेक्शन के लिए B<sup>11</sup> परिमाण के 6 ऑर्डर छोटे हैं और सॉफ्ट एररस में योगदान नहीं करते हैं। <ref name="BaumannHossain1995">{{cite book |last1=Baumann |first1=R. |title=33rd IEEE International Reliability Physics Symposium |last2=Hossain |first2=T. |last3=Murata |first3=S. |last4=Kitagawa |first4=H. |chapter=Boron compounds as a dominant source of alpha particles in semiconductor devices |date=1995 |pages=297–302 |doi=10.1109/RELPHY.1995.513695 |isbn=978-0-7803-2031-4|s2cid=110078856 }}</ref>
न्यूट्रॉन जो गतिज ऊर्जा खो चुके हैं जब तक वे अपने परिवेश के साथ थर्मल संतुलन में नहीं हैं, कुछ परिपथों के लिए सॉफ्ट एरर्स का एक महत्वपूर्ण कारण है। कम ऊर्जा पर कई न्यूट्रॉन कैप्चर प्रतिक्रियाएं अधिक संभावित हो जाती हैं और कुछ सामग्रियों के विखंडन के परिणामस्वरूप आवेशित सेकेंडरी विखंडन उपोत्पाद के रूप में बनते हैं। कुछ परिपथों के लिए के नाभिक द्वारा एक तापीय न्यूट्रॉन का कब्जा बोरॉन<sup>10</sup> का B समस्थानिक विशेष रूप से महत्वपूर्ण है। यह परमाणु प्रतिक्रिया अल्फा कण, लिथियम का एक कुशल उत्पादक है Li नाभिक और [[गामा किरण]]। आवेशित कणों में से कोई भी (अल्फा या Li<sup>7</sup>) एक महत्वपूर्ण परिपथ नोड के बहुत करीब, लगभग 5 माइक्रोमीटर में उत्पन्न होने पर एक सॉफ्ट एरर का कारण बन सकता है। कैप्चर क्रॉस सेक्शन के लिए B<sup>11</sup> परिमाण के 6 ऑर्डर छोटे हैं और सॉफ्ट एरर्स में योगदान नहीं करते हैं। <ref name="BaumannHossain1995">{{cite book |last1=Baumann |first1=R. |title=33rd IEEE International Reliability Physics Symposium |last2=Hossain |first2=T. |last3=Murata |first3=S. |last4=Kitagawa |first4=H. |chapter=Boron compounds as a dominant source of alpha particles in semiconductor devices |date=1995 |pages=297–302 |doi=10.1109/RELPHY.1995.513695 |isbn=978-0-7803-2031-4|s2cid=110078856 }}</ref>


बोरॉन का उपयोग [[बोरोफॉस्फोसिलिकेट ग्लास]] में किया गया है, जो एकीकृत परिपथों की अंतर्संबंध परतों विशेष रूप से सबसे कम में इन्सुलेटर है, । बोरॉन को सम्मिलित करने से कांच का पिघला हुआ तापमान कम हो जाता है जिससे उत्तम [[ इलेक्ट्रॉनिक उपकरणों में एक लेप लगाकर टाँका लगाना |इलेक्ट्रॉनिक उपकरणों में एक लेप लगाकर टाँका लगाना]] और प्लानराइजेशन विशेषताएँ मिलती हैं। इस एप्लिकेशन में ग्लास को वजन के हिसाब से 4% से 5% की बोरॉन सामग्री के साथ तैयार किया जाता है। प्राकृतिक रूप से पाया जाने वाला बोरॉन 20% है B<sup>10</sup> शेष के साथ बी<sup>11</sup> आइसोटोप। सॉफ्ट एरर के उच्च स्तर के कारण होते हैं <sup>10</sup>बी कुछ पुरानी एकीकृत परिपथ प्रक्रियाओं की इस महत्वपूर्ण निचली परत में। पी-टाइप डोपेंट के रूप में कम सांद्रता में उपयोग किया जाने वाला बोरॉन -11, सॉफ्ट एरर में योगदान नहीं देता है। एकीकृत परिपथ निर्माताओं ने उस समय तक बोरेटेड डाइलेक्ट्रिक्स को समाप्त कर दिया जब तक कि व्यक्तिगत परिपथ घटकों का आकार 150 एनएम तक कम नहीं हो गया, मुख्य रूप से इस समस्या के कारण है।
बोरॉन का उपयोग [[बोरोफॉस्फोसिलिकेट ग्लास]] में किया गया है, जो एकीकृत परिपथों की अंतर्संबंध परतों विशेष रूप से सबसे कम में इन्सुलेटर है, । बोरॉन को सम्मिलित करने से कांच का पिघला हुआ तापमान कम हो जाता है जिससे उत्तम [[ इलेक्ट्रॉनिक उपकरणों में एक लेप लगाकर टाँका लगाना |इलेक्ट्रॉनिक उपकरणों में एक लेप लगाकर टाँका लगाना]] और प्लानराइजेशन विशेषताएँ मिलती हैं। इस एप्लिकेशन में ग्लास को वजन के हिसाब से 4% से 5% की बोरॉन सामग्री के साथ तैयार किया जाता है। प्राकृतिक रूप से पाया जाने वाला बोरॉन 20% है B<sup>10</sup> शेष के साथ B<sup>11</sup> आइसोटोप सॉफ्ट एरर के उच्च स्तर के कारण होते हैं B<sup>10</sup> कुछ पुरानी एकीकृत परिपथ प्रक्रियाओं की इस महत्वपूर्ण निचLi परत में। पी-टाइप डोपेंट के रूप में कम सांद्रता में उपयोग किया जाने वाला बोरॉन -11, सॉफ्ट एरर में योगदान नहीं देता है। एकीकृत परिपथ निर्माताओं ने उस समय तक बोरेटेड डाइलेक्ट्रिक्स को समाप्त कर दिया जब तक कि व्यक्तिगत परिपथ घटकों का आकार 150 एनएम तक कम नहीं हो गया, मुख्य रूप से इस समस्या के कारण है।


महत्वपूर्ण रचनाों में, बोरॉन की कमी{{mdashb}}<nowiki>लगभग पूरी तरह से बोरॉन-11 से मिलकर बनता है{{एमडीएएसयचबी}इस प्रभाव से बचने के लिए और इसलिए सॉफ्ट एरर रेट को कम करने के लिए } का उपयोग किया जाता है। बोरॉन-11 परमाणु ऊर्जा का उप-उत्पाद है।</nowiki>
महत्वपूर्ण रचनाों में, बोरॉन की कमी{{mdashb}}<nowiki>लगभग पूरी तरह से बोरॉन-11 से मिलकर बनता है{{एमडीएएसयचB}इस प्रभाव से बचने के लिए और इसलिए सॉफ्ट एरर रेट को कम करने के लिए } का उपयोग किया जाता है। बोरॉन-11 परमाणु ऊर्जा का उप-उत्पाद है।</nowiki>


चिकित्सा इलेक्ट्रॉनिक उपकरणों में अनुप्रयोगों के लिए यह सॉफ्ट एरर तंत्र अत्यंत महत्वपूर्ण हो सकता है। 10 एमईवी से ऊपर फोटॉन बीम ऊर्जा का उपयोग करके उच्च-ऊर्जा कैंसर विकिरण चिकित्सा के समय न्यूट्रॉन का उत्पादन किया जाता है। इन न्यूट्रॉनों को मॉडरेट किया जाता है क्योंकि वे उपचार कक्ष में उपकरण और दीवारों से बिखरे हुए होते हैं जिसके परिणामस्वरूप थर्मल न्यूट्रॉन प्रवाह होता है जो लगभग 40 × 10<sup>6</sup> होता है सामान्य पर्यावरणीय न्यूट्रॉन प्रवाह से अधिक है। यह उच्च तापीय न्यूट्रॉन प्रवाह सामान्यतः सॉफ्ट एररस की बहुत ही उच्च दर और परिणामी परिपथ अस्तव्यस्तता का परिणाम होता है ।<ref name="WilkinsonBounds2005">{{cite journal |last1=Wilkinson |first1=J. D. |last2=Bounds |first2=C. |last3=Brown |first3=T. |last4=Gerbi |first4=B. J. |last5=Peltier |first5=J. |title=इलेक्ट्रॉनिक उपकरणों में नरम त्रुटियों के कारण कैंसर-रेडियोथेरेपी उपकरण|journal=IEEE Transactions on Device and Materials Reliability |volume=5 |issue=3 |date=2005 |pages=449–451 |issn=1530-4388 |doi=10.1109/TDMR.2005.858342|s2cid=20789261 }}</ref><ref name="Franco">Franco, L., Gómez, F., Iglesias, A., Pardo, J., Pazos, A., Pena, J., Zapata, M., SEUs on commercial SRAM induced by low energy neutrons produced at a clinical linac facility, RADECS Proceedings, September 2005</ref>
चिकित्सा इलेक्ट्रॉनिक उपकरणों में अनुप्रयोगों के लिए यह सॉफ्ट एरर तंत्र अत्यंत महत्वपूर्ण हो सकता है। 10 एमईवी से ऊपर फोटॉन Bम ऊर्जा का उपयोग करके उच्च-ऊर्जा कैंसर विकिरण चिकित्सा के समय न्यूट्रॉन का उत्पादन किया जाता है। इन न्यूट्रॉनों को मॉडरेट किया जाता है क्योंकि वे उपचार कक्ष में उपकरण और दीवारों से बिखरे हुए होते हैं जिसके परिणामस्वरूप थर्मल न्यूट्रॉन प्रवाह होता है जो लगभग 40 × 10<sup>6</sup> होता है सामान्य पर्यावरणीय न्यूट्रॉन प्रवाह से अधिक है। यह उच्च तापीय न्यूट्रॉन प्रवाह सामान्यतः सॉफ्ट एरर्स की बहुत ही उच्च दर और परिणामी परिपथ अस्तव्यस्तता का परिणाम होता है ।<ref name="WilkinsonBounds2005">{{cite journal |last1=Wilkinson |first1=J. D. |last2=Bounds |first2=C. |last3=Brown |first3=T. |last4=Gerbi |first4=B. J. |last5=Peltier |first5=J. |title=इलेक्ट्रॉनिक उपकरणों में नरम त्रुटियों के कारण कैंसर-रेडियोथेरेपी उपकरण|journal=IEEE Transactions on Device and Materials Reliability |volume=5 |issue=3 |date=2005 |pages=449–451 |issn=1530-4388 |doi=10.1109/TDMR.2005.858342|s2cid=20789261 }}</ref><ref name="Franco">Franco, L., Gómez, F., Iglesias, A., Pardo, J., Pazos, A., Pena, J., Zapata, M., SEUs on commercial SRAM induced by low energy neutrons produced at a clinical linac facility, RADECS Proceedings, September 2005</ref>
=== अन्य कारण ===
=== अन्य कारण ===
[[यादृच्छिक शोर|यादृच्छिक ध्वनि]] या सिग्नल अखंडता की समस्याओं के कारण सॉफ्ट एररसं भी हो सकती हैं, जैसे आगमनात्मक या कैपेसिटिव क्रॉसस्टॉक। चूंकि, सामान्यतः, ये स्रोत विकिरण प्रभाव की तुलना में समग्र सॉफ्ट एरर दर में छोटे से योगदान का प्रतिनिधित्व करते हैं।
[[यादृच्छिक शोर|यादृच्छिक ध्वनि]] या सिग्नल अखंडता की समस्याओं के कारण सॉफ्ट एरर्सं भी हो सकती हैं, जैसे आगमनात्मक या कैपेसिटिव क्रॉसस्टॉक। चूंकि, सामान्यतः, ये स्रोत विकिरण प्रभाव की तुलना में समग्र सॉफ्ट एरर दर में छोटे से योगदान का प्रतिनिधित्व करते हैं।


कुछ परीक्षण यह निष्कर्ष निकालते हैं कि [[DRAM|छोटा परिमाण]] मेमोरी सेल्स के अलगाव को विशेष रूप से तैयार किए गए साइड इफेक्ट्स से आसन्न कोशिकाओं तक पहुँचाया जा सकता है। इस प्रकार, छोटा परिमाण में संग्रहीत डेटा तक पहुँचने के कारण मेमोरी सेल अपने चार्ज को लीक कर देते हैं और आधुनिक मेमोरी में उच्च सेल घनत्व के परिणामस्वरूप, पास की मेमोरी पंक्तियों की सामग्री को बदल देते हैं, जो वास्तव में मूल मेमोरी एक्सेस में संबोधित नहीं किए गए थे। <ref name="kyungbae">{{cite book |author-first1=Kyungbae |author-last1=Park |author-first2=Sanghyeon |author-last2=Baeg |author-first3=ShiJie |author-last3=Wen |author-first4=Richard |author-last4=Wong |title=Active-Precharge Hammering on a Row Induced Failure in DDR3 SDRAMs under 3x&nbsp;nm Technology |pages=82–85 |publisher=[[IEEE]] |date=October 2014 |doi=10.1109/IIRW.2014.7049516 |chapter=Active-precharge hammering on a row induced failure in DDR3 SDRAMs under 3× nm technology |isbn=978-1-4799-7308-8|s2cid=14464953 }}</ref> इस प्रभाव को [[पंक्ति हथौड़ा]] के रूप में जाना जाता है, और इसका उपयोग कुछ [[विशेषाधिकार वृद्धि]] कंप्यूटर सुरक्षा [[शोषण (कंप्यूटर सुरक्षा)]] में भी किया गया है।<ref>{{cite web |url=http://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf |title=Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors |date=2014-06-24 |access-date=2015-03-10 |author-first1=Yoongu |author-last1=Kim |author-first2=Ross |author-last2=Daly |author-first3=Jeremie |author-last3=Kim |author-first4=Chris |author-last4=Fallin |author-first5=Ji Hye |author-last5=Lee |author-first6=Donghyuk |author-last6=Lee |author-first7=Chris |author-last7=Wilkerson |author-first8=Konrad |author-last8=Lai |author-first9=Onur |author-last9=Mutlu |publisher=[[IEEE]] |website=ece.cmu.edu}}</ref><ref>{{cite web |url=https://arstechnica.com/security/2015/03/cutting-edge-hack-gives-super-user-status-by-exploiting-dram-weakness/ |title=अत्याधुनिक हैक DRAM की कमजोरी का फायदा उठाकर सुपर यूजर का दर्जा देता है|date=2015-03-10 |access-date=2015-03-10 |author-first=Dan |author-last=Goodin |publisher=[[Ars Technica]]}}</ref>
कुछ परीक्षण यह निष्कर्ष निकालते हैं कि [[DRAM|छोटा परिमाण]] मेमोरी सेल्स के अलगाव को विशेष रूप से तैयार किए गए साइड इफेक्ट्स से आसन्न कोशिकाओं तक पहुँचाया जा सकता है। इस प्रकार, छोटा परिमाण में संग्रहीत डेटा तक पहुँचने के कारण मेमोरी सेल अपने चार्ज को Liक कर देते हैं और आधुनिक मेमोरी में उच्च सेल घनत्व के परिणामस्वरूप, पास की मेमोरी पंक्तियों की सामग्री को बदल देते हैं, जो वास्तव में मूल मेमोरी एक्सेस में संबोधित नहीं किए गए थे। <ref name="kyungbae">{{cite book |author-first1=Kyungbae |author-last1=Park |author-first2=Sanghyeon |author-last2=Baeg |author-first3=ShiJie |author-last3=Wen |author-first4=Richard |author-last4=Wong |title=Active-Precharge Hammering on a Row Induced Failure in DDR3 SDRAMs under 3x&nbsp;nm Technology |pages=82–85 |publisher=[[IEEE]] |date=October 2014 |doi=10.1109/IIRW.2014.7049516 |chapter=Active-precharge hammering on a row induced failure in DDR3 SDRAMs under 3× nm technology |isbn=978-1-4799-7308-8|s2cid=14464953 }}</ref> इस प्रभाव को [[पंक्ति हथौड़ा]] के रूप में जाना जाता है, और इसका उपयोग कुछ [[विशेषाधिकार वृद्धि]] कंप्यूटर सुरक्षा [[शोषण (कंप्यूटर सुरक्षा)]] में भी किया गया है।<ref>{{cite web |url=http://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf |title=Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors |date=2014-06-24 |access-date=2015-03-10 |author-first1=Yoongu |author-last1=Kim |author-first2=Ross |author-last2=Daly |author-first3=Jeremie |author-last3=Kim |author-first4=Chris |author-last4=Fallin |author-first5=Ji Hye |author-last5=Lee |author-first6=Donghyuk |author-last6=Lee |author-first7=Chris |author-last7=Wilkerson |author-first8=Konrad |author-last8=Lai |author-first9=Onur |author-last9=Mutlu |publisher=[[IEEE]] |website=ece.cmu.edu}}</ref><ref>{{cite web |url=https://arstechnica.com/security/2015/03/cutting-edge-hack-gives-super-user-status-by-exploiting-dram-weakness/ |title=अत्याधुनिक हैक DRAM की कमजोरी का फायदा उठाकर सुपर यूजर का दर्जा देता है|date=2015-03-10 |access-date=2015-03-10 |author-first=Dan |author-last=Goodin |publisher=[[Ars Technica]]}}</ref>
== सॉफ्ट एररस के आसपास रचनािंग ==
== सॉफ्ट एरर्स के आसपास रचनािंग ==


=== सॉफ्ट एरर शमन ===
=== सॉफ्ट एरर शमन ===
एक रचना सही अर्धचालक, संकुल और सब्सट्रेट सामग्री, और सही डिवाइस ज्यामिति का चयन करके विवेकपूर्ण डिवाइस रचना द्वारा सॉफ्ट एररस की दर को कम करने का प्रयास कर सकता है। अधिकांशतः, चूंकि, यह डिवाइस के आकार और वोल्टेज को कम करने, ऑपरेटिंग गति बढ़ाने और बिजली अपव्यय को कम करने की आवश्यकता से सीमित है। जेडईसी जेएसडी[[JESD-89|-89]] मानक का उपयोग करते हुए उद्योग में समुच्चय करने के लिए उपकरणों की संवेदनशीलता का वर्णन किया गया है।
एक रचना सही अर्धचालक, संकुल और सब्सट्रेट सामग्री, और सही डिवाइस ज्यामिति का चयन करके विवेकपूर्ण डिवाइस रचना द्वारा सॉफ्ट एरर्स की दर को कम करने का प्रयास कर सकता है। अधिकांशतः, चूंकि, यह डिवाइस के आकार और वोल्टेज को कम करने, ऑपरेटिंग गति बढ़ाने और Li अपव्यय को कम करने की आवश्यकता से सीमित है। जेडईसी जेएसडी[[JESD-89|-89]] मानक का उपयोग करते हुए उद्योग में समुच्चय करने के लिए उपकरणों की संवेदनशीलता का वर्णन किया गया है।


डिजिटल परिपथ में सॉफ्ट एरर रेट को कम करने के लिए उपयोग की जाने वाली विधि को [[ विकिरण सख्त |विकिरण सख्त]] कहा जाता है। इसमें वृद्धि भी सम्मिलित है
डिजिटल परिपथ में सॉफ्ट एरर रेट को कम करने के लिए उपयोग की जाने Li विधि को [[ विकिरण सख्त |विकिरण सख्त]] कहा जाता है। इसमें वृद्धि भी सम्मिलित है


इसके प्रभावी Q को बढ़ाने के लिए चयनित परिपथ नोड्स पर समाई<sub>crit</sub> कीमत। यह कण ऊर्जा की सीमा को कम करता है |
इसके प्रभावी Q को बढ़ाने के लिए चयनित परिपथ नोड्स पर समाई<sub>crit</sub> मूल्य। यह कण ऊर्जा की सीमा को कम करता है |


जिससे नोड का तर्क मूल्य परेशान हो सकता है। साझा करने वाले ट्रांजिस्टर के आकार को बढ़ाकर अधिकांशतः विकिरण सख्त किया जाता है |
जिससे नोड का तर्क मूल्य परेशान हो सकता है। साझा करने वाले ट्रांजिस्टर के आकार को बढ़ाकर अधिकांशतः विकिरण सख्त किया जाता है |


नोड पर एक नाली/स्रोत क्षेत्र। चूंकि रेडिएशन हार्डनिंग का क्षेत्र और पावर ओवरहेड रचना के लिए प्रतिबंधात्मक हो सकता है, इसलिए विधि को अधिकांशतः श्रेष्ठ रूप से नोड्स पर प्रयुक्त किया जाता है, जिसके बारे में भविष्यवाणी की जाती है कि यदि हिट हो जाए तो सॉफ्ट एरर होने की संभावना सबसे अधिक होती है। उपकरण और मॉडल जो कर सकते हैं |
नोड पर एक Li/स्रोत क्षेत्र। चूंकि रेडिएशन हार्डनिंग का क्षेत्र और पावर ओवरहेड रचना के लिए प्रतिबंधात्मक हो सकता है, इसलिए विधि को अधिकांशतः श्रेष्ठ रूप से नोड्स पर प्रयुक्त किया जाता है, जिसके बारे में पूर्वानुमान की जाती है कि यदि हिट हो जाए तो सॉफ्ट एरर होने की संभावना सबसे अधिक होती है। उपकरण और मॉडल जो कर सकते हैं |


भविष्यवाणी करें कि कौन से नोड सबसे अशक्त हैं, सॉफ्ट एरर के क्षेत्र में पिछले और वर्तमान शोध का विषय हैं।
पूर्वानुमान करें कि कौन से नोड सबसे अशक्त हैं, सॉफ्ट एरर के क्षेत्र में पिछले और वर्तमान शोध का विषय हैं।


=== सॉफ्ट एररस का पता लगाना ===
=== सॉफ्ट एरर्स का पता लगाना ===
हार्डवेयर और कोमलवेयर दोनों विधिों का उपयोग करके प्रोसेसर और मेमोरी संसाधनों में सॉफ्ट एरर को संबोधित करने का काम किया गया है। कई शोध प्रयासों ने हार्डवेयर-आधारित निरर्थक बहु-थ्रेडिंग के माध्यम से एरर का पता लगाने और पुनर्प्राप्ति का प्रस्ताव करके सॉफ्ट एररस को संबोधित किया था ।<ref name="ReinhardtMukherjee2000">{{cite journal |last1=Reinhardt |first1=Steven K. |last2=Mukherjee |first2=Shubhendu S. |title=एक साथ मल्टीथ्रेडिंग के माध्यम से क्षणिक दोष का पता लगाना|journal=ACM SIGARCH Computer Architecture News |volume=28 |issue=2 |date=2000 |pages=25–36 |issn=0163-5964 |doi=10.1145/342001.339652|citeseerx=10.1.1.112.37}}</ref><ref name="MukherjeeKontz2002">{{cite journal |last1=Mukherjee |first1=Shubhendu S. |last2=Kontz |first2=Michael |last3=Reinhardt |first3=Steven K. |title=अनावश्यक मल्टीथ्रेडिंग विकल्पों का विस्तृत डिजाइन और मूल्यांकन|journal=ACM SIGARCH Computer Architecture News |volume=30 |issue=2 |date=2002 |pages=99 |issn=0163-5964 |doi=10.1145/545214.545227 |citeseerx=10.1.1.13.2922|s2cid=1909214 }}</ref><ref name="VijaykumarPomeranz2002">{{cite journal |last1=Vijaykumar |first1=T. N. |last2=Pomeranz |first2=Irith|author2-link= Irith Pomeranz |last3=Cheng |first3=Karl |title=एक साथ मल्टीथ्रेडिंग का उपयोग करके क्षणिक-दोष वसूली|journal=ACM SIGARCH Computer Architecture News |volume=30 |issue=2 |date=2002 |pages=87 |issn=0163-5964 |doi=10.1145/545214.545226|s2cid=2270600 }}</ref>
हार्डवेयर और सॉफ्टवेयर दोनों विधिों का उपयोग करके प्रोसेसर और मेमोरी संसाधनों में सॉफ्ट एरर को संबोधित करने का काम किया गया है। कई शोध प्रयासों ने हार्डवेयर-आधारित निरर्थक बहु-थ्रेडिंग के माध्यम से एरर का पता लगाने और पुनर्प्राप्ति का प्रस्ताव करके सॉफ्ट एरर्स को संबोधित किया था ।<ref name="ReinhardtMukherjee2000">{{cite journal |last1=Reinhardt |first1=Steven K. |last2=Mukherjee |first2=Shubhendu S. |title=एक साथ मल्टीथ्रेडिंग के माध्यम से क्षणिक दोष का पता लगाना|journal=ACM SIGARCH Computer Architecture News |volume=28 |issue=2 |date=2000 |pages=25–36 |issn=0163-5964 |doi=10.1145/342001.339652|citeseerx=10.1.1.112.37}}</ref><ref name="MukherjeeKontz2002">{{cite journal |last1=Mukherjee |first1=Shubhendu S. |last2=Kontz |first2=Michael |last3=Reinhardt |first3=Steven K. |title=अनावश्यक मल्टीथ्रेडिंग विकल्पों का विस्तृत डिजाइन और मूल्यांकन|journal=ACM SIGARCH Computer Architecture News |volume=30 |issue=2 |date=2002 |pages=99 |issn=0163-5964 |doi=10.1145/545214.545227 |citeseerx=10.1.1.13.2922|s2cid=1909214 }}</ref><ref name="VijaykumarPomeranz2002">{{cite journal |last1=Vijaykumar |first1=T. N. |last2=Pomeranz |first2=Irith|author2-link= Irith Pomeranz |last3=Cheng |first3=Karl |title=एक साथ मल्टीथ्रेडिंग का उपयोग करके क्षणिक-दोष वसूली|journal=ACM SIGARCH Computer Architecture News |volume=30 |issue=2 |date=2002 |pages=87 |issn=0163-5964 |doi=10.1145/545214.545226|s2cid=2270600 }}</ref>


इन दृष्टिकोणों ने आउटपुट में एररस की पहचान करने के लिए एप्लिकेशन निष्पादन को दोहराने के लिए विशेष हार्डवेयर का उपयोग किया, जिससे हार्डवेयर रचना जटिलता और उच्च प्रदर्शन ओवरहेड सहित निवेश में वृद्धि हुई। दूसरी ओर, कोमलवेयर आधारित सॉफ्ट एरर टॉलरेंट स्कीमें लचीली होती हैं और वाणिज्यिक ऑफ-द-शेल्फ माइक्रोप्रोसेसरों पर प्रयुक्त की जा सकती हैं। कई कार्य कंपाइलर-स्तरीय निर्देश प्रतिकृति और सॉफ्ट एरर डिटेक्शन के लिए परिणाम जाँच का प्रस्ताव करते हैं।
इन दृष्टिकोणों ने आउटपुट में एरर्स की पहचान करने के लिए एप्लिकेशन निष्पादन को दोहराने के लिए विशेष हार्डवेयर का उपयोग किया, जिससे हार्डवेयर रचना जटिलता और उच्च प्रदर्शन ओवरहेड सहित निवेश में वृद्धि हुई। दूसरी ओर, सॉफ्टवेयर आधारित सॉफ्ट एरर टॉलरेंट स्कीमें लचीLi होती हैं और वाणिज्यिक ऑफ-द-शेल्फ माइक्रोप्रोसेसरों पर प्रयुक्त की जा सकती हैं। कई कार्य कंपाइलर-स्तरीय निर्देश प्रतिकृति और सॉफ्ट एरर डिटेक्शन के लिए परिणाम जाँच का प्रस्ताव करते हैं।


<ref name="oh2002error">{{cite journal |last1=Nahmsuk |first1=Oh |last2=Shirvani |first2=Philip P. |last3=McCluskey |first3=Edward J. |title= सुपर-स्केलर प्रोसेसर में डुप्लिकेट निर्देशों द्वारा त्रुटि का पता लगाना|journal=IEEE Transactions on Reliability |volume=51 |date=2002 |pages=63–75 |doi=10.1109/24.994913}}</ref><ref name="reis2005swift">{{cite book |last1=Reis A. |first1=George A. |title=कोड जनरेशन और अनुकूलन पर अंतर्राष्ट्रीय संगोष्ठी|last2=Chang |first2=Jonathan |last3=Vachharajani |first3=Neil |last4=Rangan |first4=Ram |last5=August |first5=David I. |chapter=SWIFT: Software implemented fault tolerance |location=Proceedings of the international symposium on Code generation and optimization |date=2005 |pages=243–254 |doi=10.1109/CGO.2005.34 |isbn=978-0-7695-2298-2 |citeseerx=10.1.1.472.4177|s2cid=5746979 }}</ref>  
<ref name="oh2002error">{{cite journal |last1=Nahmsuk |first1=Oh |last2=Shirvani |first2=Philip P. |last3=McCluskey |first3=Edward J. |title= सुपर-स्केलर प्रोसेसर में डुप्लिकेट निर्देशों द्वारा त्रुटि का पता लगाना|journal=IEEE Transactions on Reliability |volume=51 |date=2002 |pages=63–75 |doi=10.1109/24.994913}}</ref><ref name="reis2005swift">{{cite book |last1=Reis A. |first1=George A. |title=कोड जनरेशन और अनुकूलन पर अंतर्राष्ट्रीय संगोष्ठी|last2=Chang |first2=Jonathan |last3=Vachharajani |first3=Neil |last4=Rangan |first4=Ram |last5=August |first5=David I. |chapter=SWIFT: Software implemented fault tolerance |location=Proceedings of the international symposium on Code generation and optimization |date=2005 |pages=243–254 |doi=10.1109/CGO.2005.34 |isbn=978-0-7695-2298-2 |citeseerx=10.1.1.472.4177|s2cid=5746979 }}</ref>  


<ref name="Didehban2016nZDC">{{citation |last1=Didehban |first1=Moslem |last2=Shrivastava |first2=Aviral |date=2016 |title=nZDC: A compiler technique for near Zero Silent Data Corruption |publisher=ACM |location=Proceedings of the 53rd Annual Design Automation Conference (DAC) |page=48 |doi=10.1145/2897937.2898054 |chapter=NZDC |isbn=9781450342360|s2cid=5618907 }}</ref>
<ref name="Didehban2016nZDC">{{citation |last1=Didehban |first1=Moslem |last2=Shrivastava |first2=Aviral |date=2016 |title=nZDC: A compiler technique for near Zero Silent Data Corruption |publisher=ACM |location=Proceedings of the 53rd Annual Design Automation Conference (DAC) |page=48 |doi=10.1145/2897937.2898054 |chapter=NZDC |isbn=9781450342360|s2cid=5618907 }}</ref>
=== सॉफ्ट एररस को ठीक करना ===
=== सॉफ्ट एरर्स को ठीक करना ===
{{see also|ईसीसी मेमोरी}}
{{see also|ईसीसी मेमोरी}}


रचनार यह स्वीकार करना चुन सकते हैं कि सॉफ्ट एररसं होंगी, और उचित एरर का पता लगाने और सुधार के साथ रचना प्रणाली को शानदार तरीके से ठीक करने के लिए। सामान्यतः, एक अर्धचालक मेमोरी रचना [[त्रुटि सुधार कोड|एरर सुधार कोड]] बनाने के लिए प्रत्येक [[वर्ड (कंप्यूटर आर्किटेक्चर)|वर्ड (कंप्यूटर वास्तुकला)]] में अनावश्यक डेटा को सम्मिलित करते हुए [[आगे त्रुटि सुधार|आगे एरर सुधार]] का उपयोग कर सकता है। वैकल्पिक रूप से, [[ रोल-बैक त्रुटि सुधार |रोल-बैक एरर सुधार]] का उपयोग किया जा सकता है, [[त्रुटि का पता लगाना और सुधार|एरर का पता लगाना और सुधार]] के साथ सॉफ्ट एरर का पता लगाना। एरर-डिटेक्टिंग कोड जैसे [[ समता द्वियक |समता द्वियक]] ,और दूसरे स्रोत से सही डेटा को फिर से लिखना। इस विधि का उपयोग अधिकांशतः [[इससे लिखो]] [[कैश मैमोरी]] के लिए किया जाता है।
रचनार यह स्वीकार करना चुन सकते हैं कि सॉफ्ट एरर्सं होंगी, और उचित एरर का पता लगाने और सुधार के साथ रचना प्रणाली को उत्तम विधि से ठीक करने के लिए। सामान्यतः, एक अर्धचालक मेमोरी रचना [[त्रुटि सुधार कोड|एरर सुधार कोड]] बनाने के लिए प्रत्येक [[वर्ड (कंप्यूटर आर्किटेक्चर)|वर्ड (कंप्यूटर वास्तुकला)]] में अनावश्यक डेटा को सम्मिलित करते हुए [[आगे त्रुटि सुधार|आगे एरर सुधार]] का उपयोग कर सकता है। वैकल्पिक रूप से, [[ रोल-बैक त्रुटि सुधार |रोल-बैक एरर सुधार]] का उपयोग किया जा सकता है, [[त्रुटि का पता लगाना और सुधार|एरर का पता लगाना और सुधार]] के साथ सॉफ्ट एरर का पता लगाना। एरर-डिटेक्टिंग कोड जैसे [[ समता द्वियक |समता द्वियक]] ,और दूसरे स्रोत से सही डेटा को फिर से लिखना। इस विधि का उपयोग अधिकांशतः [[इससे लिखो]] [[कैश मैमोरी]] के लिए किया जाता है।


[[तर्क सर्किट|तर्क परिपथ]] में सॉफ्ट एरर को कभी-कभी पता लगाया जाता है और [[ दोष सहिष्णुता |दोष सहिष्णुता]] की विधिों का उपयोग करके ठीक किया जाता है। इनमें अधिकांशतः निरर्थक परिपथरी या डेटा की गणना सम्मिलित होती है, और सामान्यतः परिपथ क्षेत्र, घटे हुए प्रदर्शन और/या उच्च बिजली की खपत की कीमत पर आते हैं। लॉजिक परिपथ में बहुत उच्च कोमल-एरर विश्वसनीयता सुनिश्चित करने के लिए [[ ट्रिपल मॉड्यूलर अतिरेक |ट्रिपल मॉड्यूलर अतिरेक]] (टीएमआर) की अवधारणा को नियोजित किया जा सकता है। इस विधि में, समानांतर और आउटपुट में एक ही डेटा पर एक परिपथ की तीन समान प्रतियां बहुसंख्यक वोटिंग लॉजिक में फीड की जाती हैं, जो कम से कम दो तीन स्थितियों में हुई वैल्यू को लौटाती हैं। इस तरह, सॉफ्ट एरर के कारण एक परिपथ की विफलता को यह मानते हुए खारिज कर दिया जाता है कि अन्य दो परिपथ सही ढंग से संचालित हैं। व्यवहार में, चूंकि, कुछ रचनार 200% से अधिक परिपथ क्षेत्र और पावर ओवरहेड की आवश्यकता को वहन कर सकते हैं, इसलिए यह सामान्यतः केवल श्रेष्ठ रूप से प्रयुक्त होता है। लॉजिक परिपथ में सॉफ्ट एररस को ठीक करने के लिए एक अन्य सामान्य अवधारणा अस्थायी (या समय) अतिरेक है, जिसमें एक परिपथ एक ही डेटा पर कई बार काम करता है और स्थिरता के लिए बाद के मूल्यांकन की तुलना करता है। चूंकि, इस दृष्टिकोण में अधिकांशतः प्रदर्शन ओवरहेड, क्षेत्र ओवरहेड (यदि लैच की प्रतियां डेटा स्टोर करने के लिए उपयोग की जाती हैं), और पावर ओवरहेड होता है, चूंकि मॉड्यूलर रिडंडेंसी की तुलना में अधिक अधिक क्षेत्र-कुशल है।
[[तर्क सर्किट|तर्क परिपथ]] में सॉफ्ट एरर को कभी-कभी पता लगाया जाता है और [[ दोष सहिष्णुता |दोष सहिष्णुता]] की विधिों का उपयोग करके ठीक किया जाता है। इनमें अधिकांशतः निरर्थक परिपथरी या डेटा की गणना सम्मिलित होती है, और सामान्यतः परिपथ क्षेत्र, घटे हुए प्रदर्शन और/या उच्च विद्दुत की खपत की मूल्य पर आते हैं। लॉजिक परिपथ में बहुत उच्च सॉफ्ट-एरर विश्वसनीयता सुनिश्चित करने के लिए [[ ट्रिपल मॉड्यूलर अतिरेक |ट्रिपल मॉड्यूलर अतिरेक]] (टीएमआर) की अवधारणा को नियोजित किया जा सकता है। इस विधि में, समानांतर और आउटपुट में एक ही डेटा पर एक परिपथ की तीन समान प्रतियां बहुसंख्यक वोटिंग लॉजिक में फीड की जाती हैं, जो कम से कम दो तीन स्थितियों में हुई वैल्यू को लौटाती हैं। इस तरह, सॉफ्ट एरर के कारण एक परिपथ की विफलता को यह मानते हुए खारिज कर दिया जाता है कि अन्य दो परिपथ सही ढंग से संचालित हैं। व्यवहार में, चूंकि, कुछ रचनार 200% से अधिक परिपथ क्षेत्र और पावर ओवरहेड की आवश्यकता को वहन कर सकते हैं, इसलिए यह सामान्यतः केवल श्रेष्ठ रूप से प्रयुक्त होता है। लॉजिक परिपथ में सॉफ्ट एरर्स को ठीक करने के लिए एक अन्य सामान्य अवधारणा अस्थायी (या समय) अतिरेक है, जिसमें एक परिपथ एक ही डेटा पर कई बार काम करता है और स्थिरता के लिए बाद के मूल्यांकन की तुलना करता है। चूंकि, इस दृष्टिकोण में अधिकांशतः प्रदर्शन ओवरहेड, क्षेत्र ओवरहेड (यदि लैच की प्रतियां डेटा स्टोर करने के लिए उपयोग की जाती हैं), और पावर ओवरहेड होता है, चूंकि मॉड्यूलर रिडंडेंसी की तुलना में अधिक अधिक क्षेत्र-कुशल है।


परंपरागत रूप से, [[डायनेमिक रैंडम एक्सेस मेमोरी|गतिशील यादृच्छिक अभिगम मेमोरी]] में सॉफ्ट एरर को कम करने या उसके आसपास काम करने की खोज में सबसे अधिक ध्यान दिया गया है, इस तथ्य के कारण कि छोटा परिमाण में डेस्कटॉप और सर्वर कंप्यूटर प्रणाली में अतिसंवेदनशील डिवाइस सतह क्षेत्र का अधिकांश हिस्सा सम्मिलित है (संदर्भ। सर्वर कंप्यूटरों में ईसीसी रैम का प्रचलन)। डीआरएएम की संवेदनशीलता के लिए कठिन आंकड़े कठिनाई से आते हैं, और रचना, निर्माण प्रक्रियाओं और निर्माताओं में अधिक भिन्न होते हैं। 1980 के दशक की विधि 256 किलोबाइट छोटा परिमाणS में एक अल्फा कण से पांच या छह बिट फ्लिप के समूह हो सकते थे। आधुनिक छोटा परिमाणs में बहुत छोटे आकार के फीचर होते हैं, इसलिए समान मात्रा में आवेश के जमाव से आसानी से कई और बिट्स फ्लिप हो सकते हैं।
परंपरागत रूप से, [[डायनेमिक रैंडम एक्सेस मेमोरी|गतिशील यादृच्छिक अभिगम मेमोरी]] में सॉफ्ट एरर को कम करने या उसके आसपास काम करने की खोज में सबसे अधिक ध्यान दिया गया है, इस तथ्य के कारण कि छोटा परिमाण में डेस्कटॉप और सर्वर कंप्यूटर प्रणाली में अतिसंवेदनशील डिवाइस सतह क्षेत्र का अधिकांश हिस्सा सम्मिलित है (संदर्भ। सर्वर कंप्यूटरों में ईसीसी रैम का प्रचलन)। डीआरएएम की संवेदनशीलता के लिए कठिन आंकड़े कठिनाई से आते हैं, और रचना, निर्माण प्रक्रियाओं और निर्माताओं में अधिक भिन्न होते हैं। 1980 के दशक की विधि 256 किलोबाइट छोटा परिमाणS में एक अल्फा कण से पांच या छह बिट फ्लिप के समूह हो सकते थे। आधुनिक छोटा परिमाणs में बहुत छोटे आकार के फीचर होते हैं, इसलिए समान मात्रा में आवेश के जमाव से आसानी से कई और बिट्स फ्लिप हो सकते हैं।


एरर का पता लगाने और सुधार परिपथ के रचना को इस तथ्य से सहायता मिलती है कि सॉफ्ट एररसं सामान्यतः चिप के बहुत छोटे क्षेत्र में स्थानीयकृत होती हैं। सामान्यतः, मेमोरी की केवल एक कोशिका प्रभावित होती है, चूंकि उच्च ऊर्जा की घटनाएं बहु-कोशिका को परेशान कर सकती हैं। परंपरागत मेमोरी लेआउट सामान्यतः चिप पर आसन्न कई अलग-अलग सुधार शब्दों में से एक को रखता है। इसलिए, यहां तक ​​कि एक मल्टी-सेल समुच्चय भी केवल कई अलग-अलग एकल ईवेंट समुच्चय की ओर ले जाता है। एकल सुधार शब्द में मल्टी-बिट समुच्चय के अतिरिक्त कई सुधार शब्दों में सिंगल-बिट समुच्चय होता है। इसलिए, एक एरर सुधार कोड को सभी संभावित सॉफ्ट एररस से निपटने के लिए प्रत्येक सुधार शब्द में एरर में केवल एक बिट से निपटने की आवश्यकता होती है। 'मल्टी-सेल' शब्द का उपयोग मेमोरी के कई सेल्स को प्रभावित करने वाले समुच्चय्स के लिए किया जाता है, जो भी सुधार शब्द उन सेल में आते हैं। 'मल्टी-बिट' का उपयोग तब किया जाता है जब एक सुधार शब्द में कई बिट्स एरर में होते हैं।
एरर का पता लगाने और सुधार परिपथ के रचना को इस तथ्य से सहायता मिलती है कि सॉफ्ट एरर्सं सामान्यतः चिप के बहुत छोटे क्षेत्र में स्थानीयकृत होती हैं। सामान्यतः, मेमोरी की केवल एक कोशिका प्रभावित होती है, चूंकि उच्च ऊर्जा की घटनाएं बहु-कोशिका को परेशान कर सकती हैं। परंपरागत मेमोरी लेआउट सामान्यतः चिप पर आसन्न कई अलग-अलग सुधार शब्दों में से एक को रखता है। इसलिए, यहां तक ​​कि एक मल्टी-सेल समुच्चय भी केवल कई अलग-अलग एकल ईवेंट समुच्चय की ओर ले जाता है। एकल सुधार शब्द में मल्टी-बिट समुच्चय के अतिरिक्त कई सुधार शब्दों में सिंगल-बिट समुच्चय होता है। इसलिए, एक एरर सुधार कोड को सभी संभावित सॉफ्ट एरर्स से निपटने के लिए प्रत्येक सुधार शब्द में एरर में केवल एक बिट से निपटने की आवश्यकता होती है। 'मल्टी-सेल' शब्द का उपयोग मेमोरी के कई सेल्स को प्रभावित करने वाले समुच्चय्स के लिए किया जाता है, जो भी सुधार शब्द उन सेल में आते हैं। 'मल्टी-बिट' का उपयोग तब किया जाता है जब एक सुधार शब्द में कई बिट्स एरर में होते हैं।


संयोजन तर्क में सॉफ्ट एरर
संयोजन तर्क में सॉफ्ट एरर
Line 107: Line 107:
यदि तीनों मास्किंग प्रभाव विफल हो जाते हैं, तो प्रचारित पल्स लैच हो जाता है और लॉजिक परिपथ का आउटपुट एक गलत मान होगा। परिपथ ऑपरेशन के संदर्भ में, इस गलत आउटपुट वैल्यू को सॉफ्ट एरर घटना माना जा सकता है। चूंकि, माइक्रोआर्किटेक्चरल स्तर के दृष्टिकोण से, प्रभावित परिणाम वर्तमान में निष्पादित प्रोग्राम के आउटपुट को नहीं बदल सकता है। उदाहरण के लिए, गलत डेटा को उपयोग से पहले अधिलेखित किया जा सकता है, बाद के तर्क संचालन में छिपाया जा सकता है, या कभी भी उपयोग नहीं किया जा सकता है। यदि गलत डेटा किसी प्रोग्राम के आउटपुट को प्रभावित नहीं करता है, तो इसे माइक्रोआर्किटेक्चरल मास्किंग का एक उदाहरण माना जाता है।
यदि तीनों मास्किंग प्रभाव विफल हो जाते हैं, तो प्रचारित पल्स लैच हो जाता है और लॉजिक परिपथ का आउटपुट एक गलत मान होगा। परिपथ ऑपरेशन के संदर्भ में, इस गलत आउटपुट वैल्यू को सॉफ्ट एरर घटना माना जा सकता है। चूंकि, माइक्रोआर्किटेक्चरल स्तर के दृष्टिकोण से, प्रभावित परिणाम वर्तमान में निष्पादित प्रोग्राम के आउटपुट को नहीं बदल सकता है। उदाहरण के लिए, गलत डेटा को उपयोग से पहले अधिलेखित किया जा सकता है, बाद के तर्क संचालन में छिपाया जा सकता है, या कभी भी उपयोग नहीं किया जा सकता है। यदि गलत डेटा किसी प्रोग्राम के आउटपुट को प्रभावित नहीं करता है, तो इसे माइक्रोआर्किटेक्चरल मास्किंग का एक उदाहरण माना जाता है।
== सॉफ्ट एरर दर ==
== सॉफ्ट एरर दर ==
सॉफ्ट एरर रेट (एसईआर) वह दर है जिस पर कोई डिवाइस या प्रणाली सॉफ्ट एरर का सामना करता है या उसका सामना करने की भविष्यवाणी की जाती है। यह सामान्यतः विफलताओं की संख्या-इन-टाइम (फिट) या विफलताओं (एमटीबीएफ) के बीच औसत समय के रूप में व्यक्त किया जाता है। समय में विफलताओं की मात्रा निर्धारित करने के लिए अपनाई गई इकाई को फिट कहा जाता है, जो डिवाइस के संचालन के प्रति अरब घंटे में एक एरर के बराबर है। एमटीबीएफ सामान्यतः उपकरण संचालन के वर्षों में दिया जाता है; इसे परिप्रेक्ष्य में रखने के लिए, एक फिट लगभग 1,000,000,000 / (24 × 365.25) = एक साल के एमटीबीएफ की तुलना में एररस के बीच 114,077 गुना लंबा होता है।
सॉफ्ट एरर रेट (एसईआर) वह दर है जिस पर कोई डिवाइस या प्रणाली सॉफ्ट एरर का सामना करता है या उसका सामना करने की पूर्वानुमान की जाती है। यह सामान्यतः विफलताओं की संख्या-इन-टाइम (फिट) या विफलताओं (एमटीBएफ) के Bच औसत समय के रूप में व्यक्त किया जाता है। समय में विफलताओं की मात्रा निर्धारित करने के लिए अपनाई गई इकाई को फिट कहा जाता है, जो डिवाइस के संचालन के प्रति अरब घंटे में एक एरर के बराबर है। एमटीBएफ सामान्यतः उपकरण संचालन के वर्षों में दिया जाता है; इसे परिप्रेक्ष्य में रखने के लिए, एक फिट लगभग 1,000,000,000 / (24 × 365.25) = एक साल के एमटीBएफ की तुलना में एरर्स के Bच 114,077 गुना लंबा होता है।


जबकि कई इलेक्ट्रॉनिक प्रणालियों में एक एमटीबीएफ होता है जो परिपथ के अपेक्षित जीवनकाल से अधिक होता है, फिर भी एसईआर निर्माता या ग्राहक के लिए अस्वीकार्य हो सकता है। उदाहरण के लिए, यदि प्रणाली में पर्याप्त सॉफ्ट एरर सुरक्षा नहीं है, तो सॉफ्ट एरर के कारण प्रति मिलियन परिपथ में कई विफलताओं की उम्मीद की जा सकती है। क्षेत्र में कुछ उत्पादों की विफलता, विशेष रूप से यदि विपत्तिपूर्ण हो, तो उस उत्पाद और कंपनी की प्रतिष्ठा को धूमिल कर सकती है जिसने इसे रचना किया था। इसके अतिरिक्त, सुरक्षा- या निवेश-महत्वपूर्ण अनुप्रयोगों में जहां प्रणाली की विफलता की निवेश प्रणाली की निवेश से कहीं अधिक है, ग्राहक के लिए स्वीकार्य होने के लिए प्रति जीवन सॉफ्ट एरर विफलता का 1% कठिन परिस्थिति बहुत अधिक हो सकता है। इसलिए, उच्च मात्रा में प्रणाली का निर्माण करते समय या अत्यधिक उच्च विश्वसनीयता की आवश्यकता होने पर कम एसईआर के लिए रचना करना फायदेमंद होता है।
जबकि कई इलेक्ट्रॉनिक प्रणालियों में एक एमटीBएफ होता है जो परिपथ के अपेक्षित जीवनकाल से अधिक होता है, फिर भी एसईआर निर्माता या ग्राहक के लिए अस्वीकार्य हो सकता है। उदाहरण के लिए, यदि प्रणाली में पर्याप्त सॉफ्ट एरर सुरक्षा नहीं है, तो सॉफ्ट एरर के कारण प्रति मिलियन परिपथ में कई विफलताओं की उम्मीद की जा सकती है। क्षेत्र में कुछ उत्पादों की विफलता, विशेष रूप से यदि विपत्तिपूर्ण हो, तो उस उत्पाद और कंपनी की प्रतिष्ठा को धूमिल कर सकती है जिसने इसे रचना किया था। इसके अतिरिक्त, सुरक्षा- या निवेश-महत्वपूर्ण अनुप्रयोगों में जहां प्रणाली की विफलता की निवेश प्रणाली की निवेश से कहीं अधिक है, ग्राहक के लिए स्वीकार्य होने के लिए प्रति जीवन सॉफ्ट एरर विफलता का 1% कठिन परिस्थिति बहुत अधिक हो सकता है। इसलिए, उच्च मात्रा में प्रणाली का निर्माण करते समय या अत्यधिक उच्च विश्वसनीयता की आवश्यकता होने पर कम एसईआर के लिए रचना करना फायदेमंद होता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 14:23, 18 April 2023

इलेक्ट्रानिक्स और कम्प्यूटिंग में, सॉफ्ट एरर एक प्रकार की एरर होती है, जहां सिग्नल या डेटम गलत होता है। एरर्सं विक्ट: दोष के कारण हो सकती हैं, सामान्यतः या तो रचना या निर्माण में गलती, या टूटा हुआ घटक समझा जाता है। सॉफ्ट एरर भी एक संकेत या डेटा है जो गलत है, किन्तु ऐसी गलती या टूट-फूट का संकेत नहीं माना जाता है। सॉफ्ट एरर देखने के बाद, इसका कोई निहितार्थ नहीं है कि प्रणाली पहले की तुलना में कम विश्वसनीय है। सॉफ्ट एरर का एक कारण ब्रह्मांड किरण से परेशान एकल घटना है।

कंप्यूटर के मेमोरी प्रणाली में, एक सॉफ्ट एरर प्रोग्राम या डेटा वैल्यू में निर्देश को बदल देता है। सॉफ्ट एरर्स को सामान्यतः कंप्यूटर को शीत बूटिंग करके ठीक किया जा सकता है। सॉफ्ट एरर प्रणाली के हार्डवेयर को हानि नहीं पहुंचाएगा; एकमात्र हानि उस डेटा को है जिसे संसाधित किया जा रहा है।

सॉफ्ट एरर दो प्रकार के होते हैं, चिप-लेवल सॉफ्ट एरर और प्रणाली-लेवल सॉफ्ट एरर होती है । चिप-स्तर की सॉफ्ट एरर्सं तब होती हैं जब कण चिप से टकराते हैं, उदाहरण के लिए, जब कॉस्मिक किरण से वायु बौछार (भौतिकी) डाई (एकीकृत परिपथ) पर उतरती है। यदि सॉफ्ट एरर क्रिटिकल चार्ज वाला कोई कण मेमोरी सेल (कंप्यूटिंग) से टकराता है, तो यह सेल को एक अलग मान में स्थिति बदलने का कारण बन सकता है। इस उदाहरण में परमाणु प्रतिक्रिया इतनी छोटी है कि यह चिप की भौतिक संरचना को हानि नहीं पहुंचाती है।प्रणाली-स्तरीय सॉफ्ट एरर्सं तब होती हैं जब संसाधित किया जा रहा डेटा ध्वनि घटना से प्रभावित होता है, सामान्यतः जब डेटा डेटा बस में होता है। कंप्यूटर ध्वनि को डेटा बिट के रूप में समझने की कोशिश करता है, जिससे प्रोग्राम कोड को संबोधित करने या संसाधित करने में एरर्सं हो सकती हैं। खराब डेटा बिट को मेमोरी में भी सहेजा जा सकता है और बाद में समस्याएं उत्पन्न कर सकता है।

यदि पता चला है, तो गलत डेटा के स्थान पर सही डेटा को फिर से लिखकर एक सॉफ्ट एरर को ठीक किया जा सकता है। अत्यधिक विश्वसनीय प्रणालियाँ चलते-फिरते सॉफ्ट एरर्स को ठीक करने के लिए एरर सुधार का उपयोग करती हैं। चूंकि, कई प्रणालियों में, सही डेटा निर्धारित करना असंभव हो सकता है, या यहां तक ​​कि यह पता लगाना भी कि कोई एरर उपस्थित है। इसके अतिरिक्त, सुधार होने से पहले, प्रणाली क्रैश (कंप्यूटिंग) हो सकता है, जिस स्थिति में पुनर्प्राप्ति प्रक्रिया में रिबूट (कंप्यूटर) सम्मिलित होना चाहिए। सॉफ्ट एरर में डेटा में बदलाव सम्मिलित हैं‍—‌ भंडारण परिपथ में इलेक्ट्रॉनों, उदाहरण के लिए‍—‌किन्तु स्वयं भौतिक परिपथ, परमाणुओं में परिवर्तन नहीं होता है। यदि डेटा को दोबारा लिखा जाता है, तो परिपथ फिर से पूरी तरह से काम करेगा। डिजिटल लॉजिक, एनालॉग परिपथ, मैग्नेटिक स्टोरेज और अन्य स्थानों पर सॉफ्ट एरर ट्रांसमिशन लाइनों पर हो सकते हैं, किन्तु सामान्यतः अर्धचालक स्टोरेज में जाने जाते हैं।

क्रिटिकल चार्ज

परिपथ सॉफ्ट एरर का अनुभव करता है या नहीं, आने वाले कण की ऊर्जा, प्रभाव की ज्यामिति, हड़ताल का स्थान और तर्क परिपथ के रचना पर निर्भर करता है। उच्च समाई और उच्च तर्क वोल्टेज वाले लॉजिक परिपथ में एरर होने की संभावना कम होती है। कैपेसिटेंस और वोल्टेज के इस संयोजन को क्रिटिकल विद्दुतका आवेश पैरामीटर, Qcrit द्वारा वर्णित किया गया है Qcrit तर्क स्तर को बदलने के लिए आवश्यक न्यूनतम इलेक्ट्रॉन आवेश अस्तव्यस्तता। एक उच्च Qcrit कारण कम सॉफ्ट एरर। दुर्भाग्य से, एक उच्च Qcrit इसका कारण एक धीमा लॉजिक गेट और एक उच्च शक्ति अपव्यय भी है। चिप फीचर आकार और आपूर्ति वोल्टेज में कमी, कई कारणों से वांछनीय, Qcrit घट जाती है |. इस प्रकार, चिप प्रौद्योगिकी की प्रगति के रूप में सॉफ्ट एरर्स का महत्व बढ़ जाता है।

लॉजिक परिपथ में, Qcrit एक परिपथ नोड पर आवश्यक प्रेरित चार्ज की न्यूनतम मात्रा के रूप में परिभाषित किया जाता है, जिससे वोल्टेज पल्स उस नोड से आउटपुट तक फैलता है और पर्याप्त अवधि और परिमाण का विश्वसनीय रूप से लैच किया जा सकता है। चूँकि एक लॉजिक परिपथ में कई नोड होते हैं जो टकरा सकते हैं, और प्रत्येक नोड अद्वितीय समाई और आउटपुट से दूरी का हो सकता है, Qcrit सामान्यतः प्रति-नोड के आधार पर विशेषता होती है।

सॉफ्ट एरर के कारण

संकुल क्षय से अल्फा कण

1970 के दशक में गतिशील रैम की प्रारंभिक के साथ सॉफ्ट एरर व्यापक रूप से ज्ञात हो गए थे । इन प्रारंभिक उपकरणों में, सिरेमिक चिप संकुलिंग सामग्री में थोड़ी मात्रा में रेडियोधर्मी संदूषक होते थे। अत्यधिक सॉफ्ट एरर्स से बचने के लिए बहुत कम क्षय दर की आवश्यकता होती है, और तब से चिप कंपनियों को कभी-कभी संदूषण की समस्या का सामना करना पड़ा है। आवश्यक भौतिक शुद्धता को बनाए रखना अत्यंत कठिन है। महत्वपूर्ण संकुलिंग सामग्री के लिए अल्फा कण उत्सर्जन दर को 0.001 गणना प्रति घंटे प्रति सेमी से कम के स्तर पर नियंत्रित करना2 (सीपीएच/सेमी2) अधिकांश परिपथों के विश्वसनीय प्रदर्शन के लिए आवश्यक है। तुलना के लिए, सामान्य जूते के तलवे की गणना दर 0.1 और 10 सीपीएच/सेमी2 के Bच होती है |

संकुल रेडियोधर्मी क्षय सामान्यतः अल्फा कण उत्सर्जन द्वारा सॉफ्ट एरर का कारण बनता है। सकारात्मक आवेशित अल्फा कण अर्धचालक के माध्यम से यात्रा करता है और वहां इलेक्ट्रॉनों के वितरण को बाधित करता है। यदि अस्तव्यस्तता अधिक बड़ी है, तो डिजिटल डेटा सिग्नल (सूचना सिद्धांत) 0 से 1 या इसके विपरीत बदल सकता है। संयोजन तर्क में, यह प्रभाव क्षणिक होता है, शायद नैनोसेकंड के एक अंश तक रहता है, और इसके कारण संयोजन तर्क में सॉफ्ट एरर की चुनौती पर ध्यान नहीं दिया जाता है। कुंडी (इलेक्ट्रॉनिक) और रैंडम एक्सेस मेमोरी जैसे अनुक्रमिक तर्क में, यह क्षणिक अस्तव्यस्तता भी अनिश्चित समय के लिए संग्रहीत हो सकती है, जिसे बाद में पढ़ा जा सकता है। इस प्रकार, रचनार सामान्यतः स्टोरेज परिपथ में समस्या के बारे में अधिक जागरूक होते हैं।

2011 का ब्लैक हैट ब्रीफिंग पेपर इंटरनेट के डोमेन की नामांकन प्रणाली में इस तरह के बिट-फ्लिप के वास्तविक जीवन के सुरक्षा प्रभावों पर चर्चा करता है। विभिन्न सामान्य डोमेन के लिए बिट-फ्लिप परिवर्तनों के कारण प्रति दिन 3,434 गलत अनुरोधों तक पेपर पाया गया था । इनमें से कई बिट-फ्लिप शायद हार्डवेयर समस्याओं के कारण हो सकते हैं, किन्तु कुछ को अल्फा कणों के लिए जिम्मेदार ठहराया जा सकता है।[1] बित्स्क्वातिंग के रूप में दुर्भावनापूर्ण अभिनेताओं द्वारा इन बिट-फ्लिप एरर्स का लाभ उठाया जा सकता है।

इसहाक असिमोव को 1950 के दशक के उपन्यास में अल्फा-पार्टिकल रैम एरर्स की आकस्मिक पूर्वानुमान पर उन्हें बधाई देने वाला एक पत्र मिला था ।[2]

ऊर्जावान न्यूट्रॉन और प्रोटॉन बनाने वाली ब्रह्मांडीय किरणें

एक बार इलेक्ट्रॉनिक्स उद्योग ने यह निर्धारित कर लिया कि संकुल संदूषकों को कैसे नियंत्रित किया जाए, यह स्पष्ट हो गया कि अन्य कारण भी काम कर रहे थे। जेम्स एफ. ज़िगलर ने आईBएम में काम के एक कार्यक्रम का नेतृत्व किया, जिसकी परिणति कई पत्रों (ज़ीग्लर और लैनफोर्ड, 1979) के प्रकाशन में हुई, जिसमें दिखाया गया कि ब्रह्मांडीय किरणें भी सॉफ्ट एरर्सं उत्पन्न कर सकती हैं। दरअसल, आधुनिक उपकरणों में कॉस्मिक किरणें प्रमुख कारण हो सकती हैं। यद्यपि ब्रह्मांडीय किरण का प्राथमिक कण सामान्यतः पृथ्वी की सतह तक नहीं पहुंचता है, यह ऊर्जावान माध्यमिक कणों की वायु बौछार (भौतिकी) बनाता है। पृथ्वी की सतह पर सॉफ्ट एरर्स को उत्पन्न करने में सक्षम कणों का लगभग 95% ऊर्जावान न्यूट्रॉन हैं, शेष प्रोटॉन और पियोन से बना है। [3]

आईBएम ने 1996 में अनुमान लगाया था कि डेस्कटॉप कंप्यूटर के लिए प्रति 256 एमआईB रैम प्रति माह एरर अपेक्षित थी। [4] ऊर्जावान न्यूट्रॉन के इस प्रवाह को सामान्यतः सॉफ्ट एरर साहित्य में ब्रह्मांडीय किरणों के रूप में जाना जाता है। न्यूट्रॉन अनावेशित होते हैं और अपने आप एक परिपथ को परेशान नहीं कर सकते हैं, किन्तु चिप में एक परमाणु के नाभिक द्वारा न्यूट्रॉन कैप्चर कब्जा कर लेते हैं। इस प्रक्रिया के परिणामस्वरूप आवेशित सेकेंडरी का उत्पादन हो सकता है, जैसे कि अल्फा कण और ऑक्सीजन नाभिक, जो तब सॉफ्ट एरर्सँ उत्पन्न कर सकते हैं।

कॉस्मिक किरण प्रवाह ऊंचाई पर निर्भर करता है। समुद्र तल पर 40.7°N, 74°W (न्यूयॉर्क शहर, एनवाई, यूएसए) के सामान्य संदर्भ स्थान के लिए फ्लक्स लगभग 14 न्यूट्रॉन/सेमी2/घंटा है । प्रणाली को गुफा में दफनाने से कॉस्मिक-रे प्रेरित सॉफ्ट एरर की दर नगण्य स्तर तक कम हो जाती है। वायुमंडल के निचले स्तरों में, समुद्र तल से ऊंचाई में प्रत्येक 1000 मीटर (1.3 प्रति 1000 फीट) वृद्धि के लिए प्रवाह लगभग 2.2 गुना बढ़ जाता है। पहाड़ों की चोटी पर संचालित कंप्यूटर समुद्र तल की तुलना में सॉफ्ट एरर्स की उच्च दर के परिमाण का अनुभव करते हैं। विमान में उतार-चढ़ाव की दर समुद्र तल से 300 गुना अधिक हो सकती है। यह संकुल क्षय प्रेरित सॉफ्ट एरर के विपरीत है, जो स्थान के साथ नहीं बदलते हैं। [5]

मूर के नियम के अनुसार, इंटेल को उम्मीद है कि ब्रह्मांडीय किरणों के कारण होने वाली एरर्सं बढ़ जाएंगी और रचना में सीमित कारक बन जाएंगी। [4]

कॉस्मिक-रे सॉफ्ट एरर की औसत दर सनस्पॉट गतिविधि के व्युत्क्रमानुपाती होती है। अर्थात्, सौर कलंक चक्र के सक्रिय भाग के समय कॉस्मिक-रे सॉफ्ट एरर्स की औसत संख्या घट जाती है और शांत भाग के समय बढ़ जाती है। यह प्रति-सहज ज्ञान युक्त परिणाम दो कारणों से होता है। सूर्य सामान्यतः 1 जीईवी से अधिक ऊर्जा वाले ब्रह्मांडीय किरण कणों का उत्पादन नहीं करता है जो पृथ्वी के ऊपरी वायुमंडल में प्रवेश करने और कणों की बौछार बनाने में सक्षम हैं, इसलिए सौर प्रवाह में परिवर्तन सीधे एरर्स की संख्या को प्रभावित नहीं करते हैं। इसके अतिरिक्त, सक्रिय सूर्य अवधि के समय सौर प्रवाह में वृद्धि से पृथ्वी के चुंबकीय क्षेत्र को फिर से आकार देने का प्रभाव पड़ता है, जो उच्च ऊर्जा वाली ब्रह्मांडीय किरणों के खिलाफ कुछ अतिरिक्त परिरक्षण प्रदान करता है, जिसके परिणामस्वरूप बारिश उत्पन्न करने वाले कणों की संख्या में कमी आती है। न्यूयॉर्क शहर में ऊर्जावान न्यूट्रॉन प्रवाह के ± 7% मॉडुलन के परिणामस्वरूप प्रभाव किसी भी स्थितिया में अधिक छोटा है अन्य स्थान इसी तरह प्रभावित हैं।

एक प्रयोग ने प्रति छोटा परिमाण चिप में समय में 5,950 विफलता (फिट = प्रति अरब घंटे की विफलता) के रूप में समुद्र तल पर सॉफ्ट एरर दर को मापा। जब उसी परीक्षण समुच्चयअप को भूमिगत तिजोरी में ले जाया गया, जिसे ओवर द्वारा परिरक्षित किया गया था 50 feet (15 m) चट्टान की जिसने सभी ब्रह्मांडीय किरणों को प्रभावी ढंग से समाप्त कर दिया, शून्य सॉफ्ट एरर्सं अंकित की गईं। [6] इस परीक्षण में, कॉस्मिक किरणों के कारण होने वाली एरर दर की तुलना में, सॉफ्ट एरर के अन्य सभी कारण मापने के लिए बहुत छोटे हैं।

ब्रह्मांडीय किरणों द्वारा उत्पादित ऊर्जावान न्यूट्रॉन अपनी अधिकांश गतिज ऊर्जा खो सकते हैं और अपने परिवेश के साथ थर्मल संतुलन तक पहुंच सकते हैं क्योंकि वे सामग्री द्वारा बिखरे हुए हैं। परिणामी न्यूट्रॉन को केवल थर्मल न्यूट्रॉन के रूप में जाना जाता है और 25 डिग्री सेल्सियस पर लगभग 25 मिLiइलेक्ट्रॉन-वोल्ट की औसत गतिज ऊर्जा होती है। थर्मल न्यूट्रॉन भी पर्यावरणीय विकिरण स्रोतों जैसे कि प्राकृतिक रूप से पाए जाने वाले यूरेनियम या थोरियम के क्षय से उत्पन्न होते हैं। कॉस्मिक-रे वर्षा के अतिरिक्त अन्य स्रोतों से थर्मल न्यूट्रॉन प्रवाह अभी भी भूमिगत स्थान में ध्यान देने योग्य हो सकता है और कुछ परिपथों के लिए सॉफ्ट एरर्स में महत्वपूर्ण योगदानकर्ता हो सकता है।

थर्मल न्यूट्रॉन

न्यूट्रॉन जो गतिज ऊर्जा खो चुके हैं जब तक वे अपने परिवेश के साथ थर्मल संतुलन में नहीं हैं, कुछ परिपथों के लिए सॉफ्ट एरर्स का एक महत्वपूर्ण कारण है। कम ऊर्जा पर कई न्यूट्रॉन कैप्चर प्रतिक्रियाएं अधिक संभावित हो जाती हैं और कुछ सामग्रियों के विखंडन के परिणामस्वरूप आवेशित सेकेंडरी विखंडन उपोत्पाद के रूप में बनते हैं। कुछ परिपथों के लिए के नाभिक द्वारा एक तापीय न्यूट्रॉन का कब्जा बोरॉन10 का B समस्थानिक विशेष रूप से महत्वपूर्ण है। यह परमाणु प्रतिक्रिया अल्फा कण, लिथियम का एक कुशल उत्पादक है Li नाभिक और गामा किरण। आवेशित कणों में से कोई भी (अल्फा या Li7) एक महत्वपूर्ण परिपथ नोड के बहुत करीब, लगभग 5 माइक्रोमीटर में उत्पन्न होने पर एक सॉफ्ट एरर का कारण बन सकता है। कैप्चर क्रॉस सेक्शन के लिए B11 परिमाण के 6 ऑर्डर छोटे हैं और सॉफ्ट एरर्स में योगदान नहीं करते हैं। [7]

बोरॉन का उपयोग बोरोफॉस्फोसिलिकेट ग्लास में किया गया है, जो एकीकृत परिपथों की अंतर्संबंध परतों विशेष रूप से सबसे कम में इन्सुलेटर है, । बोरॉन को सम्मिलित करने से कांच का पिघला हुआ तापमान कम हो जाता है जिससे उत्तम इलेक्ट्रॉनिक उपकरणों में एक लेप लगाकर टाँका लगाना और प्लानराइजेशन विशेषताएँ मिलती हैं। इस एप्लिकेशन में ग्लास को वजन के हिसाब से 4% से 5% की बोरॉन सामग्री के साथ तैयार किया जाता है। प्राकृतिक रूप से पाया जाने वाला बोरॉन 20% है B10 शेष के साथ B11 आइसोटोप सॉफ्ट एरर के उच्च स्तर के कारण होते हैं B10 कुछ पुरानी एकीकृत परिपथ प्रक्रियाओं की इस महत्वपूर्ण निचLi परत में। पी-टाइप डोपेंट के रूप में कम सांद्रता में उपयोग किया जाने वाला बोरॉन -11, सॉफ्ट एरर में योगदान नहीं देता है। एकीकृत परिपथ निर्माताओं ने उस समय तक बोरेटेड डाइलेक्ट्रिक्स को समाप्त कर दिया जब तक कि व्यक्तिगत परिपथ घटकों का आकार 150 एनएम तक कम नहीं हो गया, मुख्य रूप से इस समस्या के कारण है।

महत्वपूर्ण रचनाों में, बोरॉन की कमी‍—‌लगभग पूरी तरह से बोरॉन-11 से मिलकर बनता है{{एमडीएएसयचB}इस प्रभाव से बचने के लिए और इसलिए सॉफ्ट एरर रेट को कम करने के लिए } का उपयोग किया जाता है। बोरॉन-11 परमाणु ऊर्जा का उप-उत्पाद है।

चिकित्सा इलेक्ट्रॉनिक उपकरणों में अनुप्रयोगों के लिए यह सॉफ्ट एरर तंत्र अत्यंत महत्वपूर्ण हो सकता है। 10 एमईवी से ऊपर फोटॉन Bम ऊर्जा का उपयोग करके उच्च-ऊर्जा कैंसर विकिरण चिकित्सा के समय न्यूट्रॉन का उत्पादन किया जाता है। इन न्यूट्रॉनों को मॉडरेट किया जाता है क्योंकि वे उपचार कक्ष में उपकरण और दीवारों से बिखरे हुए होते हैं जिसके परिणामस्वरूप थर्मल न्यूट्रॉन प्रवाह होता है जो लगभग 40 × 106 होता है सामान्य पर्यावरणीय न्यूट्रॉन प्रवाह से अधिक है। यह उच्च तापीय न्यूट्रॉन प्रवाह सामान्यतः सॉफ्ट एरर्स की बहुत ही उच्च दर और परिणामी परिपथ अस्तव्यस्तता का परिणाम होता है ।[8][9]

अन्य कारण

यादृच्छिक ध्वनि या सिग्नल अखंडता की समस्याओं के कारण सॉफ्ट एरर्सं भी हो सकती हैं, जैसे आगमनात्मक या कैपेसिटिव क्रॉसस्टॉक। चूंकि, सामान्यतः, ये स्रोत विकिरण प्रभाव की तुलना में समग्र सॉफ्ट एरर दर में छोटे से योगदान का प्रतिनिधित्व करते हैं।

कुछ परीक्षण यह निष्कर्ष निकालते हैं कि छोटा परिमाण मेमोरी सेल्स के अलगाव को विशेष रूप से तैयार किए गए साइड इफेक्ट्स से आसन्न कोशिकाओं तक पहुँचाया जा सकता है। इस प्रकार, छोटा परिमाण में संग्रहीत डेटा तक पहुँचने के कारण मेमोरी सेल अपने चार्ज को Liक कर देते हैं और आधुनिक मेमोरी में उच्च सेल घनत्व के परिणामस्वरूप, पास की मेमोरी पंक्तियों की सामग्री को बदल देते हैं, जो वास्तव में मूल मेमोरी एक्सेस में संबोधित नहीं किए गए थे। [10] इस प्रभाव को पंक्ति हथौड़ा के रूप में जाना जाता है, और इसका उपयोग कुछ विशेषाधिकार वृद्धि कंप्यूटर सुरक्षा शोषण (कंप्यूटर सुरक्षा) में भी किया गया है।[11][12]

सॉफ्ट एरर्स के आसपास रचनािंग

सॉफ्ट एरर शमन

एक रचना सही अर्धचालक, संकुल और सब्सट्रेट सामग्री, और सही डिवाइस ज्यामिति का चयन करके विवेकपूर्ण डिवाइस रचना द्वारा सॉफ्ट एरर्स की दर को कम करने का प्रयास कर सकता है। अधिकांशतः, चूंकि, यह डिवाइस के आकार और वोल्टेज को कम करने, ऑपरेटिंग गति बढ़ाने और Li अपव्यय को कम करने की आवश्यकता से सीमित है। जेडईसी जेएसडी-89 मानक का उपयोग करते हुए उद्योग में समुच्चय करने के लिए उपकरणों की संवेदनशीलता का वर्णन किया गया है।

डिजिटल परिपथ में सॉफ्ट एरर रेट को कम करने के लिए उपयोग की जाने Li विधि को विकिरण सख्त कहा जाता है। इसमें वृद्धि भी सम्मिलित है

इसके प्रभावी Q को बढ़ाने के लिए चयनित परिपथ नोड्स पर समाईcrit मूल्य। यह कण ऊर्जा की सीमा को कम करता है |

जिससे नोड का तर्क मूल्य परेशान हो सकता है। साझा करने वाले ट्रांजिस्टर के आकार को बढ़ाकर अधिकांशतः विकिरण सख्त किया जाता है |

नोड पर एक Li/स्रोत क्षेत्र। चूंकि रेडिएशन हार्डनिंग का क्षेत्र और पावर ओवरहेड रचना के लिए प्रतिबंधात्मक हो सकता है, इसलिए विधि को अधिकांशतः श्रेष्ठ रूप से नोड्स पर प्रयुक्त किया जाता है, जिसके बारे में पूर्वानुमान की जाती है कि यदि हिट हो जाए तो सॉफ्ट एरर होने की संभावना सबसे अधिक होती है। उपकरण और मॉडल जो कर सकते हैं |

पूर्वानुमान करें कि कौन से नोड सबसे अशक्त हैं, सॉफ्ट एरर के क्षेत्र में पिछले और वर्तमान शोध का विषय हैं।

सॉफ्ट एरर्स का पता लगाना

हार्डवेयर और सॉफ्टवेयर दोनों विधिों का उपयोग करके प्रोसेसर और मेमोरी संसाधनों में सॉफ्ट एरर को संबोधित करने का काम किया गया है। कई शोध प्रयासों ने हार्डवेयर-आधारित निरर्थक बहु-थ्रेडिंग के माध्यम से एरर का पता लगाने और पुनर्प्राप्ति का प्रस्ताव करके सॉफ्ट एरर्स को संबोधित किया था ।[13][14][15]

इन दृष्टिकोणों ने आउटपुट में एरर्स की पहचान करने के लिए एप्लिकेशन निष्पादन को दोहराने के लिए विशेष हार्डवेयर का उपयोग किया, जिससे हार्डवेयर रचना जटिलता और उच्च प्रदर्शन ओवरहेड सहित निवेश में वृद्धि हुई। दूसरी ओर, सॉफ्टवेयर आधारित सॉफ्ट एरर टॉलरेंट स्कीमें लचीLi होती हैं और वाणिज्यिक ऑफ-द-शेल्फ माइक्रोप्रोसेसरों पर प्रयुक्त की जा सकती हैं। कई कार्य कंपाइलर-स्तरीय निर्देश प्रतिकृति और सॉफ्ट एरर डिटेक्शन के लिए परिणाम जाँच का प्रस्ताव करते हैं।

[16][17]

[18]

सॉफ्ट एरर्स को ठीक करना

रचनार यह स्वीकार करना चुन सकते हैं कि सॉफ्ट एरर्सं होंगी, और उचित एरर का पता लगाने और सुधार के साथ रचना प्रणाली को उत्तम विधि से ठीक करने के लिए। सामान्यतः, एक अर्धचालक मेमोरी रचना एरर सुधार कोड बनाने के लिए प्रत्येक वर्ड (कंप्यूटर वास्तुकला) में अनावश्यक डेटा को सम्मिलित करते हुए आगे एरर सुधार का उपयोग कर सकता है। वैकल्पिक रूप से, रोल-बैक एरर सुधार का उपयोग किया जा सकता है, एरर का पता लगाना और सुधार के साथ सॉफ्ट एरर का पता लगाना। एरर-डिटेक्टिंग कोड जैसे समता द्वियक ,और दूसरे स्रोत से सही डेटा को फिर से लिखना। इस विधि का उपयोग अधिकांशतः इससे लिखो कैश मैमोरी के लिए किया जाता है।

तर्क परिपथ में सॉफ्ट एरर को कभी-कभी पता लगाया जाता है और दोष सहिष्णुता की विधिों का उपयोग करके ठीक किया जाता है। इनमें अधिकांशतः निरर्थक परिपथरी या डेटा की गणना सम्मिलित होती है, और सामान्यतः परिपथ क्षेत्र, घटे हुए प्रदर्शन और/या उच्च विद्दुत की खपत की मूल्य पर आते हैं। लॉजिक परिपथ में बहुत उच्च सॉफ्ट-एरर विश्वसनीयता सुनिश्चित करने के लिए ट्रिपल मॉड्यूलर अतिरेक (टीएमआर) की अवधारणा को नियोजित किया जा सकता है। इस विधि में, समानांतर और आउटपुट में एक ही डेटा पर एक परिपथ की तीन समान प्रतियां बहुसंख्यक वोटिंग लॉजिक में फीड की जाती हैं, जो कम से कम दो तीन स्थितियों में हुई वैल्यू को लौटाती हैं। इस तरह, सॉफ्ट एरर के कारण एक परिपथ की विफलता को यह मानते हुए खारिज कर दिया जाता है कि अन्य दो परिपथ सही ढंग से संचालित हैं। व्यवहार में, चूंकि, कुछ रचनार 200% से अधिक परिपथ क्षेत्र और पावर ओवरहेड की आवश्यकता को वहन कर सकते हैं, इसलिए यह सामान्यतः केवल श्रेष्ठ रूप से प्रयुक्त होता है। लॉजिक परिपथ में सॉफ्ट एरर्स को ठीक करने के लिए एक अन्य सामान्य अवधारणा अस्थायी (या समय) अतिरेक है, जिसमें एक परिपथ एक ही डेटा पर कई बार काम करता है और स्थिरता के लिए बाद के मूल्यांकन की तुलना करता है। चूंकि, इस दृष्टिकोण में अधिकांशतः प्रदर्शन ओवरहेड, क्षेत्र ओवरहेड (यदि लैच की प्रतियां डेटा स्टोर करने के लिए उपयोग की जाती हैं), और पावर ओवरहेड होता है, चूंकि मॉड्यूलर रिडंडेंसी की तुलना में अधिक अधिक क्षेत्र-कुशल है।

परंपरागत रूप से, गतिशील यादृच्छिक अभिगम मेमोरी में सॉफ्ट एरर को कम करने या उसके आसपास काम करने की खोज में सबसे अधिक ध्यान दिया गया है, इस तथ्य के कारण कि छोटा परिमाण में डेस्कटॉप और सर्वर कंप्यूटर प्रणाली में अतिसंवेदनशील डिवाइस सतह क्षेत्र का अधिकांश हिस्सा सम्मिलित है (संदर्भ। सर्वर कंप्यूटरों में ईसीसी रैम का प्रचलन)। डीआरएएम की संवेदनशीलता के लिए कठिन आंकड़े कठिनाई से आते हैं, और रचना, निर्माण प्रक्रियाओं और निर्माताओं में अधिक भिन्न होते हैं। 1980 के दशक की विधि 256 किलोबाइट छोटा परिमाणS में एक अल्फा कण से पांच या छह बिट फ्लिप के समूह हो सकते थे। आधुनिक छोटा परिमाणs में बहुत छोटे आकार के फीचर होते हैं, इसलिए समान मात्रा में आवेश के जमाव से आसानी से कई और बिट्स फ्लिप हो सकते हैं।

एरर का पता लगाने और सुधार परिपथ के रचना को इस तथ्य से सहायता मिलती है कि सॉफ्ट एरर्सं सामान्यतः चिप के बहुत छोटे क्षेत्र में स्थानीयकृत होती हैं। सामान्यतः, मेमोरी की केवल एक कोशिका प्रभावित होती है, चूंकि उच्च ऊर्जा की घटनाएं बहु-कोशिका को परेशान कर सकती हैं। परंपरागत मेमोरी लेआउट सामान्यतः चिप पर आसन्न कई अलग-अलग सुधार शब्दों में से एक को रखता है। इसलिए, यहां तक ​​कि एक मल्टी-सेल समुच्चय भी केवल कई अलग-अलग एकल ईवेंट समुच्चय की ओर ले जाता है। एकल सुधार शब्द में मल्टी-बिट समुच्चय के अतिरिक्त कई सुधार शब्दों में सिंगल-बिट समुच्चय होता है। इसलिए, एक एरर सुधार कोड को सभी संभावित सॉफ्ट एरर्स से निपटने के लिए प्रत्येक सुधार शब्द में एरर में केवल एक बिट से निपटने की आवश्यकता होती है। 'मल्टी-सेल' शब्द का उपयोग मेमोरी के कई सेल्स को प्रभावित करने वाले समुच्चय्स के लिए किया जाता है, जो भी सुधार शब्द उन सेल में आते हैं। 'मल्टी-बिट' का उपयोग तब किया जाता है जब एक सुधार शब्द में कई बिट्स एरर में होते हैं।

संयोजन तर्क में सॉफ्ट एरर

संयोजन तर्क में तीन प्राकृतिक मास्किंग प्रभाव जो निर्धारित करते हैं कि क्या

विद्युत मास्किंग, तार्किक मास्किंग और टेम्पोरल (या टाइमिंग-विंडो) मास्किंग एक सिंगल घटना समुच्चय (एस ई यू) सॉफ्ट एरर बनने के लिए प्रचार करेंगे। एक एसईयू तार्किक रूप से नकाबपोश है यदि इसकी

ऑफ-पाथ गेट के कारण प्रचार को आउटपुट लैच तक पहुंचने से रोक दिया गया है

इनपुट उस गेट के आउटपुट के तार्किक संक्रमण को रोकते हैं। एक एसईयू है

विद्युतीय रूप से नकाबपोश यदि संकेत के विद्युत गुणों द्वारा क्षीण हो जाता है

गेट्स इसके प्रसार पथ पर ऐसे हैं कि परिणामी नाड़ी अपर्याप्त परिमाण की है

मज़बूती से जकड़ा हुआ। गलत पल्स पहुंचने पर एक एस ई यू अस्थायी रूप से नकाबपोश होता है

एक आउटपुट लैच, किन्तु यह पर्याप्त रूप से पास नहीं होता है जब लैच को पकड़ने के लिए वास्तव में ट्रिगर किया जाता है।

यदि तीनों मास्किंग प्रभाव विफल हो जाते हैं, तो प्रचारित पल्स लैच हो जाता है और लॉजिक परिपथ का आउटपुट एक गलत मान होगा। परिपथ ऑपरेशन के संदर्भ में, इस गलत आउटपुट वैल्यू को सॉफ्ट एरर घटना माना जा सकता है। चूंकि, माइक्रोआर्किटेक्चरल स्तर के दृष्टिकोण से, प्रभावित परिणाम वर्तमान में निष्पादित प्रोग्राम के आउटपुट को नहीं बदल सकता है। उदाहरण के लिए, गलत डेटा को उपयोग से पहले अधिलेखित किया जा सकता है, बाद के तर्क संचालन में छिपाया जा सकता है, या कभी भी उपयोग नहीं किया जा सकता है। यदि गलत डेटा किसी प्रोग्राम के आउटपुट को प्रभावित नहीं करता है, तो इसे माइक्रोआर्किटेक्चरल मास्किंग का एक उदाहरण माना जाता है।

सॉफ्ट एरर दर

सॉफ्ट एरर रेट (एसईआर) वह दर है जिस पर कोई डिवाइस या प्रणाली सॉफ्ट एरर का सामना करता है या उसका सामना करने की पूर्वानुमान की जाती है। यह सामान्यतः विफलताओं की संख्या-इन-टाइम (फिट) या विफलताओं (एमटीBएफ) के Bच औसत समय के रूप में व्यक्त किया जाता है। समय में विफलताओं की मात्रा निर्धारित करने के लिए अपनाई गई इकाई को फिट कहा जाता है, जो डिवाइस के संचालन के प्रति अरब घंटे में एक एरर के बराबर है। एमटीBएफ सामान्यतः उपकरण संचालन के वर्षों में दिया जाता है; इसे परिप्रेक्ष्य में रखने के लिए, एक फिट लगभग 1,000,000,000 / (24 × 365.25) = एक साल के एमटीBएफ की तुलना में एरर्स के Bच 114,077 गुना लंबा होता है।

जबकि कई इलेक्ट्रॉनिक प्रणालियों में एक एमटीBएफ होता है जो परिपथ के अपेक्षित जीवनकाल से अधिक होता है, फिर भी एसईआर निर्माता या ग्राहक के लिए अस्वीकार्य हो सकता है। उदाहरण के लिए, यदि प्रणाली में पर्याप्त सॉफ्ट एरर सुरक्षा नहीं है, तो सॉफ्ट एरर के कारण प्रति मिलियन परिपथ में कई विफलताओं की उम्मीद की जा सकती है। क्षेत्र में कुछ उत्पादों की विफलता, विशेष रूप से यदि विपत्तिपूर्ण हो, तो उस उत्पाद और कंपनी की प्रतिष्ठा को धूमिल कर सकती है जिसने इसे रचना किया था। इसके अतिरिक्त, सुरक्षा- या निवेश-महत्वपूर्ण अनुप्रयोगों में जहां प्रणाली की विफलता की निवेश प्रणाली की निवेश से कहीं अधिक है, ग्राहक के लिए स्वीकार्य होने के लिए प्रति जीवन सॉफ्ट एरर विफलता का 1% कठिन परिस्थिति बहुत अधिक हो सकता है। इसलिए, उच्च मात्रा में प्रणाली का निर्माण करते समय या अत्यधिक उच्च विश्वसनीयता की आवश्यकता होने पर कम एसईआर के लिए रचना करना फायदेमंद होता है।

यह भी देखें

संदर्भ

  1. Artem Dinaburg (July 2011). "बिटक्वाटिंग - बिना शोषण के डीएनएस हाइजैकिंग" (PDF). Archived from the original (PDF) on 2018-06-11. Retrieved 2011-12-26.
  2. Gold (1995): "This letter is to inform you and congratulate you on another remarkable scientific prediction of the future; namely your foreseeing of the dynamic random-access memory (DRAM) logic upset problem caused by alpha particle emission, first observed in 1977, but written about by you in Caves of Steel in 1957." [Note: Actually, 1952.] ... "These failures are caused by trace amounts of radioactive elements present in the packaging material used to encapsulate the silicon devices ... in your book, Caves of Steel, published in the 1950s, you use an alpha particle emitter to 'murder' one of the robots in the story, by destroying ('randomizing') its positronic brain. This is, of course, as good a way of describing a logic upset as any I've heard ... our millions of dollars of research, culminating in several international awards for the most important scientific contribution in the field of reliability of semiconductor devices in 1978 and 1979, was predicted in substantially accurate form twenty years [Note: twenty-five years, actually] before the events took place
  3. Ziegler, J. F. (January 1996). "Terrestrial cosmic rays". IBM Journal of Research and Development. 40 (1): 19–39. doi:10.1147/rd.401.0019. ISSN 0018-8646.
  4. 4.0 4.1 Simonite, Tom (March 2008). "Should every computer chip have a cosmic ray detector?". New Scientist. Archived from the original on 2 December 2011. Retrieved 26 November 2019.
  5. Gordon, M. S.; Goldhagen, P.; Rodbell, K. P.; Zabel, T. H.; Tang, H. H. K.; Clem, J. M.; Bailey, P. (2004). "जमीन पर कॉस्मिक-रे प्रेरित न्यूट्रॉन के प्रवाह और ऊर्जा स्पेक्ट्रम का मापन". IEEE Transactions on Nuclear Science. 51 (6): 3427–3434. Bibcode:2004ITNS...51.3427G. doi:10.1109/TNS.2004.839134. ISSN 0018-9499. S2CID 9573484.
  6. Dell, Timothy J. (1997). "पीसी सर्वर मेन मेमोरी के लिए चिपकिल-करेक्ट ईसीसी के लाभों पर एक श्वेत पत्र" (PDF). ece.umd.edu. p. 13. Retrieved 2021-11-03.{{cite web}}: CS1 maint: url-status (link)
  7. Baumann, R.; Hossain, T.; Murata, S.; Kitagawa, H. (1995). "Boron compounds as a dominant source of alpha particles in semiconductor devices". 33rd IEEE International Reliability Physics Symposium. pp. 297–302. doi:10.1109/RELPHY.1995.513695. ISBN 978-0-7803-2031-4. S2CID 110078856.
  8. Wilkinson, J. D.; Bounds, C.; Brown, T.; Gerbi, B. J.; Peltier, J. (2005). "इलेक्ट्रॉनिक उपकरणों में नरम त्रुटियों के कारण कैंसर-रेडियोथेरेपी उपकरण". IEEE Transactions on Device and Materials Reliability. 5 (3): 449–451. doi:10.1109/TDMR.2005.858342. ISSN 1530-4388. S2CID 20789261.
  9. Franco, L., Gómez, F., Iglesias, A., Pardo, J., Pazos, A., Pena, J., Zapata, M., SEUs on commercial SRAM induced by low energy neutrons produced at a clinical linac facility, RADECS Proceedings, September 2005
  10. Park, Kyungbae; Baeg, Sanghyeon; Wen, ShiJie; Wong, Richard (October 2014). "Active-precharge hammering on a row induced failure in DDR3 SDRAMs under 3× nm technology". Active-Precharge Hammering on a Row Induced Failure in DDR3 SDRAMs under 3x nm Technology. IEEE. pp. 82–85. doi:10.1109/IIRW.2014.7049516. ISBN 978-1-4799-7308-8. S2CID 14464953.
  11. Kim, Yoongu; Daly, Ross; Kim, Jeremie; Fallin, Chris; Lee, Ji Hye; Lee, Donghyuk; Wilkerson, Chris; Lai, Konrad; Mutlu, Onur (2014-06-24). "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors" (PDF). ece.cmu.edu. IEEE. Retrieved 2015-03-10.
  12. Goodin, Dan (2015-03-10). "अत्याधुनिक हैक DRAM की कमजोरी का फायदा उठाकर सुपर यूजर का दर्जा देता है". Ars Technica. Retrieved 2015-03-10.
  13. Reinhardt, Steven K.; Mukherjee, Shubhendu S. (2000). "एक साथ मल्टीथ्रेडिंग के माध्यम से क्षणिक दोष का पता लगाना". ACM SIGARCH Computer Architecture News. 28 (2): 25–36. CiteSeerX 10.1.1.112.37. doi:10.1145/342001.339652. ISSN 0163-5964.
  14. Mukherjee, Shubhendu S.; Kontz, Michael; Reinhardt, Steven K. (2002). "अनावश्यक मल्टीथ्रेडिंग विकल्पों का विस्तृत डिजाइन और मूल्यांकन". ACM SIGARCH Computer Architecture News. 30 (2): 99. CiteSeerX 10.1.1.13.2922. doi:10.1145/545214.545227. ISSN 0163-5964. S2CID 1909214.
  15. Vijaykumar, T. N.; Pomeranz, Irith; Cheng, Karl (2002). "एक साथ मल्टीथ्रेडिंग का उपयोग करके क्षणिक-दोष वसूली". ACM SIGARCH Computer Architecture News. 30 (2): 87. doi:10.1145/545214.545226. ISSN 0163-5964. S2CID 2270600.
  16. Nahmsuk, Oh; Shirvani, Philip P.; McCluskey, Edward J. (2002). "सुपर-स्केलर प्रोसेसर में डुप्लिकेट निर्देशों द्वारा त्रुटि का पता लगाना". IEEE Transactions on Reliability. 51: 63–75. doi:10.1109/24.994913.
  17. Reis A., George A.; Chang, Jonathan; Vachharajani, Neil; Rangan, Ram; August, David I. (2005). "SWIFT: Software implemented fault tolerance". कोड जनरेशन और अनुकूलन पर अंतर्राष्ट्रीय संगोष्ठी. Proceedings of the international symposium on Code generation and optimization. pp. 243–254. CiteSeerX 10.1.1.472.4177. doi:10.1109/CGO.2005.34. ISBN 978-0-7695-2298-2. S2CID 5746979.{{cite book}}: CS1 maint: location missing publisher (link)
  18. Didehban, Moslem; Shrivastava, Aviral (2016), "NZDC", nZDC: A compiler technique for near Zero Silent Data Corruption, Proceedings of the 53rd Annual Design Automation Conference (DAC): ACM, p. 48, doi:10.1145/2897937.2898054, ISBN 9781450342360, S2CID 5618907{{citation}}: CS1 maint: location (link)


अग्रिम पठन


बाहरी संबंध