हेल्महोल्ट्ज़ अपघटन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 30: Line 30:


== व्युत्पत्ति ==
== व्युत्पत्ति ==
मान लीजिए हमारे पास एक वेक्टर फलन है <math>\mathbf{F}(\mathbf{r})</math> जिनमें से हम कर्ल जानते है, <math>\nabla\times\mathbf{F}</math>, और विचलन, <math>\nabla\cdot\mathbf{F}</math>, सीमा पर डोमेन और क्षेत्र में। प्रपत्र में [[डेल्टा समारोह|डेल्टा फलन]] का उपयोग करके फलन लिखना
मान लीजिए हमारे पास एक वेक्टर फलन है <math>\mathbf{F}(\mathbf{r})</math> जिनमें से हम कर्ल जानते है, <math>\nabla\times\mathbf{F}</math>, और विचलन, <math>\nabla\cdot\mathbf{F}</math>, सीमा पर डोमेन और क्षेत्र में होता है। प्रपत्र में [[डेल्टा समारोह|डेल्टा फलन]] का उपयोग करके फलन है
<math display="block">\delta^3(\mathbf{r}-\mathbf{r}')=-\frac 1 {4\pi} \nabla^2 \frac{1}{|\mathbf{r}-\mathbf{r}'|}\, ,</math>
<math display="block">\delta^3(\mathbf{r}-\mathbf{r}')=-\frac 1 {4\pi} \nabla^2 \frac{1}{|\mathbf{r}-\mathbf{r}'|}\, ,</math>
जहाँ <math>\nabla^2:=\nabla\cdot\nabla</math> लाप्लास ऑपरेटर है, हमारे पास है  
जहाँ <math>\nabla^2:=\nabla\cdot\nabla</math> लाप्लास ऑपरेटर है, हमारे पास है  
Line 52: Line 52:
\mathbf{a}\times\nabla\psi &=\psi(\nabla\times\mathbf{a})-\nabla \times (\psi\mathbf{a})
\mathbf{a}\times\nabla\psi &=\psi(\nabla\times\mathbf{a})-\nabla \times (\psi\mathbf{a})
\end{align}</math>
\end{align}</math>
हम पाते है
हम प्राप्त करते है
<math display="block">\begin{align}
<math display="block">\begin{align}
\mathbf{F}(\mathbf{r})=-\frac{1}{4\pi}\bigg[
\mathbf{F}(\mathbf{r})=-\frac{1}{4\pi}\bigg[
Line 148: Line 148:
\nabla^2 G(\mathbf{r},\mathbf{r}') = \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') = \delta^d(\mathbf{r}-\mathbf{r}')
\nabla^2 G(\mathbf{r},\mathbf{r}') = \frac{\partial}{\partial r_\mu}\frac{\partial}{\partial r_\mu}G(\mathbf{r},\mathbf{r}') = \delta^d(\mathbf{r}-\mathbf{r}')
</math>
</math>
जहां इंडेक्स के लिए [[आइंस्टीन संकेतन]] का उपयोग किया जाता है <math>\mu</math>. उदाहरण के लिए, <math display="inline">G(\mathbf{r},\mathbf{r}')=\frac{1}{2\pi}\ln\left|\mathbf{r}-\mathbf{r}'\right|</math> 2डी में।
जहां इंडेक्स के लिए [[आइंस्टीन संकेतन]] का उपयोग किया जाता है <math>\mu</math>. उदाहरण के लिए, <math display="inline">G(\mathbf{r},\mathbf{r}')=\frac{1}{2\pi}\ln\left|\mathbf{r}-\mathbf{r}'\right|</math> 2डी।


ऊपर दिए गए चरणों का पालन करके हम लिख सकते है
ऊपर दिए गए चरणों का पालन करके हम लिख सकते है
Line 175: Line 175:
\end{aligned}
\end{aligned}
</math>
</math>
ध्यान दें कि वेक्टर क्षमता को रैंक से बदल दिया जाता है-<math>(d-2)</math> टेंसर इन <math>d</math> आयाम।
ध्यान दें कि वेक्टर क्षमता को रैंक से बदल दिया जाता है-<math>(d-2)</math> टेंसर इन <math>d</math> आयाम है।


कई गुना अधिक सामान्यीकरण के लिए, [[हॉज अपघटन]] हेल्महोल्ट्ज़ अपघटन विभेदक रूपों की चर्चा देखें।
कई गुना अधिक सामान्यीकरण के लिए, [[हॉज अपघटन]] हेल्महोल्ट्ज़ अपघटन विभेदक रूपों की चर्चा देखें।


=== फूरियर रूपांतरण से एक अन्य व्युत्पत्ति ===
=== फूरियर रूपांतरण से एक अन्य व्युत्पत्ति ===
ध्यान दें कि यहां बताए गए सिद्धांत में हमने यह निश्चित किया है कि यदि <math>\mathbf{F}</math> एक बाध्य डोमेन पर परिभाषित नहीं है, तब <math>\mathbf{F}</math> से भी तेज क्षय होगा <math>1/r</math>. इस प्रकार, का फूरियर रूपांतरण <math>\mathbf{F}</math>, रूप में दर्शाया गया है <math>\mathbf{G}</math>, के अधिपत्रित होने पर हम औपचारिक समझौता लागू करते है ।
ध्यान दें कि यहां बताए गए सिद्धांत में हमने यह निश्चित किया है कि यदि <math>\mathbf{F}</math> एक बाध्य डोमेन पर परिभाषित नहीं है, तब <math>\mathbf{F}</math> से भी तेज क्षय होगा <math>1/r</math>. इस प्रकार, का फूरियर रूपांतरण <math>\mathbf{F}</math>, रूप में दर्शाया गया है <math>\mathbf{G}</math>, के अधिपत्रित होने पर हम औपचारिक समझौता लागू करते है।
<math display="block">\mathbf{F}(\mathbf{r}) = \iiint \mathbf{G}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{r}} dV_k </math>
<math display="block">\mathbf{F}(\mathbf{r}) = \iiint \mathbf{G}(\mathbf{k}) e^{i\mathbf{k} \cdot \mathbf{r}} dV_k </math>
एक अदिश क्षेत्र का फूरियर रूपांतरण एक अदिश क्षेत्र है, और सदिश क्षेत्र का फूरियर रूपांतरण समान आयाम का एक सदिश क्षेत्र है।
एक अदिश क्षेत्र का फूरियर रूपांतरण एक अदिश क्षेत्र है, और सदिश क्षेत्र का फूरियर रूपांतरण समान आयाम का एक सदिश क्षेत्र है।
Line 199: Line 199:


=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' ===
=== '''निर्धारित विचलन और कर्ल के साथ क्षेत्र''' ===
शब्द "हेल्महोल्ट्ज़ प्रमेय" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि '''C''' एक परिनालिका सदिश क्षेत्र है और '''R'''<sup>3</sup> पर एक अदिश क्षेत्र है जो पर्याप्त रूप से समतल है और जो अनंत पर 1/''r''<sup>2</sup> से अधिक तेजी से लुप्‍त हो जाते है। फिर एक सदिश क्षेत्र '''F''' में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
शब्द "हेल्महोल्ट्ज़ सिद्धांत" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि '''C''' एक परिनालिका सदिश क्षेत्र है और '''R'''<sup>3</sup> पर एक अदिश क्षेत्र है जो पर्याप्त रूप से समतल है और जो अनंत पर 1/''r''<sup>2</sup> से अधिक तेजी से लुप्‍त हो जाते है। फिर एक सदिश क्षेत्र '''F''' में सम्मलित होते है जैसे कि:<math display="block">\nabla \cdot \mathbf{F} = d \quad \text{ and } \quad \nabla \times \mathbf{F} = \mathbf{C};</math>
यदि अतिरिक्त सदिश क्षेत्र {{math|'''F'''}} के रूप में लुप्‍त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" />
यदि अतिरिक्त सदिश क्षेत्र {{math|'''F'''}} के रूप में लुप्‍त हो जाता है {{math|''r'' → ∞}}, तो F अद्वितीय हो जाते है।<ref name="griffiths" />


Line 215: Line 215:
:* <math> \varphi </math> कोई अदिश क्षेत्र है।
:* <math> \varphi </math> कोई अदिश क्षेत्र है।


प्रमाण:
प्रमाण सेटिंग <math>\lambda = \Phi_2 -  \Phi_1</math> और <math>{\mathbf B = A_2 - A_1}</math>,
सेटिंग <math>\lambda = \Phi_2 -  \Phi_1</math> और <math>{\mathbf B = A_2 - A_1}</math>, एक के अनुसार है
 
हेल्महोल्ट्ज़ अपघटन की परिभाषा,
हेल्महोल्ट्ज़ अपघटन की परिभाषा,
:<math> -\nabla \lambda + \nabla \times \mathbf B = 0 </math>.
:<math> -\nabla \lambda + \nabla \times \mathbf B = 0 </math>.
Line 224: Line 224:
इसके विपरीत, कोई हार्मोनिक फलन दिया गया है <math>\lambda</math>,<math>\nabla \lambda </math> के बाद से परिनालिकीय होता है
इसके विपरीत, कोई हार्मोनिक फलन दिया गया है <math>\lambda</math>,<math>\nabla \lambda </math> के बाद से परिनालिकीय होता है
:<math>\nabla\cdot (\nabla \lambda) = \nabla^2 \lambda = 0.</math>
:<math>\nabla\cdot (\nabla \lambda) = \nabla^2 \lambda = 0.</math>
इस प्रकार, उपरोक्त खंड के अनुसार, एक सदिश क्षेत्र सम्मलित है <math>{\mathbf A}_\lambda</math> ऐसा है कि
इस प्रकार, उपरोक्त खंड के अनुसार, एक सदिश क्षेत्र सम्मलित है <math>{\mathbf A}_\lambda</math> ऐसा है कि <math>\nabla \lambda = \nabla\times {\mathbf A}_\lambda</math>.
<math>\nabla \lambda = \nabla\times {\mathbf A}_\lambda</math>.
अगर <math>{\mathbf A'}_\lambda</math> एक और ऐसा सदिश क्षेत्र है, तब <math>\mathbf C = {\mathbf A}_\lambda -  {\mathbf A'}_\lambda</math> पूरा <math>\nabla \times {\mathbf C} = 0</math>, इस तरह <math>C = \nabla \varphi</math> कुछ अदिश क्षेत्र के लिए <math>\varphi</math> (और इसके विपरीत) होता है।
अगर <math>{\mathbf A'}_\lambda</math> एक और ऐसा सदिश क्षेत्र है,
तब <math>\mathbf C = {\mathbf A}_\lambda -  {\mathbf A'}_\lambda</math> पूरा <math>\nabla \times {\mathbf C} = 0</math>, इस तरह <math>C = \nabla \varphi</math>
कुछ अदिश क्षेत्र के लिए <math>\varphi</math> (और इसके विपरीत)


== विभेदक रूप ==
== विभेदक रूप ==
हॉज अपघटन हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, आर पर सदिश क्षेत्रों से सामान्यीकरण<sup>3</sup> [[रीमैनियन कई गुना]] एम पर [[विभेदक रूप]]ों के लिए। हॉज अपघटन के अधिकांश योगों के लिए एम को [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] होना आवश्यक है।<ref>{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> चूँकि यह R के लिए सत्य नहीं है<sup>3</sup>, हॉज अपघटन सिद्धांत सख्ती से हेल्महोल्ट्ज़ सिद्धांत का सामान्यीकरण नहीं है। चूँकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ सिद्धांत का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है।
हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, R<sup>3</sup> पर सदिश क्षेत्रों से सामान्यीकरण [[रीमैनियन कई गुना]] एम पर [[विभेदक रूप|विभेदक रूपों]] के लिए होता है। हॉज अपघटन के अधिकांश योगों के लिए एम को [[ कॉम्पैक्ट जगह |कॉम्पैक्ट जगह]] होना आवश्यक है।<ref>{{cite journal| jstor=2695643| title=Vector Calculus and the Topology of Domains in 3-Space| first1=Jason |last1=Cantarella |first2=Dennis |last2=DeTurck | first3=Herman|last3=Gluck|journal=The American Mathematical Monthly|volume=109|issue=5|year=2002 |pages=409–442 | doi=10.2307/2695643 }}</ref> चूँकि यह R<sup>3</sup> के लिए सत्य नहीं है, हॉज अपघटन सिद्धांत सख्ती से हेल्महोल्ट्ज़ सिद्धांत का सामान्यीकरण नहीं है। चूँकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ सिद्धांत का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है।


== कमजोर सूत्रीकरण ==
== कमजोर सूत्रीकरण ==
Line 245: Line 242:


== अनुदैर्ध्य और अनुप्रस्थ क्षेत्र ==
== अनुदैर्ध्य और अनुप्रस्थ क्षेत्र ==
भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अपसरण-मुक्त घटक को अनुप्रस्थ घटक के रूप में संदर्भित करती है।<ref>[https://arxiv.org/abs/0801.0335 Stewart, A. M.; Longitudinal and transverse components of a vector field, Sri Lankan Journal of Physics 12, 33–42 (2011)]</ref> यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी फूरियर रूपांतरण की गणना करें <math>\hat\mathbf{F}</math> सदिश क्षेत्र का <math>\mathbf{F}</math>. फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करें, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत होता है। जहाँ तक, हमारे पास है
भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अपसरण-मुक्त घटक को अनुप्रस्थ घटक के रूप में संदर्भित करती है।<ref>[https://arxiv.org/abs/0801.0335 Stewart, A. M.; Longitudinal and transverse components of a vector field, Sri Lankan Journal of Physics 12, 33–42 (2011)]</ref> यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी फूरियर रूपांतरण की गणना करता है <math>\hat\mathbf{F}</math> सदिश क्षेत्र का <math>\mathbf{F}</math>. फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करता है, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत होता है। जहाँ तक, हमारे पास है


<math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math>
<math display="block">\hat\mathbf{F} (\mathbf{k}) = \hat\mathbf{F}_t (\mathbf{k}) + \hat\mathbf{F}_l (\mathbf{k})</math>
Line 255: Line 252:
उपरान्त <math>\nabla\times(\nabla\Phi)=0</math> और <math>\nabla\cdot(\nabla\times\mathbf{A})=0</math>,
उपरान्त <math>\nabla\times(\nabla\Phi)=0</math> और <math>\nabla\cdot(\nabla\times\mathbf{A})=0</math>,


हम प्राप्त कर सकते है
हम प्राप्त करते है


<math display="block">\mathbf{F}_t=\nabla\times\mathbf{A}=\frac{1}{4\pi}\nabla\times\int_V\frac{\nabla'\times\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
<math display="block">\mathbf{F}_t=\nabla\times\mathbf{A}=\frac{1}{4\pi}\nabla\times\int_V\frac{\nabla'\times\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
<math display="block">\mathbf{F}_l=-\nabla\Phi=-\frac{1}{4\pi}\nabla\int_V\frac{\nabla'\cdot\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
<math display="block">\mathbf{F}_l=-\nabla\Phi=-\frac{1}{4\pi}\nabla\int_V\frac{\nabla'\cdot\mathbf{F}}{\left|\mathbf{r}-\mathbf{r}'\right|}\mathrm{d}V'</math>
तो यह वास्तव में हेल्महोल्ट्ज़ अपघटन होते है।<ref>[http://bohr.physics.berkeley.edu/classes/221/1112/notes/hamclassemf.pdf Online lecture notes by Robert Littlejohn]</ref>
तो यह वास्तव में हेल्महोल्ट्ज़ अपघटन होते है।<ref>[http://bohr.physics.berkeley.edu/classes/221/1112/notes/hamclassemf.pdf Online lecture notes by Robert Littlejohn]</ref>
== यह भी देखें ==
== यह भी देखें ==
* सदिश क्षेत्रों के संबंधित अपघटन के लिए क्लेबश प्रतिनिधित्व
* सदिश क्षेत्रों के संबंधित अपघटन के लिए क्लेबश प्रतिनिधित्व
Line 299: Line 294:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Helmholtz Decomposition}}[[Category: वेक्टर पथरी]] [[Category: विश्लेषण में प्रमेय]] [[Category: विश्लेषणात्मक ज्यामिति]] [[Category: हरमन वॉन हेल्महोल्ट्ज़]] [[Category: पथरी में प्रमेय]]
{{DEFAULTSORT:Helmholtz Decomposition}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023|Helmholtz Decomposition]]
[[Category:Created On 24/03/2023]]
[[Category:Lua-based templates|Helmholtz Decomposition]]
[[Category:Machine Translated Page|Helmholtz Decomposition]]
[[Category:Pages with script errors|Helmholtz Decomposition]]
[[Category:Templates Vigyan Ready|Helmholtz Decomposition]]
[[Category:Templates that add a tracking category|Helmholtz Decomposition]]
[[Category:Templates that generate short descriptions|Helmholtz Decomposition]]
[[Category:Templates using TemplateData|Helmholtz Decomposition]]
[[Category:पथरी में प्रमेय|Helmholtz Decomposition]]
[[Category:विश्लेषण में प्रमेय|Helmholtz Decomposition]]
[[Category:विश्लेषणात्मक ज्यामिति|Helmholtz Decomposition]]
[[Category:वेक्टर पथरी|Helmholtz Decomposition]]
[[Category:हरमन वॉन हेल्महोल्ट्ज़|Helmholtz Decomposition]]

Latest revision as of 18:35, 20 April 2023

भौतिकी और गणित में, वेक्टर कैलकुलस के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,[1][2] जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] यह बताता है कि किसी भी पर्याप्त रूप से समतल, तेजी से क्षय करने वाले वेक्टर क्षेत्र को तीन आयामों में एक अघूर्णनी (कर्ल-मुफ्त) सदिश क्षेत्र और परिनालिकीय क्षेत्र (विचलन-मुफ्त) सदिश क्षेत्र के योग में हल किया जा सकता है, इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]

जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक परिनालिकीय सदिश क्षेत्र में सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को योग के रूप में विघटित किया जा सकता है ,

जहाँ अदिश क्षेत्र होते है उसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।

सिद्धांत का कथन

एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]

जहाँ
और के संबंध में संचालिका होता है , नहीं .

अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से लुप्‍त हो जाता है जैसा , तो एक है[12]

यह विशेष रूप से अगर है में दो बार लगातार अवकलनीय है और सीमित समर्थन है।

व्युत्पत्ति

मान लीजिए हमारे पास एक वेक्टर फलन है जिनमें से हम कर्ल जानते है, , और विचलन, , सीमा पर डोमेन और क्षेत्र में होता है। प्रपत्र में डेल्टा फलन का उपयोग करके फलन है

जहाँ लाप्लास ऑपरेटर है, हमारे पास है

जहाँ हमने सदिश लाप्लासियन की परिभाषा का उपयोग किया है:
भेदभाव/एकीकरण के संबंध में द्वारा और अंतिम पंक्ति में, फलन तर्कों की रैखिकता:
फिर सदिश पहचान का उपयोग करना

हम प्राप्त करते है
विचलन सिद्धांत के लिए समीकरण को फिर से लिखा जा सकता है