पदानुक्रम समस्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Unsolved problem in physics}}
{{Short description|Unsolved problem in physics}}
{{for|the supersymmetric anomaly|छोटी पदानुक्रम समस्या}}
{{Beyond the Standard Model|expanded=Evidence}}
{{Beyond the Standard Model|expanded=Evidence}}


Line 6: Line 5:


== तकनीकी परिभाषा ==
== तकनीकी परिभाषा ==
एक पदानुक्रम समस्या तब होती है जब कुछ भौतिक पैरामीटर का मौलिक मान, जैसे [[युग्मन स्थिरांक]] या द्रव्यमान, कुछ लैग्रैंगियन यांत्रिकी में इसके प्रभावी मान से अत्यधिक भिन्न होता है, जो कि एक प्रयोग में मापा जाता है। ऐसा इसलिए होता है क्योंकि प्रभावी मान मौलिक मान से संबंधित होता है जिसे [[पुनर्सामान्यीकरण]] के रूप में जाना जाता है, जो इसमें संशोधन लागू करता है। सामान्यतः मापदंडों का पुनर्सामान्यीकृत मान उनके मौलिक मानों के निकट होता है, परन्तु कुछ स्थितियों में, ऐसा प्रतीत होता है कि मौलिक मात्रा और क्वांटम संशोधन के बीच एक सूक्ष्म निरसन हुआ है। पदानुक्रम की समस्याएं [[फाइन-ट्यूनिंग (भौतिकी)|सूक्ष्म-समस्वरण (भौतिकी)]] समस्याओं और [[स्वाभाविकता (भौतिकी)|वास्तविकता(भौतिकी)]] की समस्याओं से संबंधित हैं। पूर्व एक दशक में कई वैज्ञानिकों <ref>{{Cite journal |last1=Fowlie |first1=Andrew |last2=Balazs |first2=Csaba |last3=White |first3=Graham |last4=Marzola |first4=Luca |last5=Raidal |first5=Martti |date=17 August 2016 |title=विश्राम तंत्र की स्वाभाविकता|journal=Journal of High Energy Physics |volume=2016 |issue=8 |pages=100 |arxiv=1602.03889 |bibcode=2016JHEP...08..100F |doi=10.1007/JHEP08(2016)100 |s2cid=119102534}}</ref><ref>{{Cite journal |last=Fowlie |first=Andrew |date=10 July 2014 |title=CMSSM, naturalness and the ?fine-tuning price? of the Very Large Hadron Collider |journal=Physical Review D |volume=90 |issue=1 |pages=015010 |arxiv=1403.3407 |bibcode=2014PhRvD..90a5010F |doi=10.1103/PhysRevD.90.015010 |s2cid=118362634}}</ref><ref>{{Cite journal |last=Fowlie |first=Andrew |date=15 October 2014 |title=Is the CNMSSM more credible than the CMSSM? |journal=The European Physical Journal C |volume=74 |issue=10 |arxiv=1407.7534 |doi=10.1140/epjc/s10052-014-3105-y |s2cid=119304794}}</ref><ref>{{Cite journal |last1=Cabrera |first1=Maria Eugenia |last2=Casas |first2=Alberto |last3=Austri |first3=Roberto Ruiz de |last4=Marzola |first4=Luca |last5=Raidal |first5=Martti |year=2009 |title=MSSM में बायेसियन दृष्टिकोण और स्वाभाविकता LHC के लिए विश्लेषण करती है|journal=Journal of High Energy Physics |volume=2009 |issue=3 |page=075 |arxiv=0812.0536 |bibcode=2009JHEP...03..075C |doi=10.1088/1126-6708/2009/03/075 |s2cid=18276270}}</ref><ref>{{Cite journal |last=Fichet |first=S. |date=18 December 2012 |title=बायेसियन आँकड़ों से मात्रात्मक स्वाभाविकता|journal=Physical Review D |volume=86 |issue=12 |pages=125029 |arxiv=1204.4940 |bibcode=2012PhRvD..86l5029F |doi=10.1103/PhysRevD.86.125029 |s2cid=119282331}}</ref> ने तर्क दिया कि पदानुक्रम समस्या [[बायेसियन सांख्यिकी|बेज सांख्यिकी]] का एक विशिष्ट अनुप्रयोग है।
पदानुक्रम समस्या तब होती है जब कुछ भौतिक पैरामीटर का मौलिक मान, जैसे [[युग्मन स्थिरांक]] या द्रव्यमान, कुछ लैग्रैंगियन यांत्रिकी में इसके प्रभावी मान से अत्यधिक भिन्न होता है, जो कि एक प्रयोग में मापा जाता है। ऐसा इसलिए होता है क्योंकि प्रभावी मान मौलिक मान से संबंधित होता है जिसे [[पुनर्सामान्यीकरण]] के रूप में जाना जाता है, जो इसमें संशोधन लागू करता है। सामान्यतः मापदंडों का पुनर्सामान्यीकृत मान उनके मौलिक मानों के निकट होता है, परन्तु कुछ स्थितियों में, ऐसा प्रतीत होता है कि मौलिक मात्रा और क्वांटम संशोधन के बीच सूक्ष्म निरसन हुआ है। पदानुक्रम की समस्याएं [[फाइन-ट्यूनिंग (भौतिकी)|सूक्ष्म-समस्वरण(भौतिकी]]) समस्याओं और [[स्वाभाविकता (भौतिकी)|वास्तविकता(भौतिकी]]) की समस्याओं से संबंधित हैं। पूर्व दशक में कई वैज्ञानिकों<ref>{{Cite journal |last1=Fowlie |first1=Andrew |last2=Balazs |first2=Csaba |last3=White |first3=Graham |last4=Marzola |first4=Luca |last5=Raidal |first5=Martti |date=17 August 2016 |title=विश्राम तंत्र की स्वाभाविकता|journal=Journal of High Energy Physics |volume=2016 |issue=8 |pages=100 |arxiv=1602.03889 |bibcode=2016JHEP...08..100F |doi=10.1007/JHEP08(2016)100 |s2cid=119102534}}</ref><ref>{{Cite journal |last=Fowlie |first=Andrew |date=10 July 2014 |title=CMSSM, naturalness and the ?fine-tuning price? of the Very Large Hadron Collider |journal=Physical Review D |volume=90 |issue=1 |pages=015010 |arxiv=1403.3407 |bibcode=2014PhRvD..90a5010F |doi=10.1103/PhysRevD.90.015010 |s2cid=118362634}}</ref><ref>{{Cite journal |last=Fowlie |first=Andrew |date=15 October 2014 |title=Is the CNMSSM more credible than the CMSSM? |journal=The European Physical Journal C |volume=74 |issue=10 |arxiv=1407.7534 |doi=10.1140/epjc/s10052-014-3105-y |s2cid=119304794}}</ref><ref>{{Cite journal |last1=Cabrera |first1=Maria Eugenia |last2=Casas |first2=Alberto |last3=Austri |first3=Roberto Ruiz de |last4=Marzola |first4=Luca |last5=Raidal |first5=Martti |year=2009 |title=MSSM में बायेसियन दृष्टिकोण और स्वाभाविकता LHC के लिए विश्लेषण करती है|journal=Journal of High Energy Physics |volume=2009 |issue=3 |page=075 |arxiv=0812.0536 |bibcode=2009JHEP...03..075C |doi=10.1088/1126-6708/2009/03/075 |s2cid=18276270}}</ref><ref>{{Cite journal |last=Fichet |first=S. |date=18 December 2012 |title=बायेसियन आँकड़ों से मात्रात्मक स्वाभाविकता|journal=Physical Review D |volume=86 |issue=12 |pages=125029 |arxiv=1204.4940 |bibcode=2012PhRvD..86l5029F |doi=10.1103/PhysRevD.86.125029 |s2cid=119282331}}</ref> ने तर्क दिया कि पदानुक्रम समस्या [[बायेसियन सांख्यिकी|बेज सांख्यिकी]] का विशिष्ट अनुप्रयोग है।


पदानुक्रम की समस्याओं में पुनर्सामान्यीकरण का अध्ययन करना कठिन है, क्योंकि ऐसे क्वांटम संशोधन सामान्यतः शक्ति-नियम अपसारी होते हैं, जिसका अर्थ है कि सबसे कम दूरी की भौतिकी सबसे महत्वपूर्ण है। क्योंकि हम भौतिकी के [[ क्वांटम गुरुत्वाकर्षण |क्वांटम गुरुत्वाकर्षण]] के यथार्थ विवरण नहीं जानते हैं, हम यह भी नहीं बता सकते हैं कि दो बड़े पदों के बीच यह सूक्ष्म निरसन कैसे होता है। इसलिए, शोधकर्ताओं को नवीन भौतिक घटनाओं को मानने के लिए प्रेरित किया जाता है जो ठीक-ठीक समस्वरण के बिना पदानुक्रम की समस्याओं को हल करते हैं।
पदानुक्रम की समस्याओं में पुनर्सामान्यीकरण का अध्ययन करना कठिन है, क्योंकि ऐसे क्वांटम संशोधन सामान्यतः शक्ति-नियम अपसारी होते हैं, जिसका अर्थ है कि सबसे कम दूरी की भौतिकी सबसे महत्वपूर्ण है। क्योंकि हम भौतिकी के [[ क्वांटम गुरुत्वाकर्षण |क्वांटम गुरुत्वाकर्षण]] के यथार्थ विवरण नहीं जानते हैं, हम यह भी नहीं बता सकते हैं कि दो बड़े पदों के बीच यह सूक्ष्म निरसन कैसे होता है। इसलिए, शोधकर्ताओं को नवीन भौतिक घटनाओं को मानने के लिए प्रेरित किया जाता है जो ठीक-ठीक समस्वरण के बिना पदानुक्रम की समस्याओं को हल करते हैं।


== अवलोकन ==
== अवलोकन ==
मान लीजिए कि एक भौतिकी मॉडल को चार मापदंडों की आवश्यकता होती है जो इसे हमारे भौतिक ब्रह्मांड की कुछ अवस्था की पूर्वानुमान को उत्पन्न करने के लिए एक बहुत ही उच्च गुणवत्ता वाले कार्यशील मॉडल का उत्पादन करने की अनुमति देते है। मान लीजिए कि हम प्रयोगों के माध्यम से पाते हैं कि पैरामीटर के मान हैं: 1.2, 1.31, 0.9 और 404,331,557,902,116,024,553,602,703,216.58 (लगभग 4×10<sup>29</sup>)। वैज्ञानिक आश्चर्यचकित हो सकते हैं कि ऐसे आंकड़े कैसे उत्पन्न होते हैं। परन्तु विशेष रूप से, एक सिद्धांत के विषय में विशेष रूप से उत्सुक हो सकते हैं जहां तीन मान एक के निकट हैं, और चौथा बहुत अलग है; दूसरे शब्दों में, हमें लगता है कि पूर्व तीन पैरामीटर और चौथे के बीच भारी असमानता है। हम यह भी सोच सकते हैं कि क्या एक बल दूसरों की तुलना में इतना मंद है कि उसे 4×10<sup>29</sup> के कारक की आवश्यकता है इसे प्रभावों के संदर्भ में उनसे संबंधित होने की अनुमति देने के लिए, जब इसकी दृढ़ता उभरीं तो हमारा ब्रह्मांड इतना संतुलित कैसे हो गया? वर्तमान कण भौतिकी में, कुछ मापदंडों के बीच का अंतर इससे कहीं अधिक है, इसलिए यह प्रश्न और भी उल्लेखनीय है।
मान लीजिए कि भौतिकी मॉडल को चार मापदंडों की आवश्यकता होती है जो इसे हमारे भौतिक ब्रह्मांड की कुछ अवस्था की पूर्वानुमान को उत्पन्न करने के लिए बहुत ही उच्च गुणवत्ता वाले कार्यशील मॉडल का उत्पादन करने की अनुमति देते है। मान लीजिए कि हम प्रयोगों के माध्यम से पाते हैं कि पैरामीटर के मान हैं: 1.2, 1.31, 0.9 और 404,331,557,902,116,024,553,602,703,216.58(लगभग 4×10<sup>29</sup>)। वैज्ञानिक आश्चर्यचकित हो सकते हैं कि ऐसे आंकड़े कैसे उत्पन्न होते हैं। परन्तु विशेष रूप से, एक सिद्धांत के विषय में विशेष रूप से उत्सुक हो सकते हैं जहां तीन मान एक के निकट हैं, और चौथा बहुत अलग है; दूसरे पदों में, हमें लगता है कि पूर्व तीन पैरामीटर और चौथे के बीच भारी असमानता है। हम यह भी सोच सकते हैं कि क्या बल दूसरों की तुलना में इतने मंद है कि उसे 4×10<sup>29</sup> के कारक की आवश्यकता है इसे प्रभावों के संदर्भ में उनसे संबंधित होने की अनुमति देने के लिए, जब इसकी दृढ़ता उभरीं तो हमारा ब्रह्मांड इतना संतुलित कैसे हो गया? वर्तमान कण भौतिकी में, कुछ मापदंडों के बीच का अंतर इससे कहीं अधिक है, इसलिए यह प्रश्न और भी उल्लेखनीय है।


दार्शनिकों द्वारा दिया गया एक उत्तर [[मानवशास्त्रीय सिद्धांत]] है। यदि ब्रह्मांड संयोग से अस्तित्व में आया, और संभवतः बड़ी संख्या में अन्य ब्रह्मांड स्थित हैं या अस्तित्व में हैं, तो भौतिकी के प्रयोगों में सक्षम जीवन मात्र उन ब्रह्मांडों में उत्पन्न हुआ, जिनमें संयोग से बहुत संतुलित बल थे। उन सभी ब्रह्माण्डों में जहाँ बल संतुलित नहीं थे, इस प्रश्न को पूछने में सक्षम जीवन का विकास नहीं हुआ। तो यदि [[मनुष्य]] जैसे जीवन रूप जागरूक हैं और इस प्रकार के प्रश्न पूछने में सक्षम हैं, तो मनुष्य ब्रह्मांड में संतुलित शक्तियों के साथ उत्पन्न हुए होंगे, चाहे वह कितना भी दुर्लभ क्यों न हो।
दार्शनिकों द्वारा दिया गया एक उत्तर [[मानवशास्त्रीय सिद्धांत]] है। यदि ब्रह्मांड संयोग से अस्तित्व में आया, और संभवतः बड़ी संख्या में अन्य ब्रह्मांड स्थित हैं या अस्तित्व में हैं, तो भौतिकी के प्रयोगों में सक्षम जीवन मात्र उन ब्रह्मांडों में उत्पन्न हुआ, जिनमें संयोग से बहुत संतुलित बल थे। उन सभी ब्रह्माण्डों में जहाँ बल संतुलित नहीं थे, इस प्रश्न को पूछने में सक्षम जीवन का विकास नहीं हुआ। तो यदि [[मनुष्य]] जैसे जीवन रूप जागरूक हैं और इस प्रकार के प्रश्न पूछने में सक्षम हैं, तो मनुष्य ब्रह्मांड में संतुलित शक्तियों के साथ उत्पन्न हुए होंगे, चाहे वह कितना भी दुर्लभ क्यों न हो।
Line 20: Line 19:


=== हिग्स द्रव्यमान ===
=== हिग्स द्रव्यमान ===
[[कण भौतिकी]] में, सबसे महत्वपूर्ण पदानुक्रम समस्या वह प्रश्न है जो पूछता है कि मंद बल गुरुत्वाकर्षण से 10<sup>24 गुना अधिक दृढ क्यों है ।<ref>http://web.mit.edu/sahughes/www/8.022/lec01.pdf {{Bare URL PDF|date=March 2022}}</ref> इन दोनों बलों में प्रकृति के स्थिरांक, मंद बल के लिए फर्मी स्थिरांक और गुरुत्वाकर्षण के लिए न्यूटोनियन स्थिरांक सम्मिलित हैं। इसके अतिरिक्त, यदि मानक मॉडल का उपयोग फर्मी के स्थिरांक में क्वांटम संशोधन की गणना के लिए किया जाता है, तो ऐसा प्रतीत होता है कि फर्मी का स्थिरांक आश्चर्यजनक रूप से बड़ा है और न्यूटन के स्थिरांक के निकट होने की अपेक्षा है जब तक कि फर्मी के स्थिरांक और इसमें क्वांटम संशोधन के अनावृत मान के बीच एक सूक्ष्म निरसन न हो।
[[कण भौतिकी]] में, सबसे महत्वपूर्ण पदानुक्रम समस्या वह प्रश्न है जो पूछते है कि मंद बल गुरुत्वाकर्षण से 10<sup>24 गुना अधिक दृढ क्यों है।<ref>http://web.mit.edu/sahughes/www/8.022/lec01.pdf {{Bare URL PDF|date=March 2022}}</ref> इन दोनों बलों में प्रकृति के स्थिरांक, मंद बल के लिए फर्मी स्थिरांक और गुरुत्वाकर्षण के लिए न्यूटोनियन स्थिरांक सम्मिलित हैं। इसके अतिरिक्त, यदि मानक मॉडल का उपयोग फर्मी के स्थिरांक में क्वांटम संशोधन की गणना के लिए किया जाता है, तो ऐसा प्रतीत होता है कि फर्मी का स्थिरांक आश्चर्यजनक रूप से बड़ा है और न्यूटन के स्थिरांक के निकट होने की अपेक्षा है जब तक कि फर्मी के स्थिरांक और इसमें क्वांटम संशोधन के अनावृत मान के बीच सूक्ष्म निरसन न हो।


[[File:Hqmc-vector.svg|thumb|300px|right|[[मानक मॉडल]] के एक [[सुपरसिमेट्री|अतिसममिति]] विस्तार में [[फर्मियन]] [[ शीर्ष क्वार्क |शीर्ष क्वार्क]] लूप और [[ अदिश क्षेत्र |अदिश क्षेत्र]] स्टॉप [[स्क्वार्क]] टैडपोल [[ फेनमैन आरेख |फेनमैन आरेख]] के बीच [[हिग्स बॉसन]] द्विघात द्रव्यमान पुनर्सामान्यीकरण को रद्द करना]]अधिक तकनीकी रूप से, प्रश्न यह है कि हिग्स बोसोन प्लैंक द्रव्यमान (या [[भव्य एकीकरण ऊर्जा|सर्वोच्च एकीकरण ऊर्जा]], या भारी न्यूट्रिनो द्रव्यमान पैमाने) की तुलना में इतना हल्का क्यों है: कोई यह अपेक्षा करेगा कि हिग्स बोसोन द्रव्यमान के वर्ग में बड़ी मात्रा में योगदान होगा अनिवार्य रूप से द्रव्यमान को विशाल बनाते हैं, जिस पैमाने पर नवीन भौतिकी प्रकट होती है, जब तक कि द्विघात विकिरण संशोधन और अनावृत द्रव्यमान के बीच एक अविश्वसनीय सूक्ष्म-समस्वरण (भौतिकी) निरसन न हो।
[[File:Hqmc-vector.svg|thumb|300px|right|[[मानक मॉडल]] के एक [[सुपरसिमेट्री|अतिसममिति]] विस्तार में [[फर्मियन]] [[ शीर्ष क्वार्क |शीर्ष क्वार्क]] लूप और [[ अदिश क्षेत्र |अदिश क्षेत्र]] स्टॉप [[स्क्वार्क]] टैडपोल [[ फेनमैन आरेख |फेनमैन आरेख]] के बीच [[हिग्स बॉसन]] द्विघात द्रव्यमान पुनर्सामान्यीकरण को निरस्त करना]]अधिक तकनीकी रूप से, प्रश्न यह है कि हिग्स बोसोन प्लैंक द्रव्यमान(या [[भव्य एकीकरण ऊर्जा|सर्वोच्च एकीकरण ऊर्जा]], या भारी न्यूट्रिनो द्रव्यमान पैमाने) की तुलना में इतना हल्का क्यों है: कोई यह अपेक्षा करेगा कि हिग्स बोसोन द्रव्यमान के वर्ग में बड़ी मात्रा में योगदान होगा अनिवार्य रूप से द्रव्यमान को विशाल बनाते हैं, जिस पैमाने पर नवीन भौतिकी प्रकट होती है, जब तक कि द्विघात विकिरण संशोधन और अनावृत द्रव्यमान के बीच अविश्वसनीय सूक्ष्म-समस्वरण(भौतिकी) निरसन न हो।


समस्या को मानक मॉडल के कठोर आपादन संदर्भ में सूत्रबद्ध भी नहीं किया जा सकता है, क्योंकि हिग्स द्रव्यमान की गणना नहीं की जा सकती है। एक अर्थ में, समस्या इस समस्या की मात्रा है कि मौलिक कणों के भविष्य के सिद्धांत, जिसमें हिग्स बोसोन द्रव्यमान की गणना की जा सकती है, में अत्यधिक सूक्ष्म-समस्वरण नहीं होनी चाहिए।
समस्या को मानक मॉडल के कठोर आपादन संदर्भ में सूत्रबद्ध भी नहीं किया जा सकता है, क्योंकि हिग्स द्रव्यमान की गणना नहीं की जा सकती है। एक अर्थ में, समस्या इस समस्या की मात्रा है कि मौलिक कणों के भविष्य के सिद्धांत, जिसमें हिग्स बोसोन द्रव्यमान की गणना की जा सकती है, में अत्यधिक सूक्ष्म-समस्वरण नहीं होनी चाहिए।
Line 30: Line 29:


==== यूवी/आईआर मिश्रण ====
==== यूवी/आईआर मिश्रण ====
2019 में, शोधकर्ताओं के एक युग्म ने प्रस्तावित किया कि [[प्रभावी क्षेत्र सिद्धांत]] क्वांटम क्षेत्र सिद्धांत के टूटने के परिणामस्वरूप आईआर/यूवी मिश्रण पदानुक्रम समस्या को हल कर सकता है।<ref>{{cite journal|title=IR dynamics from UV divergences: UV/IR mixing, NCFT, and the hierarchy problem|first1=Nathaniel|last1=Craig|first2=Seth|last2=Koren|journal=Journal of High Energy Physics|doi=10.1007/JHEP03(2020)037|date=6 March 2020|volume=2020|issue=37|page=37|arxiv=1909.01365|bibcode=2020JHEP...03..037C|s2cid=202540077}}</ref> 2021 में, शोधकर्ताओं के एक अन्य समूह ने दिखाया कि यूवी/आईआर मिश्रण स्ट्रिंग सिद्धांत में पदानुक्रम की समस्या को हल कर सकता है।<ref>{{cite journal|title=स्ट्रिंग थ्योरी में हिग्स मास की गणना|first1=Steven|last1=Abel|first2=Keith R.|last2=Dienes|journal=Physical Review D|volume=104|issue=12|date=29 December 2021|page=126032|doi=10.1103/PhysRevD.104.126032|arxiv=2106.04622|bibcode=2021PhRvD.104l6032A|s2cid=235377340}}</ref>
2019 में, शोधकर्ताओं के एक युग्म ने प्रस्तावित किया कि [[प्रभावी क्षेत्र सिद्धांत]] क्वांटम क्षेत्र सिद्धांत के टूटने के परिणामस्वरूप आईआर/यूवी मिश्रण पदानुक्रम समस्या को हल कर सकता है।<ref>{{cite journal|title=IR dynamics from UV divergences: UV/IR mixing, NCFT, and the hierarchy problem|first1=Nathaniel|last1=Craig|first2=Seth|last2=Koren|journal=Journal of High Energy Physics|doi=10.1007/JHEP03(2020)037|date=6 March 2020|volume=2020|issue=37|page=37|arxiv=1909.01365|bibcode=2020JHEP...03..037C|s2cid=202540077}}</ref> 2021 में, शोधकर्ताओं के अन्य समूह ने दिखाया कि यूवी/आईआर मिश्रण स्ट्रिंग सिद्धांत में पदानुक्रम की समस्या को हल कर सकते है।<ref>{{cite journal|title=स्ट्रिंग थ्योरी में हिग्स मास की गणना|first1=Steven|last1=Abel|first2=Keith R.|last2=Dienes|journal=Physical Review D|volume=104|issue=12|date=29 December 2021|page=126032|doi=10.1103/PhysRevD.104.126032|arxiv=2106.04622|bibcode=2021PhRvD.104l6032A|s2cid=235377340}}</ref>




==== अतिसममिति ====
==== अतिसममिति ====
कुछ भौतिकविदों का मानना ​​है कि अतिसममिति के माध्यम से पदानुक्रम की समस्या को हल किया जा सकता है। अति सममिति बता सकती है कि कैसे एक छोटे हिग्स द्रव्यमान को क्वांटम संशोधन से बचाया जा सकता है। अति सममिति हिग्स द्रव्यमान में विकिरण संबंधी संशोधनों के शक्ति-नियम विचलन को हटा देती है और पदानुक्रम समस्या को हल करती है जब तक कि अति सममिति कण [[रिकार्डो बारबिएरी]]-जियान फ्रांसेस्को गिउडिस मानदंड को पूरा करने के लिए पर्याप्त प्रकाश हैं।<ref>{{Cite journal |last1=Barbieri |first1=R. |last2=Giudice |first2=G. F. |year=1988 |title=सुपरसिमेट्रिक पार्टिकल मास पर ऊपरी सीमाएं|url=http://cds.cern.ch/record/180560 |journal=Nucl. Phys. B |volume=306 |issue=1 |page=63 |bibcode=1988NuPhB.306...63B |doi=10.1016/0550-3213(88)90171-X}}</ref> हालाँकि, यह अभी भी mu समस्या को खुला छोड़ देता है। अति सममिति के सिद्धांतों का परीक्षण [[लार्ज हैड्रान कोलाइडर]] में किया जा रहा है, हालांकि अब तक अति सममिति के लिए कोई सबूत नहीं मिला है।
कुछ भौतिकविदों का मानना ​​है कि अतिसममिति के माध्यम से पदानुक्रम की समस्या को हल किया जा सकता है। अति सममिति बता सकती है कि कैसे एक छोटे हिग्स द्रव्यमान को क्वांटम संशोधन से बचाया जा सकता है। अति सममिति हिग्स द्रव्यमान में विकिरण संबंधी संशोधनों के शक्ति-नियम विचलन को हटा देती है और पदानुक्रम समस्या को हल करती है जब तक कि अति सममिति कण [[रिकार्डो बारबिएरी]]-जियान फ्रांसेस्को गिउडिस मानदंड को पूरा करने के लिए पर्याप्त हल्के हैं।<ref>{{Cite journal |last1=Barbieri |first1=R. |last2=Giudice |first2=G. F. |year=1988 |title=सुपरसिमेट्रिक पार्टिकल मास पर ऊपरी सीमाएं|url=http://cds.cern.ch/record/180560 |journal=Nucl. Phys. B |volume=306 |issue=1 |page=63 |bibcode=1988NuPhB.306...63B |doi=10.1016/0550-3213(88)90171-X}}</ref> यद्यपि, यह अभी भी mu समस्या को खुला छोड़ देता है। अति सममिति के सिद्धांतों का परीक्षण [[लार्ज हैड्रान कोलाइडर]] में किया जा रहा है, यद्यपि अब तक अति सममिति के लिए कोई प्रमाण नहीं मिला है।


प्रत्येक कण जो हिग्स क्षेत्र से जुड़ता है, उसका एक संबद्ध [[युकावा युग्मन]] λ होता है<sub>f</sub>. फर्मियंस के लिए हिग्स क्षेत्र के साथ युग्मन एक अंतःक्रियात्मक शब्द देता है <math>\mathcal{L}_{\mathrm{Yukawa}}=-\lambda_f\bar{\psi}H\psi</math>, साथ <math>\psi</math> [[डिराक क्षेत्र]] होने के नाते और <math>H</math> [[हिग्स फील्ड|हिग्स क्षेत्र]]इसके अतिरिक्त, एक फ़र्मियन का द्रव्यमान उसके युकावा युग्मन के समानुपाती होता है, जिसका अर्थ है कि हिग्स बोसोन सबसे बड़े कण से सबसे अधिक जोड़ेगा। इसका मतलब यह है कि हिग्स द्रव्यमान में सबसे महत्वपूर्ण संशोधन सबसे भारी कणों से उत्पन्न होगा, सबसे प्रमुख रूप से शीर्ष क्वार्क। फेनमैन आरेख # फेनमैन नियमों को लागू करने से, हिग्स द्रव्यमान के क्वांटम संशोधन को फ़र्मियन से चुकता किया जाता है:
प्रत्येक कण जो हिग्स क्षेत्र से जुड़ता है, उसका एक संबद्ध [[युकावा युग्मन]] λ<sub>f</sub> होता है। फर्मियंस के लिए हिग्स क्षेत्र के साथ युग्मन अन्योन्यक्रिया पद <math>\mathcal{L}_{\mathrm{Yukawa}}=-\lambda_f\bar{\psi}H\psi</math> देता है, जिसमें <math>\psi</math> [[डिराक क्षेत्र]] और <math>H</math> [[हिग्स फील्ड|हिग्स क्षेत्र]] है। इसके अतिरिक्त, एक फ़र्मियन का द्रव्यमान उसके युकावा युग्मन के समानुपाती होता है, जिसका अर्थ है कि हिग्स बोसोन सबसे बड़े कण से सबसे अधिक जोड़ेगा। इसका अर्थ यह है कि हिग्स द्रव्यमान में सबसे महत्वपूर्ण संशोधन सबसे भारी कणों से उत्पन्न होगा, सबसे प्रमुख रूप से शीर्ष क्वार्क। फेनमैन नियमों को लागू करने से, हिग्स द्रव्यमान के क्वांटम संशोधन को फ़र्मियन से प्राप्त किया जा सकता है:


:<math>\Delta m_{\rm H}^{2} = - \frac{\left|\lambda_{f} \right|^2}{8\pi^2} [\Lambda_{\mathrm{UV}}^2+ ...].</math>
:<math>\Delta m_{\rm H}^{2} = - \frac{\left|\lambda_{f} \right|^2}{8\pi^2} [\Lambda_{\mathrm{UV}}^2+ ...].</math>


  <math>\Lambda_{\mathrm{UV}}</math> h> को पराबैंगनी कटऑफ कहा जाता है और वह पैमाना है जिस तक मानक मॉडल मान्य है। यदि हम इस पैमाने को प्लैंक पैमाने के रूप में लेते हैं, तो हमारे निकट द्विघात रूप से अपसारी लग्रांजियन है। हालाँकि, मान लीजिए कि दो जटिल स्केलर (स्पिन 0 लिए गए) स्थित हैं जैसे कि:
  <math>\Lambda_{\mathrm{UV}}</math> h> को पराबैंगनी अंतक कहा जाता है और वह पैमाना है जिस तक मानक मॉडल मान्य है। यदि हम इस पैमाने को प्लैंक पैमाने के रूप में लेते हैं, तो हमारे निकट द्विघात रूप से अपसारी लग्रांजियन है। यद्यपि, मान लीजिए कि दो जटिल अदिश(स्पिन 0 लिए गए) स्थित हैं जैसे कि:


:<math>\lambda_S= \left|\lambda_f\right|^2</math> (हिग्स के कपलिंग बिल्कुल समान हैं)।
:<math>\lambda_S= \left|\lambda_f\right|^2</math>(हिग्स के युग्मन बिल्कुल समान हैं)।


फिर फेनमैन नियमों द्वारा, संशोधन (दोनों स्केलर्स से) है:
फिर फेनमैन नियमों द्वारा, संशोधन(दोनों अदिश से) है:


:<math>\Delta m_{\rm H}^{2} = 2 \times \frac{\lambda_{S}}{16\pi^2} [\Lambda_{\mathrm{UV}}^2+ ...].</math>
:<math>\Delta m_{\rm H}^{2} = 2 \times \frac{\lambda_{S}}{16\pi^2} [\Lambda_{\mathrm{UV}}^2+ ...].</math>
(ध्यान दें कि यहां योगदान सकारात्मक है। यह स्पिन-सांख्यिकी प्रमेय के कारण है, जिसका अर्थ है कि फ़र्मियन का नकारात्मक योगदान होगा और बोसॉन का सकारात्मक योगदान होगा। इस तथ्य का फायदा उठाया जाता है।)
(ध्यान दें कि यहां योगदान धनात्मक है। यह स्पिन-सांख्यिकी प्रमेय के कारण है, जिसका अर्थ है कि फ़र्मियन का ऋणात्मक योगदान होगा और बोसॉन का धनात्मक योगदान होगा। इस तथ्य का लाभ उठाया जाता है।)  


यदि हम फर्मियोनिक और बोसोनिक दोनों कणों को सम्मिलित करते हैं तो यह हिग्स द्रव्यमान में कुल योगदान शून्य हो जाता है। अति सममिति इसका एक विस्तार है जो सभी मानक मॉडल कणों के लिए 'अतिसहभागी' बनाता है।<ref>{{Cite book |last=Martin |first=Stephen P. |title=सुपरसिमेट्री पर परिप्रेक्ष्य|year=1998 |isbn=978-981-02-3553-6 |series=Advanced Series on Directions in High Energy Physics |volume=18 |pages=1–98 |chapter=A Supersymmetry Primer |doi=10.1142/9789812839657_0001 |arxiv=hep-ph/9709356 |s2cid=118973381}}</ref>
यदि हम फर्मियोनिक और बोसोनिक दोनों कणों को सम्मिलित करते हैं तो यह हिग्स द्रव्यमान में कुल योगदान शून्य हो जाता है। अति सममिति इसका एक विस्तार है जो सभी मानक मॉडल कणों के लिए 'अतिसहभागी' बनाते है।<ref>{{Cite book |last=Martin |first=Stephen P. |title=सुपरसिमेट्री पर परिप्रेक्ष्य|year=1998 |isbn=978-981-02-3553-6 |series=Advanced Series on Directions in High Energy Physics |volume=18 |pages=1–98 |chapter=A Supersymmetry Primer |doi=10.1142/9789812839657_0001 |arxiv=hep-ph/9709356 |s2cid=118973381}}</ref>




==== अनुरूप ==
==अनुरूप ==
अतिसममिति के बिना, मात्र मानक मॉडल का उपयोग करके पदानुक्रम समस्या का हल प्रस्तावित किया गया है। इस विचार का पता इस तथ्य से लगाया जा सकता है कि हिग्स क्षेत्र में जो शब्द पुनर्सामान्यीकरण पर अनियंत्रित द्विघात संशोधन उत्पन्न करता है वह द्विघात है। यदि हिग्स क्षेत्र में कोई द्रव्यमान शब्द नहीं होता, तो कोई पदानुक्रम समस्या उत्पन्न नहीं होती। परन्तु हिग्स क्षेत्र में एक द्विघात शब्द को याद करके, एक गैर-शून्य वैक्यूम अपेक्षा मान के माध्यम से इलेक्ट्रोवीक समरूपता को तोड़ने का एक तरीका खोजना होगा। यह कोलमैन-वेनबर्ग क्षमता का उपयोग करके प्राप्त किया जा सकता है। वेनबर्ग-कोलमैन तंत्र क्वांटम संशोधन से उत्पन्न होने वाली हिग्स क्षमता में शर्तों के साथ। त्वरक सुविधाओं में जो देखा जाता है, उसके संबंध में इस प्रकार से प्राप्त द्रव्यमान बहुत कम है और इसलिए एक अनुरूप मानक मॉडल को एक से अधिक हिग्स कण की आवश्यकता होती है। यह प्रस्ताव 2006 में [[करज़िस्तोफ एंटोनी मीस्नर]] और [[हरमन निकोलाई]] द्वारा आगे रखा गया है<ref>{{Cite journal |last1=Meissner |first1=K. |last2=Nicolai |first2=H. |year=2007 |title=अनुरूप समरूपता और मानक मॉडल|journal=[[Physics Letters]] |volume=B648 |issue=4 |pages=312–317 |arxiv=hep-th/0612165 |bibcode=2007PhLB..648..312M |doi=10.1016/j.physletb.2007.03.023 |s2cid=17973378}}</ref> और वर्तमान में जांच के अधीन है। परन्तु यदि लार्ज हैड्रोन कोलाइडर में अब तक देखे गए उत्तेजना से आगे कोई उत्तेजना नहीं देखी जाती है, तो इस मॉडल को छोड़ना होगा।
अतिसममिति के बिना, मात्र मानक मॉडल का उपयोग करके पदानुक्रम समस्या का हल प्रस्तावित किया गया है। इस विचार का पता इस तथ्य से लगाया जा सकता है कि हिग्स क्षेत्र में जो पद पुनर्सामान्यीकरण पर अनियंत्रित द्विघात संशोधन उत्पन्न करता है वह द्विघात है। यदि हिग्स क्षेत्र में कोई द्रव्यमान पद नहीं होता, तो कोई पदानुक्रम समस्या उत्पन्न नहीं होती। परन्तु हिग्स क्षेत्र में द्विघात पद को याद करके, एक गैर-शून्य निर्वात अपेक्षा मान के माध्यम से विद्युत् दुर्बल समरूपता को तोड़ने की विधि खोजनी होगी। यह क्वांटम संशोधन से उत्पन्न होने वाली हिग्स क्षमता में कोलमैन-वेनबर्ग तंत्र का उपयोग करके प्राप्त किया जा सकता है। त्वरक सुविधाओं में जो देखा जाता है, उसके संबंध में इस प्रकार से प्राप्त द्रव्यमान बहुत कम है और इसलिए अनुरूप मानक मॉडल को एक से अधिक हिग्स कण की आवश्यकता होती है। यह प्रस्ताव 2006 में [[करज़िस्तोफ एंटोनी मीस्नर]] और [[हरमन निकोलाई]] द्वारा आगे रखा गया है<ref>{{Cite journal |last1=Meissner |first1=K. |last2=Nicolai |first2=H. |year=2007 |title=अनुरूप समरूपता और मानक मॉडल|journal=[[Physics Letters]] |volume=B648 |issue=4 |pages=312–317 |arxiv=hep-th/0612165 |bibcode=2007PhLB..648..312M |doi=10.1016/j.physletb.2007.03.023 |s2cid=17973378}}</ref> और वर्तमान में जांच के अधीन है परन्तु यदि लार्ज हैड्रोन कोलाइडर में अब तक देखे गए उत्तेजना से आगे कोई उत्तेजना नहीं देखी जाती है, तो इस मॉडल को छोड़ना होगा।


==== [[अतिरिक्त आयाम]] ====
==== [[अतिरिक्त आयाम]] ====
अतिरिक्त आयामों का कोई प्रयोगात्मक या अवलोकन प्रमाण आधिकारिक तौर पर रिपोर्ट नहीं किया गया है। लार्ज हैड्रॉन कोलाइडर के परिणामों का विश्लेषण [[बड़े अतिरिक्त आयाम]]ों वाले सिद्धांतों को गंभीर रूप से बाधित करता है।<ref name="ATLAS_blackholes">{{Cite journal |last1=Aad |first1=G. |last2=Abajyan |first2=T. |last3=Abbott |first3=B. |last4=Abdallah |first4=J. |last5=Abdel Khalek |first5=S. |last6=Abdinov |first6=O. |last7=Aben |first7=R. |last8=Abi |first8=B. |last9=Abolins |first9=M. |last10=Abouzeid |first10=O. S. |last11=Abramowicz |first11=H. |display-authors=29 |year=2014 |title={{sqrt पर प्रोटॉन-प्रोटॉन टकराव का उपयोग करके उच्च-अपरिवर्तनीय-द्रव्यमान लेप्टान+जेट अंतिम अवस्थाओं में क्वांटम ब्लैक-होल उत्पादन की खोज करें|s}} = 8 TeV and the ATLAS Detector |journal=Physical Review Letters |volume=112 |issue=9 |pages=091804 |arxiv=1311.2006 |bibcode=2014PhRvL.112i1804A |doi=10.1103/PhysRevLett.112.091804 |pmid=24655244 |last12=Abreu |first12=H. |last13=Abulaiti |first13=Y. |last14=Acharya |first14=B. S. |last15=Adamczyk |first15=L. |last16=Adams |first16=D. L. |last17=Addy |first17=T. N. |last18=Adelman |first18=J. |last19=Adomeit |first19=S. |last20=Adye |first20=T. |last21=Aefsky |first21=S. |last22=Agatonovic-Jovin |first22=T. |last23=Aguilar-Saavedra |first23=J. A. |last24=Agustoni |first24=M. |last25=Ahlen |first25=S. P. |last26=Ahmad |first26=A. |last27=Ahmadov |first27=F. |last28=Aielli |first28=G. |last29=Åkesson |first29=T. P. A. |last30=Akimoto |first30=G.|s2cid=204934578 }</ref> हालांकि, अतिरिक्त आयाम बता सकते हैं कि गुरुत्वाकर्षण बल इतना मंद क्यों है, और ब्रह्मांड का विस्तार अपेक्षा से अधिक तेजी से क्यों हो रहा है। रेफरी>{{Cite web |date=20 January 2012 |title=अतिरिक्त आयाम, गुरुत्वाकर्षण और छोटे ब्लैक होल|url=http://home.web.cern.ch/about/physics/extra-dimensions-gravitons-and-tiny-black-holes |access-date=13 December 2015 |website=Home.web.cern.ch}}</ref>
अतिरिक्त आयामों का कोई प्रयोगात्मक या अवलोकन प्रमाण आधिकारिक रुप से रिपोर्ट नहीं किया गया है। लार्ज हैड्रॉन कोलाइडर के परिणामों का विश्लेषण [[बड़े अतिरिक्त आयाम|बड़े अतिरिक्त आयामों]] वाले सिद्धांतों को गंभीर रूप से बाधित करता है।<ref name="ATLAS_blackholes">{{Cite journal |last1=Aad |first1=G. |last2=Abajyan |first2=T. |last3=Abbott |first3=B. |last4=Abdallah |first4=J. |last5=Abdel Khalek |first5=S. |last6=Abdinov |first6=O. |last7=Aben |first7=R. |last8=Abi |first8=B. |last9=Abolins |first9=M. |last10=Abouzeid |first10=O. S. |last11=Abramowicz |first11=H. |display-authors=29 |year=2014 |title={{sqrt पर प्रोटॉन-प्रोटॉन टकराव का उपयोग करके उच्च-अपरिवर्तनीय-द्रव्यमान लेप्टान+जेट अंतिम अवस्थाओं में क्वांटम ब्लैक-होल उत्पादन की खोज करें|s}} = 8 TeV and the ATLAS Detector |journal=Physical Review Letters |volume=112 |issue=9 |pages=091804 |arxiv=1311.2006 |bibcode=2014PhRvL.112i1804A |doi=10.1103/PhysRevLett.112.091804 |pmid=24655244 |last12=Abreu |first12=H. |last13=Abulaiti |first13=Y. |last14=Acharya |first14=B. S. |last15=Adamczyk |first15=L. |last16=Adams |first16=D. L. |last17=Addy |first17=T. N. |last18=Adelman |first18=J. |last19=Adomeit |first19=S. |last20=Adye |first20=T. |last21=Aefsky |first21=S. |last22=Agatonovic-Jovin |first22=T. |last23=Aguilar-Saavedra |first23=J. A. |last24=Agustoni |first24=M. |last25=Ahlen |first25=S. P. |last26=Ahmad |first26=A. |last27=Ahmadov |first27=F. |last28=Aielli |first28=G. |last29=Åkesson |first29=T. P. A. |last30=Akimoto |first30=G.|s2cid=204934578 }</ref> यद्यपि, अतिरिक्त आयाम बता सकते हैं कि गुरुत्वाकर्षण बल इतना मंद क्यों है, और ब्रह्मांड का विस्तार अपेक्षा से अधिक तीव्रता से क्यों हो रहा है।


यदि हम 3+1 आयामी दुनिया में रहते हैं, तो हम गुरुत्वाकर्षण के लिए गॉस के नियम के माध्यम से गुरुत्वाकर्षण बल की गणना करते हैं:
<ref>{{Cite web |date=20 January 2012 |title=अतिरिक्त आयाम, गुरुत्वाकर्षण और छोटे ब्लैक होल|url=http://home.web.cern.ch/about/physics/extra-dimensions-gravitons-and-tiny-black-holes |access-date=13 December 2015 |website=Home.web.cern.ch}}<nowiki></ref>


:<math>\mathbf{g}(\mathbf{r}) = -Gm\frac{\mathbf{e_r}}{r^2}</math> (1)
यदि हम 3+1 आयामी संसार में रहते हैं, तो हम गुरुत्वाकर्षण के लिए गॉस के नियम के माध्यम से गुरुत्वाकर्षण बल की गणना करते हैं:
 
:<math>\mathbf{g}(\mathbf{r}) = -Gm\frac{\mathbf{e_r}}{r^2}</math>(1)  
जो मात्र न्यूटन का गुरुत्वाकर्षण का नियम है। ध्यान दें कि न्यूटन के स्थिरांक G को प्लैंक द्रव्यमान के संदर्भ में फिर से लिखा जा सकता है।
जो मात्र न्यूटन का गुरुत्वाकर्षण का नियम है। ध्यान दें कि न्यूटन के स्थिरांक G को प्लैंक द्रव्यमान के संदर्भ में फिर से लिखा जा सकता है।


:<math>G=\frac{\hbar c}{M_{\mathrm{Pl}}^{2}}</math>
:<math>G=\frac{\hbar c}{M_{\mathrm{Pl}}^{2}}</math>
यदि हम इस विचार को आगे बढ़ाते हैं <math>\delta</math> अतिरिक्त आयाम, तो हमें मिलता है:
यदि हम इस विचार को <math>\delta</math> अतिरिक्त आयामों तक विस्तारित करते हैं, तो हमें मिलता है:


:<math>\mathbf{g}(\mathbf{r}) = -m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^{2+\delta}}</math> (2)
:<math>\mathbf{g}(\mathbf{r}) = -m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^{2+\delta}}</math>(2)  


कहाँ <math>M_{\mathrm{Pl}_{3+1+\delta}}</math> है {{nowrap|3+1+<math>\delta</math>}} आयामी प्लैंक द्रव्यमान। हालाँकि, हम मान रहे हैं कि ये अतिरिक्त आयाम सामान्य 3+1 आयामों के समान आकार के हैं। मान लें कि सामान्य आयामों की तुलना में अतिरिक्त आयाम आकार n ≪ के हैं। यदि हम r %ll; n, तो हमें (2) मिलता है। हालांकि, यदि हम r %gg; n, तो हमें अपना सामान्य न्यूटन का नियम मिलता है। हालांकि, जब r≫ n, अतिरिक्त आयामों में प्रवाह स्थिर हो जाता है, क्योंकि गुरुत्वाकर्षण प्रवाह के प्रवाह के लिए कोई अतिरिक्त जगह नहीं होती है। इस प्रकार प्रवाह आनुपातिक होगा <math> n^{\delta} </math> क्योंकि यह अतिरिक्त आयामों में प्रवाह है। सूत्र है:
जहाँ <math>M_{\mathrm{Pl}_{3+1+\delta}}</math> {{nowrap|3+1+<math>\delta</math>}} आयामी प्लैंक द्रव्यमान है। यद्यपि, हम मान रहे हैं कि ये अतिरिक्त आयाम सामान्य 3+1 आयामों के समान आकार के हैं। मान लें कि सामान्य आयामों की तुलना में अतिरिक्त आयाम आकार n ≪ के हैं। यदि हम r %ll; n, तो हमें(2) मिलता है। यद्यपि, यदि हम r %gg; n, तो हमें अपना सामान्य न्यूटन का नियम मिलता है। यद्यपि, जब r≫ n, अतिरिक्त आयामों में प्रवाह स्थिर हो जाता है, क्योंकि गुरुत्वाकर्षण प्रवाह के प्रवाह के लिए कोई अतिरिक्त स्थान नहीं होते है। इस प्रकार प्रवाह <math> n^{\delta} </math> आनुपातिक होगा क्योंकि यह अतिरिक्त आयामों में प्रवाह है। सूत्र है:
:<math>\mathbf{g}(\mathbf{r}) = -m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^2 n^{\delta}}</math>
:<math>\mathbf{g}(\mathbf{r}) = -m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^2 n^{\delta}}</math>
:<math>-m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}}^2 r^2} = -m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^2 n^{\delta}}</math>
:<math>-m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}}^2 r^2} = -m\frac{\mathbf{e_r}}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^2 n^{\delta}}</math>
Line 75: Line 76:
:<math> \frac{1}{M_{\mathrm{Pl}}^2 r^2} = \frac{1}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^2 n^{\delta}} \Rightarrow  </math>
:<math> \frac{1}{M_{\mathrm{Pl}}^2 r^2} = \frac{1}{M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta}r^2 n^{\delta}} \Rightarrow  </math>
:<math> M_{\mathrm{Pl}}^2 = M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta} n^{\delta}. </math>
:<math> M_{\mathrm{Pl}}^2 = M_{\mathrm{Pl}_{3+1+\delta}}^{2+\delta} n^{\delta}. </math>
इस प्रकार मौलिक प्लैंक द्रव्यमान (अतिरिक्त-आयामी एक) वास्तव में छोटा हो सकता है, जिसका अर्थ है कि गुरुत्वाकर्षण वास्तव में दृढ है, परन्तु इसकी भरपाई अतिरिक्त आयामों की संख्या और उनके आकार से की जानी चाहिए। शारीरिक रूप से, इसका मतलब है कि गुरुत्वाकर्षण मंद है क्योंकि अतिरिक्त आयामों में फ्लक्स का नुकसान होता है।
इस प्रकार मौलिक प्लैंक द्रव्यमान(अतिरिक्त-आयामी एक) वस्तुतः छोटा हो सकता है, जिसका अर्थ है कि गुरुत्वाकर्षण वस्तुतः दृढ है, परन्तु इसकी प्रतिकारिता अतिरिक्त आयामों की संख्या और उनके आकार से की जानी चाहिए। प्रकृति के अनुसार, इसका अर्थ है कि गुरुत्वाकर्षण मंद है क्योंकि अतिरिक्त आयामों में प्रवाह की क्षति होती है।


यह खंड ए. ज़ी द्वारा क्वांटम क्षेत्र थ्योरी इन ए नटशेल से लिया गया है।<ref>{{Cite book |last=Zee |first=A. |title=संक्षेप में क्वांटम क्षेत्र सिद्धांत|publisher=Princeton University Press |year=2003 |isbn=978-0-691-01019-9 |bibcode=2003qftn.book.....Z}}</ref>
यह खंड ए. ज़ी द्वारा क्वांटम क्षेत्र सिद्धांत संक्षेप में" से लिया गया है।<ref>{{Cite book |last=Zee |first=A. |title=संक्षेप में क्वांटम क्षेत्र सिद्धांत|publisher=Princeton University Press |year=2003 |isbn=978-0-691-01019-9 |bibcode=2003qftn.book.....Z}}</ref>




== ब्रेनवर्ल्ड मॉडल ==
== ब्रेनवर्ल्ड मॉडल ==
{{Main article|Brane cosmology}}
{{Main article|ब्रैन ब्रह्माण्ड विज्ञान}}


1998 में [[नीमा अरकानी-हमीद]], [[सावास डिमोपोलोस]] और गिया डवाली ने एडीडी मॉडल का प्रस्ताव रखा, जिसे बड़े अतिरिक्त आयामों वाले मॉडल के रूप में भी जाना जाता है, जो अन्य बलों के सापेक्ष गुरुत्वाकर्षण की मंदी को समझाने के लिए एक वैकल्पिक परिदृश्य है।<ref name="ADD1">{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Dimopoulos |first2=S. |last3=Dvali |first3=G. |year=1998 |title=एक मिलीमीटर में पदानुक्रम समस्या और नए आयाम|journal=[[Physics Letters]] |volume=B429 |issue=3–4 |pages=263–272 |arxiv=hep-ph/9803315 |bibcode=1998PhLB..429..263A |doi=10.1016/S0370-2693(98)00466-3 |s2cid=15903444}}</ref><ref name="ADD2">{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Dimopoulos |first2=S. |last3=Dvali |first3=G. |year=1999 |title=फेनोमेनोलॉजी, एस्ट्रोफिजिक्स एंड कॉस्मोलॉजी ऑफ थ्योरीज विथ सबमिलीमीटर डाइमेंशन्स एंड टीईवी स्केल क्वांटम ग्रेविटी|journal=[[Physical Review]] |volume=D59 |issue=8 |page=086004 |arxiv=hep-ph/9807344 |bibcode=1999PhRvD..59h6004A |doi=10.1103/PhysRevD.59.086004 |s2cid=18385871}}</ref> इस सिद्धांत की आवश्यकता है कि मानक मॉडल के क्षेत्र चार-आयामी [[झिल्ली (एम-थ्योरी)]] तक सीमित हैं, जबकि गुरुत्वाकर्षण कई अतिरिक्त स्थानिक आयामों में फैलता है जो [[प्लैंक स्केल]] की तुलना में बड़े हैं।<ref>For a pedagogical introduction, see {{Cite conference |last=Shifman |first=M. |author-link=Mikhail Shifman |year=2009 |title=Large Extra Dimensions: Becoming acquainted with an alternative paradigm |journal=International Journal of Modern Physics A |volume=25 |issue=2n03 |pages=199–225 |conference=Crossing the boundaries: Gauge dynamics at strong coupling |location=Singapore |publisher=World Scientific |arxiv=0907.3074 |bibcode=2010IJMPA..25..199S |doi=10.1142/S0217751X10048548}}</ref>
1998 में [[नीमा अरकानी-हमीद]], [[सावास डिमोपोलोस]] और गिया डवाली ने एडीडी मॉडल का प्रस्ताव रखा, जिसे बड़े अतिरिक्त आयामों वाले मॉडल के रूप में भी जाना जाता है, जो अन्य बलों के सापेक्ष गुरुत्वाकर्षण की मंदी को समझाने के लिए एक वैकल्पिक परिदृश्य है।<ref name="ADD1">{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Dimopoulos |first2=S. |last3=Dvali |first3=G. |year=1998 |title=एक मिलीमीटर में पदानुक्रम समस्या और नए आयाम|journal=[[Physics Letters]] |volume=B429 |issue=3–4 |pages=263–272 |arxiv=hep-ph/9803315 |bibcode=1998PhLB..429..263A |doi=10.1016/S0370-2693(98)00466-3 |s2cid=15903444}}</ref><ref name="ADD2">{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Dimopoulos |first2=S. |last3=Dvali |first3=G. |year=1999 |title=फेनोमेनोलॉजी, एस्ट्रोफिजिक्स एंड कॉस्मोलॉजी ऑफ थ्योरीज विथ सबमिलीमीटर डाइमेंशन्स एंड टीईवी स्केल क्वांटम ग्रेविटी|journal=[[Physical Review]] |volume=D59 |issue=8 |page=086004 |arxiv=hep-ph/9807344 |bibcode=1999PhRvD..59h6004A |doi=10.1103/PhysRevD.59.086004 |s2cid=18385871}}</ref> इस सिद्धांत की आवश्यकता है कि मानक मॉडल के क्षेत्र चार-आयामी [[झिल्ली (एम-थ्योरी)|झिल्ली(एम-सिद्धांत]]) तक सीमित हैं, जबकि गुरुत्वाकर्षण कई अतिरिक्त स्थानिक आयामों में फैलता है जो [[प्लैंक स्केल|प्लैंक पैमाने]] की तुलना में बड़े हैं।<ref>For a pedagogical introduction, see {{Cite conference |last=Shifman |first=M. |author-link=Mikhail Shifman |year=2009 |title=Large Extra Dimensions: Becoming acquainted with an alternative paradigm |journal=International Journal of Modern Physics A |volume=25 |issue=2n03 |pages=199–225 |conference=Crossing the boundaries: Gauge dynamics at strong coupling |location=Singapore |publisher=World Scientific |arxiv=0907.3074 |bibcode=2010IJMPA..25..199S |doi=10.1142/S0217751X10048548}}</ref>
1998-99 में [[मेरब गोगबरशविली]] ने [[arXiv]] (और बाद में सहकर्मी-समीक्षित पत्रिकाओं में) में कई लेख प्रकाशित किए, जहां उन्होंने दिखाया कि यदि ब्रह्मांड को 5-आयामी अंतरिक्ष में विस्तार करने वाला एक पतला खोल (ब्रान का गणितीय पर्याय) माना जाता है तो यह 5-आयामी [[ब्रह्माण्ड संबंधी स्थिरांक]] और ब्रह्मांड की मोटाई के अनुरूप कण सिद्धांत के लिए एक पैमाना प्राप्त करना संभव है, और इस प्रकार पदानुक्रम समस्या को हल करना संभव है।<ref>{{Cite journal |last1=Gogberashvili |first1=Merab |last2=Ahluwalia |first2=D. V. |year=2002 |title=शैल-यूनिवर्स मॉडल में पदानुक्रम समस्या|journal=International Journal of Modern Physics D |volume=11 |issue=10 |pages=1635–1638 |arxiv=hep-ph/9812296 |bibcode=2002IJMPD..11.1635G |doi=10.1142/S0218271802002992 |s2cid=119339225}}</ref><ref>{{Cite journal |last=Gogberashvili |first=M. |year=2000 |title=एक विस्तारित खोल के रूप में हमारी दुनिया|journal=Europhysics Letters |volume=49 |issue=3 |pages=396–399 |arxiv=hep-ph/9812365 |bibcode=2000EL.....49..396G |doi=10.1209/epl/i2000-00162-1 |s2cid=38476733}}</ref><ref>{{Cite journal |last=Gogberashvili |first=Merab |year=1999 |title=Four Dimensionality in Non-Compact Kaluza–Klein Model |journal=Modern Physics Letters A |volume=14 |issue=29 |pages=2025–2031 |arxiv=hep-ph/9904383 |bibcode=1999MPLA...14.2025G |doi=10.1142/S021773239900208X |s2cid=16923959}}</ref> यह भी दिखाया गया था कि ब्रह्मांड की चार-आयामीता [[स्थिरता सिद्धांत]] की आवश्यकता का परिणाम है क्योंकि आइंस्टीन क्षेत्र समीकरणों के अतिरिक्त घटक पदार्थ क्षेत्रों के लिए स्थानीयकृत हल देते हैं जो स्थिरता की शर्तों में से एक के साथ मेल खाते हैं।


इसके बाद, निकटता से संबंधित रान्डेल-सुंदरम मॉडल | रान्डेल-सुंदरम परिदृश्य प्रस्तावित किए गए जिन्होंने पदानुक्रम समस्या के हल की पेशकश की।
1998-99 में [[मेरब गोगबरशविली]] ने [[arXiv|आर्षिव]](और बाद में सहकर्मी-समीक्षित पत्रिकाओं में) में कई लेख प्रकाशित किए, जहां उन्होंने दिखाया कि यदि ब्रह्मांड को 5-आयामी अंतरिक्ष में विस्तार करने वाला पतला खोल(ब्रान का गणितीय पर्याय) माना जाता है तो यह 5-आयामी [[ब्रह्माण्ड संबंधी स्थिरांक]] और ब्रह्मांड की मोटाई के अनुरूप कण सिद्धांत के लिए पैमाना प्राप्त करना संभव है, और इस प्रकार पदानुक्रम समस्या को हल करना संभव है।<ref>{{Cite journal |last1=Gogberashvili |first1=Merab |last2=Ahluwalia |first2=D. V. |year=2002 |title=शैल-यूनिवर्स मॉडल में पदानुक्रम समस्या|journal=International Journal of Modern Physics D |volume=11 |issue=10 |pages=1635–1638 |arxiv=hep-ph/9812296 |bibcode=2002IJMPD..11.1635G |doi=10.1142/S0218271802002992 |s2cid=119339225}}</ref><ref>{{Cite journal |last=Gogberashvili |first=M. |year=2000 |title=एक विस्तारित खोल के रूप में हमारी दुनिया|journal=Europhysics Letters |volume=49 |issue=3 |pages=396–399 |arxiv=hep-ph/9812365 |bibcode=2000EL.....49..396G |doi=10.1209/epl/i2000-00162-1 |s2cid=38476733}}</ref><ref>{{Cite journal |last=Gogberashvili |first=Merab |year=1999 |title=Four Dimensionality in Non-Compact Kaluza–Klein Model |journal=Modern Physics Letters A |volume=14 |issue=29 |pages=2025–2031 |arxiv=hep-ph/9904383 |bibcode=1999MPLA...14.2025G |doi=10.1142/S021773239900208X |s2cid=16923959}}</ref> यह भी दिखाया गया था कि ब्रह्मांड की चार-आयामीता [[स्थिरता सिद्धांत]] की आवश्यकता का परिणाम है क्योंकि आइंस्टीन क्षेत्र समीकरणों के अतिरिक्त घटक पदार्थ क्षेत्रों के लिए स्थानीयकृत हल देते हैं जो स्थिरता की प्रतिबंधों में से एक के साथ मेल खाते हैं।
 
इसके बाद, निकटता से संबंधित रान्डेल-सुंदरम मॉडल परिदृश्य प्रस्तावित किए गए जिन्होंने पदानुक्रम समस्या के हल की प्रस्तुति की।


=== ब्रह्माण्ड संबंधी स्थिरांक ===
=== ब्रह्माण्ड संबंधी स्थिरांक ===
{{main article|Cosmological constant problem}}
{{main article|ब्रह्माण्ड संबंधी निरंतर समस्या}}
भौतिक ब्रह्माण्ड विज्ञान में, एक त्वरित ब्रह्माण्ड के पक्ष में वर्तमान अवलोकन एक छोटे, परन्तु शून्येतर ब्रह्माण्ड संबंधी स्थिरांक के अस्तित्व का संकेत देते हैं। यह समस्या, जिसे ब्रह्माण्ड संबंधी स्थिरांक समस्या कहा जाता है, हिग्स बोसोन द्रव्यमान समस्या के समान ही एक पदानुक्रम समस्या है, क्योंकि ब्रह्माण्ड संबंधी स्थिरांक भी क्वांटम संशोधनों के प्रति बहुत संवेदनशील है, परन्तु यह समस्या में [[सामान्य सापेक्षता]] की आवश्यक भागीदारी से जटिल है . ब्रह्माण्ड संबंधी स्थिरांक समस्या के प्रस्तावित हलों में गुरुत्व में संशोधन और/या विस्तार सम्मिलित है,<ref name="dark universe">Bull, Philip, Yashar Akrami, Julian Adamek, Tessa Baker, Emilio Bellini, Jose Beltrán Jiménez, Eloisa Bentivegna et al. "Beyond ΛCDM: Problems, solutions, and the road ahead." Physics of the Dark Universe 12 (2016): 56-99.</ref><ref>{{cite journal|last=Ellis |first=George F. R. |authorlink=George F. R. Ellis |title=ट्रेस मुक्त आइंस्टीन समीकरण और मुद्रास्फीति|journal=[[General Relativity and Gravitation]] |year=2014 |volume=46 |pages=1619 |doi=10.1007/s10714-013-1619-5 |arxiv=1306.3021|bibcode=2014GReGr..46.1619E |s2cid=119000135 }}</ref><ref>{{cite journal|last=Percacci |first=R. |title=यूनिमॉड्यूलर क्वांटम ग्रेविटी और कॉस्मोलॉजिकल स्थिरांक|doi=10.1007/s10701-018-0189-5 |arxiv=1712.09903 |year=2018 |journal=[[Foundations of Physics]] |volume=48 |number=10 |pages=1364–1379|bibcode=2018FoPh...48.1364P |s2cid=118934871 }}</ref> अविच्छिन्न दबाव के साथ पदार्थ जोड़ना,<ref name="Luongo Muccino pp. 2-3">{{cite journal |last1=Luongo |first1=Orlando |last2=Muccino |first2=Marco |title=दबाव के साथ धूल का उपयोग कर ब्रह्मांड को गति देना|journal=Physical Review D |volume=98 |issue=10 |date=2018-11-21 |issn=2470-0010 |doi=10.1103/physrevd.98.103520 |pages=2–3|arxiv=1807.00180 |bibcode=2018PhRvD..98j3520L |s2cid=119346601 }}</ref> और मानक मॉडल और गुरुत्वाकर्षण में यूवी / आईआर मिश्रण।<ref>{{cite journal|title=इफेक्टिव फील्ड थ्योरी, ब्लैक होल और कॉस्मोलॉजिकल कॉन्स्टेंट|last1=Cohen|first1=Andrew|last2=Kaplan|first2=David B.|last3=Nelson|first3=Ann|journal=Physical Review Letters|volume=82|issue=25|date=21 June 1999|pages=4971–4974|doi=10.1103/PhysRevLett.82.4971|arxiv=hep-th/9803132|bibcode=1999PhRvL..82.4971C|s2cid=17203575}}</ref><ref>{{cite arXiv|title=राज्यों की घनत्व और सीकेएन बाउंड|author1=Nikita Blinov|author2=Patrick Draper|eprint=2107.03530|date=7 July 2021|class=hep-ph}}</ref> कुछ भौतिकविदों ने ब्रह्माण्ड संबंधी स्थिरांक समस्या को हल करने के लिए [[मानवशास्त्रीय तर्क]] का सहारा लिया है,<ref>{{cite journal|last1=Martel|first1=Hugo|author2-link=Paul R. Shapiro|last2=Shapiro|first2=Paul R.|last3=Weinberg|first3=Steven|title=ब्रह्माण्ड संबंधी स्थिरांक के संभावित मान|journal=The Astrophysical Journal|date=January 1998|volume=492|issue=1|pages=29–40|doi=10.1086/305016|arxiv=astro-ph/9701099|bibcode=1998ApJ...492...29M|s2cid=119064782}}</ref> परन्तु यह विवादित है कि क्या मानवशास्त्रीय तर्क वैज्ञानिक है।<ref>{{cite book | author = Penrose, R. |author-link = Roger Penrose | title = सम्राट का नया मन| url = https://archive.org/details/emperorsnewmindc00penr | url-access = registration | publisher = Oxford University Press | isbn = 978-0-19-851973-7 | date =1989}} Chapter 10.</ref><ref>{{cite journal | author = Starkman, G. D. | author2 = Trotta, R. | title = Why Anthropic Reasoning Cannot Predict Λ | journal = Physical Review Letters | volume = 97 |page = 201301 | date = 2006 | doi = 10.1103/PhysRevLett.97.201301 | pmid = 17155671 | issue = 20 | bibcode=2006PhRvL..97t1301S|arxiv = astro-ph/0607227 | s2cid = 27409290 }} See also this [http://www.physorg.com/news83924839.html news story.]</ref>
भौतिक ब्रह्माण्ड विज्ञान में, एक त्वरित ब्रह्माण्ड के पक्ष में वर्तमान अवलोकन छोटे, परन्तु शून्येतर ब्रह्माण्ड संबंधी स्थिरांक के अस्तित्व का संकेत देते हैं। यह समस्या, जिसे ब्रह्माण्ड संबंधी स्थिरांक समस्या कहा जाता है, हिग्स बोसोन द्रव्यमान समस्या के समान ही एक पदानुक्रम समस्या है, क्योंकि ब्रह्माण्ड संबंधी स्थिरांक भी क्वांटम संशोधनों के प्रति बहुत संवेदनशील है, परन्तु यह समस्या में [[सामान्य सापेक्षता]] की आवश्यक भागीदारी से जटिल है। ब्रह्माण्ड संबंधी स्थिरांक समस्या के प्रस्तावित हलों में गुरुत्वाकर्षण को संशोधित करना और/या विस्तार करना,<ref name="dark universe">Bull, Philip, Yashar Akrami, Julian Adamek, Tessa Baker, Emilio Bellini, Jose Beltrán Jiménez, Eloisa Bentivegna et al. "Beyond ΛCDM: Problems, solutions, and the road ahead." Physics of the Dark Universe 12 (2016): 56-99.</ref><ref>{{cite journal|last=Ellis |first=George F. R. |authorlink=George F. R. Ellis |title=ट्रेस मुक्त आइंस्टीन समीकरण और मुद्रास्फीति|journal=[[General Relativity and Gravitation]] |year=2014 |volume=46 |pages=1619 |doi=10.1007/s10714-013-1619-5 |arxiv=1306.3021|bibcode=2014GReGr..46.1619E |s2cid=119000135 }}</ref><ref>{{cite journal|last=Percacci |first=R. |title=यूनिमॉड्यूलर क्वांटम ग्रेविटी और कॉस्मोलॉजिकल स्थिरांक|doi=10.1007/s10701-018-0189-5 |arxiv=1712.09903 |year=2018 |journal=[[Foundations of Physics]] |volume=48 |number=10 |pages=1364–1379|bibcode=2018FoPh...48.1364P |s2cid=118934871 }}</ref> अविच्छिन्न दबाव के साथ पदार्थ जोड़ना,<ref name="Luongo Muccino pp. 2-3">{{cite journal |last1=Luongo |first1=Orlando |last2=Muccino |first2=Marco |title=दबाव के साथ धूल का उपयोग कर ब्रह्मांड को गति देना|journal=Physical Review D |volume=98 |issue=10 |date=2018-11-21 |issn=2470-0010 |doi=10.1103/physrevd.98.103520 |pages=2–3|arxiv=1807.00180 |bibcode=2018PhRvD..98j3520L |s2cid=119346601 }}</ref> और मानक मॉडल और गुरुत्वाकर्षण में यूवी / आईआर मिश्रण सम्मिलित है।<ref>{{cite journal|title=इफेक्टिव फील्ड थ्योरी, ब्लैक होल और कॉस्मोलॉजिकल कॉन्स्टेंट|last1=Cohen|first1=Andrew|last2=Kaplan|first2=David B.|last3=Nelson|first3=Ann|journal=Physical Review Letters|volume=82|issue=25|date=21 June 1999|pages=4971–4974|doi=10.1103/PhysRevLett.82.4971|arxiv=hep-th/9803132|bibcode=1999PhRvL..82.4971C|s2cid=17203575}}</ref><ref>{{cite arXiv|title=राज्यों की घनत्व और सीकेएन बाउंड|author1=Nikita Blinov|author2=Patrick Draper|eprint=2107.03530|date=7 July 2021|class=hep-ph}}</ref> कुछ भौतिकविदों ने ब्रह्माण्ड संबंधी स्थिरांक समस्या को हल करने के लिए [[मानवशास्त्रीय तर्क]] का आश्रय लिया है,<ref>{{cite journal|last1=Martel|first1=Hugo|author2-link=Paul R. Shapiro|last2=Shapiro|first2=Paul R.|last3=Weinberg|first3=Steven|title=ब्रह्माण्ड संबंधी स्थिरांक के संभावित मान|journal=The Astrophysical Journal|date=January 1998|volume=492|issue=1|pages=29–40|doi=10.1086/305016|arxiv=astro-ph/9701099|bibcode=1998ApJ...492...29M|s2cid=119064782}}</ref> परन्तु यह विवादित है कि क्या मानवशास्त्रीय तर्क वैज्ञानिक है।<ref>{{cite book | author = Penrose, R. |author-link = Roger Penrose | title = सम्राट का नया मन| url = https://archive.org/details/emperorsnewmindc00penr | url-access = registration | publisher = Oxford University Press | isbn = 978-0-19-851973-7 | date =1989}} Chapter 10.</ref><ref>{{cite journal | author = Starkman, G. D. | author2 = Trotta, R. | title = Why Anthropic Reasoning Cannot Predict Λ | journal = Physical Review Letters | volume = 97 |page = 201301 | date = 2006 | doi = 10.1103/PhysRevLett.97.201301 | pmid = 17155671 | issue = 20 | bibcode=2006PhRvL..97t1301S|arxiv = astro-ph/0607227 | s2cid = 27409290 }} See also this [http://www.physorg.com/news83924839.html news story.]</ref>




== यह भी देखें ==
== यह भी देखें ==
{{wikiquote}}
{{wikiquote}}
* स्वाभाविकता (भौतिकी)
* स्वाभाविकता(भौतिकी)  
* [[सीपी उल्लंघन]]
* [[सीपी उल्लंघन]]
* [[क्वांटम तुच्छता]]
* [[क्वांटम तुच्छता|क्वांटम नगण्यता]]
* [[कमजोर गुरुत्वाकर्षण अनुमान|मंद गुरुत्वाकर्षण अनुमान]]
* [[कमजोर गुरुत्वाकर्षण अनुमान|मंद गुरुत्वाकर्षण अनुमान]]


Line 103: Line 105:
{{Reflist|30em}}
{{Reflist|30em}}


{{Standard model of physics}}
{{DEFAULTSORT:Hierarchy Problem}}
 
{{DEFAULTSORT:Hierarchy Problem}}[[Category: मानक मॉडल]] [[Category: मानक मॉडल से परे भौतिकी]] [[Category: भौतिकी में अनसुलझी समस्याएं]]
 
 


[[Category: Machine Translated Page]]
[[Category:All articles with bare URLs for citations|Hierarchy Problem]]
[[Category:Created On 29/03/2023]]
[[Category:Articles with PDF format bare URLs for citations|Hierarchy Problem]]
[[Category:Articles with bare URLs for citations from March 2022|Hierarchy Problem]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Hierarchy Problem]]
[[Category:Articles with invalid date parameter in template|Hierarchy Problem]]
[[Category:Created On 29/03/2023|Hierarchy Problem]]
[[Category:Lua-based templates|Hierarchy Problem]]
[[Category:Machine Translated Page|Hierarchy Problem]]
[[Category:Pages with script errors|Hierarchy Problem]]
[[Category:Short description with empty Wikidata description|Hierarchy Problem]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Translated in Hindi|Hierarchy Problem]]
[[Category:Templates Vigyan Ready|Hierarchy Problem]]
[[Category:Templates that add a tracking category|Hierarchy Problem]]
[[Category:Templates that generate short descriptions|Hierarchy Problem]]
[[Category:Templates using TemplateData|Hierarchy Problem]]

Latest revision as of 18:36, 20 April 2023

सैद्धांतिक भौतिकी में, पदानुक्रम समस्या मंद बल और गुरुत्वाकर्षण के अवस्था के बीच बड़ी विसंगति से संबंधित समस्या है।[1] इस पर कोई वैज्ञानिक सहमति नहीं है, उदाहरण के लिए, मंद बल गुरुत्वाकर्षण से 1024 गुना अधिक दृढ क्यों है।

तकनीकी परिभाषा

पदानुक्रम समस्या तब होती है जब कुछ भौतिक पैरामीटर का मौलिक मान, जैसे युग्मन स्थिरांक या द्रव्यमान, कुछ लैग्रैंगियन यांत्रिकी में इसके प्रभावी मान से अत्यधिक भिन्न होता है, जो कि एक प्रयोग में मापा जाता है। ऐसा इसलिए होता है क्योंकि प्रभावी मान मौलिक मान से संबंधित होता है जिसे पुनर्सामान्यीकरण के रूप में जाना जाता है, जो इसमें संशोधन लागू करता है। सामान्यतः मापदंडों का पुनर्सामान्यीकृत मान उनके मौलिक मानों के निकट होता है, परन्तु कुछ स्थितियों में, ऐसा प्रतीत होता है कि मौलिक मात्रा और क्वांटम संशोधन के बीच सूक्ष्म निरसन हुआ है। पदानुक्रम की समस्याएं सूक्ष्म-समस्वरण(भौतिकी) समस्याओं और वास्तविकता(भौतिकी) की समस्याओं से संबंधित हैं। पूर्व दशक में कई वैज्ञानिकों[2][3][4][5][6] ने तर्क दिया कि पदानुक्रम समस्या बेज सांख्यिकी का विशिष्ट अनुप्रयोग है।

पदानुक्रम की समस्याओं में पुनर्सामान्यीकरण का अध्ययन करना कठिन है, क्योंकि ऐसे क्वांटम संशोधन सामान्यतः शक्ति-नियम अपसारी होते हैं, जिसका अर्थ है कि सबसे कम दूरी की भौतिकी सबसे महत्वपूर्ण है। क्योंकि हम भौतिकी के क्वांटम गुरुत्वाकर्षण के यथार्थ विवरण नहीं जानते हैं, हम यह भी नहीं बता सकते हैं कि दो बड़े पदों के बीच यह सूक्ष्म निरसन कैसे होता है। इसलिए, शोधकर्ताओं को नवीन भौतिक घटनाओं को मानने के लिए प्रेरित किया जाता है जो ठीक-ठीक समस्वरण के बिना पदानुक्रम की समस्याओं को हल करते हैं।

अवलोकन

मान लीजिए कि भौतिकी मॉडल को चार मापदंडों की आवश्यकता होती है जो इसे हमारे भौतिक ब्रह्मांड की कुछ अवस्था की पूर्वानुमान को उत्पन्न करने के लिए बहुत ही उच्च गुणवत्ता वाले कार्यशील मॉडल का उत्पादन करने की अनुमति देते है। मान लीजिए कि हम प्रयोगों के माध्यम से पाते हैं कि पैरामीटर के मान हैं: 1.2, 1.31, 0.9 और 404,331,557,902,116,024,553,602,703,216.58(लगभग 4×1029)। वैज्ञानिक आश्चर्यचकित हो सकते हैं कि ऐसे आंकड़े कैसे उत्पन्न होते हैं। परन्तु विशेष रूप से, एक सिद्धांत के विषय में विशेष रूप से उत्सुक हो सकते हैं जहां तीन मान एक के निकट हैं, और चौथा बहुत अलग है; दूसरे पदों में, हमें लगता है कि पूर्व तीन पैरामीटर और चौथे के बीच भारी असमानता है। हम यह भी सोच सकते हैं कि क्या बल दूसरों की तुलना में इतने मंद है कि उसे 4×1029 के कारक की आवश्यकता है इसे प्रभावों के संदर्भ में उनसे संबंधित होने की अनुमति देने के लिए, जब इसकी दृढ़ता उभरीं तो हमारा ब्रह्मांड इतना संतुलित कैसे हो गया? वर्तमान कण भौतिकी में, कुछ मापदंडों के बीच का अंतर इससे कहीं अधिक है, इसलिए यह प्रश्न और भी उल्लेखनीय है।

दार्शनिकों द्वारा दिया गया एक उत्तर मानवशास्त्रीय सिद्धांत है। यदि ब्रह्मांड संयोग से अस्तित्व में आया, और संभवतः बड़ी संख्या में अन्य ब्रह्मांड स्थित हैं या अस्तित्व में हैं, तो भौतिकी के प्रयोगों में सक्षम जीवन मात्र उन ब्रह्मांडों में उत्पन्न हुआ, जिनमें संयोग से बहुत संतुलित बल थे। उन सभी ब्रह्माण्डों में जहाँ बल संतुलित नहीं थे, इस प्रश्न को पूछने में सक्षम जीवन का विकास नहीं हुआ। तो यदि मनुष्य जैसे जीवन रूप जागरूक हैं और इस प्रकार के प्रश्न पूछने में सक्षम हैं, तो मनुष्य ब्रह्मांड में संतुलित शक्तियों के साथ उत्पन्न हुए होंगे, चाहे वह कितना भी दुर्लभ क्यों न हो।

दूसरा संभावित उत्तर यह है कि भौतिकी की गहरी समझ है जो वर्तमान में हमारे निकट नहीं है। ऐसे पैरामीटर हो सकते हैं जिनसे हम कम असंतुलित मान वाले भौतिक स्थिरांक प्राप्त कर सकते हैं, या कम पैरामीटर वाला कोई मॉडल हो सकता है।

कण भौतिकी में उदाहरण

हिग्स द्रव्यमान

कण भौतिकी में, सबसे महत्वपूर्ण पदानुक्रम समस्या वह प्रश्न है जो पूछते है कि मंद बल गुरुत्वाकर्षण से 1024 गुना अधिक दृढ क्यों है।[7] इन दोनों बलों में प्रकृति के स्थिरांक, मंद बल के लिए फर्मी स्थिरांक और गुरुत्वाकर्षण के लिए न्यूटोनियन स्थिरांक सम्मिलित हैं। इसके अतिरिक्त, यदि मानक मॉडल का उपयोग फर्मी के स्थिरांक में क्वांटम संशोधन की गणना के लिए किया जाता है, तो ऐसा प्रतीत होता है कि फर्मी का स्थिरांक आश्चर्यजनक रूप से बड़ा है और न्यूटन के स्थिरांक के निकट होने की अपेक्षा है जब तक कि फर्मी के स्थिरांक और इसमें क्वांटम संशोधन के अनावृत मान के बीच सूक्ष्म निरसन न हो।

मानक मॉडल के एक अतिसममिति विस्तार में फर्मियन शीर्ष क्वार्क लूप और अदिश क्षेत्र स्टॉप स्क्वार्क टैडपोल फेनमैन आरेख के बीच हिग्स बॉसन द्विघात द्रव्यमान पुनर्सामान्यीकरण को निरस्त करना

अधिक तकनीकी रूप से, प्रश्न यह है कि हिग्स बोसोन प्लैंक द्रव्यमान(या सर्वोच्च एकीकरण ऊर्जा, या भारी न्यूट्रिनो द्रव्यमान पैमाने) की तुलना में इतना हल्का क्यों है: कोई यह अपेक्षा करेगा कि हिग्स बोसोन द्रव्यमान के वर्ग में बड़ी मात्रा में योगदान होगा अनिवार्य रूप से द्रव्यमान को विशाल बनाते हैं, जिस पैमाने पर नवीन भौतिकी प्रकट होती है, जब तक कि द्विघात विकिरण संशोधन और अनावृत द्रव्यमान के बीच अविश्वसनीय सूक्ष्म-समस्वरण(भौतिकी) निरसन न हो।

समस्या को मानक मॉडल के कठोर आपादन संदर्भ में सूत्रबद्ध भी नहीं किया जा सकता है, क्योंकि हिग्स द्रव्यमान की गणना नहीं की जा सकती है। एक अर्थ में, समस्या इस समस्या की मात्रा है कि मौलिक कणों के भविष्य के सिद्धांत, जिसमें हिग्स बोसोन द्रव्यमान की गणना की जा सकती है, में अत्यधिक सूक्ष्म-समस्वरण नहीं होनी चाहिए।

सैद्धांतिक हल

कई भौतिकविदों द्वारा कई प्रस्तावित हल किए गए हैं।

यूवी/आईआर मिश्रण

2019 में, शोधकर्ताओं के एक युग्म ने प्रस्तावित किया कि प्रभावी क्षेत्र सिद्धांत क्वांटम क्षेत्र सिद्धांत के टूटने के परिणामस्वरूप आईआर/यूवी मिश्रण पदानुक्रम समस्या को हल कर सकता है।[8] 2021 में, शोधकर्ताओं के अन्य समूह ने दिखाया कि यूवी/आईआर मिश्रण स्ट्रिंग सिद्धांत में पदानुक्रम की समस्या को हल कर सकते है।[9]


अतिसममिति

कुछ भौतिकविदों का मानना ​​है कि अतिसममिति के माध्यम से पदानुक्रम की समस्या को हल किया जा सकता है। अति सममिति बता सकती है कि कैसे एक छोटे हिग्स द्रव्यमान को क्वांटम संशोधन से बचाया जा सकता है। अति सममिति हिग्स द्रव्यमान में विकिरण संबंधी संशोधनों के शक्ति-नियम विचलन को हटा देती है और पदानुक्रम समस्या को हल करती है जब तक कि अति सममिति कण रिकार्डो बारबिएरी-जियान फ्रांसेस्को गिउडिस मानदंड को पूरा करने के लिए पर्याप्त हल्के हैं।[10] यद्यपि, यह अभी भी mu समस्या को खुला छोड़ देता है। अति सममिति के सिद्धांतों का परीक्षण लार्ज हैड्रान कोलाइडर में किया जा रहा है, यद्यपि अब तक अति सममिति के लिए कोई प्रमाण नहीं मिला है।

प्रत्येक कण जो हिग्स क्षेत्र से जुड़ता है, उसका एक संबद्ध युकावा युग्मन λf होता है। फर्मियंस के लिए हिग्स क्षेत्र के साथ युग्मन अन्योन्यक्रिया पद देता है, जिसमें डिराक क्षेत्र और हिग्स क्षेत्र है। इसके अतिरिक्त, एक फ़र्मियन का द्रव्यमान उसके युकावा युग्मन के समानुपाती होता है, जिसका अर्थ है कि हिग्स बोसोन सबसे बड़े कण से सबसे अधिक जोड़ेगा। इसका अर्थ यह है कि हिग्स द्रव्यमान में सबसे महत्वपूर्ण संशोधन सबसे भारी कणों से उत्पन्न होगा, सबसे प्रमुख रूप से शीर्ष क्वार्क। फेनमैन नियमों को लागू करने से, हिग्स द्रव्यमान के क्वांटम संशोधन को फ़र्मियन से प्राप्त किया जा सकता है:

 h> को पराबैंगनी अंतक कहा जाता है और वह पैमाना है जिस तक मानक मॉडल मान्य है। यदि हम इस पैमाने को प्लैंक पैमाने के रूप में लेते हैं, तो हमारे निकट द्विघात रूप से अपसारी लग्रांजियन है। यद्यपि, मान लीजिए कि दो जटिल अदिश(स्पिन 0 लिए गए) स्थित हैं जैसे कि:
(हिग्स के युग्मन बिल्कुल समान हैं)।

फिर फेनमैन नियमों द्वारा, संशोधन(दोनों अदिश से) है:

(ध्यान दें कि यहां योगदान धनात्मक है। यह स्पिन-सांख्यिकी प्रमेय के कारण है, जिसका अर्थ है कि फ़र्मियन का ऋणात्मक योगदान होगा और बोसॉन का धनात्मक योगदान होगा। इस तथ्य का लाभ उठाया जाता है।)

यदि हम फर्मियोनिक और बोसोनिक दोनों कणों को सम्मिलित करते हैं तो यह हिग्स द्रव्यमान में कुल योगदान शून्य हो जाता है। अति सममिति इसका एक विस्तार है जो सभी मानक मॉडल कणों के लिए 'अतिसहभागी' बनाते है।[11]


अनुरूप

अतिसममिति के बिना, मात्र मानक मॉडल का उपयोग करके पदानुक्रम समस्या का हल प्रस्तावित किया गया है। इस विचार का पता इस तथ्य से लगाया जा सकता है कि हिग्स क्षेत्र में जो पद पुनर्सामान्यीकरण पर अनियंत्रित द्विघात संशोधन उत्पन्न करता है वह द्विघात है। यदि हिग्स क्षेत्र में कोई द्रव्यमान पद नहीं होता, तो कोई पदानुक्रम समस्या उत्पन्न नहीं होती। परन्तु हिग्स क्षेत्र में द्विघात पद को याद करके, एक गैर-शून्य निर्वात अपेक्षा मान के माध्यम से विद्युत् दुर्बल समरूपता को तोड़ने की विधि खोजनी होगी। यह क्वांटम संशोधन से उत्पन्न होने वाली हिग्स क्षमता में कोलमैन-वेनबर्ग तंत्र का उपयोग करके प्राप्त किया जा सकता है। त्वरक सुविधाओं में जो देखा जाता है, उसके संबंध में इस प्रकार से प्राप्त द्रव्यमान बहुत कम है और इसलिए अनुरूप मानक मॉडल को एक से अधिक हिग्स कण की आवश्यकता होती है। यह प्रस्ताव 2006 में करज़िस्तोफ एंटोनी मीस्नर और हरमन निकोलाई द्वारा आगे रखा गया है[12] और वर्तमान में जांच के अधीन है परन्तु यदि लार्ज हैड्रोन कोलाइडर में अब तक देखे गए उत्तेजना से आगे कोई उत्तेजना नहीं देखी जाती है, तो इस मॉडल को छोड़ना होगा।

अतिरिक्त आयाम

अतिरिक्त आयामों का कोई प्रयोगात्मक या अवलोकन प्रमाण आधिकारिक रुप से रिपोर्ट नहीं किया गया है। लार्ज हैड्रॉन कोलाइडर के परिणामों का विश्लेषण बड़े अतिरिक्त आयामों वाले सिद्धांतों को गंभीर रूप से बाधित करता है।[13] यद्यपि, अतिरिक्त आयाम बता सकते हैं कि गुरुत्वाकर्षण बल इतना मंद क्यों है, और ब्रह्मांड का विस्तार अपेक्षा से अधिक तीव्रता से क्यों हो रहा है।

[14]

यदि हम 3+1 आयामी संसार में रहते हैं, तो हम गुरुत्वाकर्षण के लिए गॉस के नियम के माध्यम से गुरुत्वाकर्षण बल की गणना करते हैं:

(1)

जो मात्र न्यूटन का गुरुत्वाकर्षण का नियम है। ध्यान दें कि न्यूटन के स्थिरांक G को प्लैंक द्रव्यमान के संदर्भ में फिर से लिखा जा सकता है।

यदि हम इस विचार को अतिरिक्त आयामों तक विस्तारित करते हैं, तो हमें मिलता है:

(2)

जहाँ 3+1+ आयामी प्लैंक द्रव्यमान है। यद्यपि, हम मान रहे हैं कि ये अतिरिक्त आयाम सामान्य 3+1 आयामों के समान आकार के हैं। मान लें कि सामान्य आयामों की तुलना में अतिरिक्त आयाम आकार n ≪ के हैं। यदि हम r %ll; n, तो हमें(2) मिलता है। यद्यपि, यदि हम r %gg; n, तो हमें अपना सामान्य न्यूटन का नियम मिलता है। यद्यपि, जब r≫ n, अतिरिक्त आयामों में प्रवाह स्थिर हो जाता है, क्योंकि गुरुत्वाकर्षण प्रवाह के प्रवाह के लिए कोई अतिरिक्त स्थान नहीं होते है। इस प्रकार प्रवाह आनुपातिक होगा क्योंकि यह अतिरिक्त आयामों में प्रवाह है। सूत्र है:

जो देता है:

इस प्रकार मौलिक प्लैंक द्रव्यमान(अतिरिक्त-आयामी एक) वस्तुतः छोटा हो सकता है, जिसका अर्थ है कि गुरुत्वाकर्षण वस्तुतः दृढ है, परन्तु इसकी प्रतिकारिता अतिरिक्त आयामों की संख्या और उनके आकार से की जानी चाहिए। प्रकृति के अनुसार, इसका अर्थ है कि गुरुत्वाकर्षण मंद है क्योंकि अतिरिक्त आयामों में प्रवाह की क्षति होती है।

यह खंड ए. ज़ी द्वारा क्वांटम क्षेत्र सिद्धांत संक्षेप में" से लिया गया है।[15]


ब्रेनवर्ल्ड मॉडल

1998 में नीमा अरकानी-हमीद, सावास डिमोपोलोस और गिया डवाली ने एडीडी मॉडल का प्रस्ताव रखा, जिसे बड़े अतिरिक्त आयामों वाले मॉडल के रूप में भी जाना जाता है, जो अन्य बलों के सापेक्ष गुरुत्वाकर्षण की मंदी को समझाने के लिए एक वैकल्पिक परिदृश्य है।[16][17] इस सिद्धांत की आवश्यकता है कि मानक मॉडल के क्षेत्र चार-आयामी झिल्ली(एम-सिद्धांत) तक सीमित हैं, जबकि गुरुत्वाकर्षण कई अतिरिक्त स्थानिक आयामों में फैलता है जो प्लैंक पैमाने की तुलना में बड़े हैं।[18]

1998-99 में मेरब गोगबरशविली ने आर्षिव(और बाद में सहकर्मी-समीक्षित पत्रिकाओं में) में कई लेख प्रकाशित किए, जहां उन्होंने दिखाया कि यदि ब्रह्मांड को 5-आयामी अंतरिक्ष में विस्तार करने वाला पतला खोल(ब्रान का गणितीय पर्याय) माना जाता है तो यह 5-आयामी ब्रह्माण्ड संबंधी स्थिरांक और ब्रह्मांड की मोटाई के अनुरूप कण सिद्धांत के लिए पैमाना प्राप्त करना संभव है, और इस प्रकार पदानुक्रम समस्या को हल करना संभव है।[19][20][21] यह भी दिखाया गया था कि ब्रह्मांड की चार-आयामीता स्थिरता सिद्धांत की आवश्यकता का परिणाम है क्योंकि आइंस्टीन क्षेत्र समीकरणों के अतिरिक्त घटक पदार्थ क्षेत्रों के लिए स्थानीयकृत हल देते हैं जो स्थिरता की प्रतिबंधों में से एक के साथ मेल खाते हैं।

इसके बाद, निकटता से संबंधित रान्डेल-सुंदरम मॉडल परिदृश्य प्रस्तावित किए गए जिन्होंने पदानुक्रम समस्या के हल की प्रस्तुति की।

ब्रह्माण्ड संबंधी स्थिरांक

भौतिक ब्रह्माण्ड विज्ञान में, एक त्वरित ब्रह्माण्ड के पक्ष में वर्तमान अवलोकन छोटे, परन्तु शून्येतर ब्रह्माण्ड संबंधी स्थिरांक के अस्तित्व का संकेत देते हैं। यह समस्या, जिसे ब्रह्माण्ड संबंधी स्थिरांक समस्या कहा जाता है, हिग्स बोसोन द्रव्यमान समस्या के समान ही एक पदानुक्रम समस्या है, क्योंकि ब्रह्माण्ड संबंधी स्थिरांक भी क्वांटम संशोधनों के प्रति बहुत संवेदनशील है, परन्तु यह समस्या में सामान्य सापेक्षता की आवश्यक भागीदारी से जटिल है। ब्रह्माण्ड संबंधी स्थिरांक समस्या के प्रस्तावित हलों में गुरुत्वाकर्षण को संशोधित करना और/या विस्तार करना,[22][23][24] अविच्छिन्न दबाव के साथ पदार्थ जोड़ना,[25] और मानक मॉडल और गुरुत्वाकर्षण में यूवी / आईआर मिश्रण सम्मिलित है।[26][27] कुछ भौतिकविदों ने ब्रह्माण्ड संबंधी स्थिरांक समस्या को हल करने के लिए मानवशास्त्रीय तर्क का आश्रय लिया है,[28] परन्तु यह विवादित है कि क्या मानवशास्त्रीय तर्क वैज्ञानिक है।[29][30]


यह भी देखें

संदर्भ

  1. "The Hierarchy Problem | Of Particular Significance". Profmattstrassler.com. 16 August 2011. Retrieved 13 December 2015.
  2. Fowlie, Andrew; Balazs, Csaba; White, Graham; Marzola, Luca; Raidal, Martti (17 August 2016). "विश्राम तंत्र की स्वाभाविकता". Journal of High Energy Physics. 2016 (8): 100. arXiv:1602.03889. Bibcode:2016JHEP...08..100F. doi:10.1007/JHEP08(2016)100. S2CID 119102534.
  3. Fowlie, Andrew (10 July 2014). "CMSSM, naturalness and the ?fine-tuning price? of the Very Large Hadron Collider". Physical Review D. 90 (1): 015010. arXiv:1403.3407. Bibcode:2014PhRvD..90a5010F. doi:10.1103/PhysRevD.90.015010. S2CID 118362634.
  4. Fowlie, Andrew (15 October 2014). "Is the CNMSSM more credible than the CMSSM?". The European Physical Journal C. 74 (10). arXiv:1407.7534. doi:10.1140/epjc/s10052-014-3105-y. S2CID 119304794.
  5. Cabrera, Maria Eugenia; Casas, Alberto; Austri, Roberto Ruiz de; Marzola, Luca; Raidal, Martti (2009). "MSSM में बायेसियन दृष्टिकोण और स्वाभाविकता LHC के लिए विश्लेषण करती है". Journal of High Energy Physics. 2009 (3): 075. arXiv:0812.0536. Bibcode:2009JHEP...03..075C. doi:10.1088/1126-6708/2009/03/075. S2CID 18276270.
  6. Fichet, S. (18 December 2012). "बायेसियन आँकड़ों से मात्रात्मक स्वाभाविकता". Physical Review D. 86 (12): 125029. arXiv:1204.4940. Bibcode:2012PhRvD..86l5029F. doi:10.1103/PhysRevD.86.125029. S2CID 119282331.
  7. http://web.mit.edu/sahughes/www/8.022/lec01.pdf[bare URL PDF]
  8. Craig, Nathaniel; Koren, Seth (6 March 2020). "IR dynamics from UV divergences: UV/IR mixing, NCFT, and the hierarchy problem". Journal of High Energy Physics. 2020 (37): 37. arXiv:1909.01365. Bibcode:2020JHEP...03..037C. doi:10.1007/JHEP03(2020)037. S2CID 202540077.
  9. Abel, Steven; Dienes, Keith R. (29 December 2021). "स्ट्रिंग थ्योरी में हिग्स मास की गणना". Physical Review D. 104 (12): 126032. arXiv:2106.04622. Bibcode:2021PhRvD.104l6032A. doi:10.1103/PhysRevD.104.126032. S2CID 235377340.
  10. Barbieri, R.; Giudice, G. F. (1988). "सुपरसिमेट्रिक पार्टिकल मास पर ऊपरी सीमाएं". Nucl. Phys. B. 306 (1): 63. Bibcode:1988NuPhB.306...63B. doi:10.1016/0550-3213(88)90171-X.
  11. Martin, Stephen P. (1998). "A Supersymmetry Primer". सुपरसिमेट्री पर परिप्रेक्ष्य. Advanced Series on Directions in High Energy Physics. Vol. 18. pp. 1–98. arXiv:hep-ph/9709356. doi:10.1142/9789812839657_0001. ISBN 978-981-02-3553-6. S2CID 118973381.
  12. Meissner, K.; Nicolai, H. (2007). "अनुरूप समरूपता और मानक मॉडल". Physics Letters. B648 (4): 312–317. arXiv:hep-th/0612165. Bibcode:2007PhLB..648..312M. doi:10.1016/j.physletb.2007.03.023. S2CID 17973378.
  13. {{Cite journal |last1=Aad |first1=G. |last2=Abajyan |first2=T. |last3=Abbott |first3=B. |last4=Abdallah |first4=J. |last5=Abdel Khalek |first5=S. |last6=Abdinov |first6=O. |last7=Aben |first7=R. |last8=Abi |first8=B. |last9=Abolins |first9=M. |last10=Abouzeid |first10=O. S. |last11=Abramowicz |first11=H. |display-authors=29 |year=2014 |title={{sqrt पर प्रोटॉन-प्रोटॉन टकराव का उपयोग करके उच्च-अपरिवर्तनीय-द्रव्यमान लेप्टान+जेट अंतिम अवस्थाओं में क्वांटम ब्लैक-होल उत्पादन की खोज करें|s}} = 8 TeV and the ATLAS Detector |journal=Physical Review Letters |volume=112 |issue=9 |pages=091804 |arxiv=1311.2006 |bibcode=2014PhRvL.112i1804A |doi=10.1103/PhysRevLett.112.091804 |pmid=24655244 |last12=Abreu |first12=H. |last13=Abulaiti |first13=Y. |last14=Acharya |first14=B. S. |last15=Adamczyk |first15=L. |last16=Adams |first16=D. L. |last17=Addy |first17=T. N. |last18=Adelman |first18=J. |last19=Adomeit |first19=S. |last20=Adye |first20=T. |last21=Aefsky |first21=S. |last22=Agatonovic-Jovin |first22=T. |last23=Aguilar-Saavedra |first23=J. A. |last24=Agustoni |first24=M. |last25=Ahlen |first25=S. P. |last26=Ahmad |first26=A. |last27=Ahmadov |first27=F. |last28=Aielli |first28=G. |last29=Åkesson |first29=T. P. A. |last30=Akimoto |first30=G.|s2cid=204934578 }
  14. "अतिरिक्त आयाम, गुरुत्वाकर्षण और छोटे ब्लैक होल". Home.web.cern.ch. 20 January 2012. Retrieved 13 December 2015.<nowiki>
  15. Zee, A. (2003). संक्षेप में क्वांटम क्षेत्र सिद्धांत. Princeton University Press. Bibcode:2003qftn.book.....Z. ISBN 978-0-691-01019-9.
  16. Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. (1998). "एक मिलीमीटर में पदानुक्रम समस्या और नए आयाम". Physics Letters. B429 (3–4): 263–272. arXiv:hep-ph/9803315. Bibcode:1998PhLB..429..263A. doi:10.1016/S0370-2693(98)00466-3. S2CID 15903444.
  17. Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. (1999). "फेनोमेनोलॉजी, एस्ट्रोफिजिक्स एंड कॉस्मोलॉजी ऑफ थ्योरीज विथ सबमिलीमीटर डाइमेंशन्स एंड टीईवी स्केल क्वांटम ग्रेविटी". Physical Review. D59 (8): 086004. arXiv:hep-ph/9807344. Bibcode:1999PhRvD..59h6004A. doi:10.1103/PhysRevD.59.086004. S2CID 18385871.
  18. For a pedagogical introduction, see Shifman, M. (2009). Large Extra Dimensions: Becoming acquainted with an alternative paradigm. Crossing the boundaries: Gauge dynamics at strong coupling. International Journal of Modern Physics A. Vol. 25, no. 2n03. Singapore: World Scientific. pp. 199–225. arXiv:0907.3074. Bibcode:2010IJMPA..25..199S. doi:10.1142/S0217751X10048548.
  19. Gogberashvili, Merab; Ahluwalia, D. V. (2002). "शैल-यूनिवर्स मॉडल में पदानुक्रम समस्या". International Journal of Modern Physics D. 11 (10): 1635–1638. arXiv:hep-ph/9812296. Bibcode:2002IJMPD..11.1635G. doi:10.1142/S0218271802002992. S2CID 119339225.
  20. Gogberashvili, M. (2000). "एक विस्तारित खोल के रूप में हमारी दुनिया". Europhysics Letters. 49 (3): 396–399. arXiv:hep-ph/9812365. Bibcode:2000EL.....49..396G. doi:10.1209/epl/i2000-00162-1. S2CID 38476733.
  21. Gogberashvili, Merab (1999). "Four Dimensionality in Non-Compact Kaluza–Klein Model". Modern Physics Letters A. 14 (29): 2025–2031. arXiv:hep-ph/9904383. Bibcode:1999MPLA...14.2025G. doi:10.1142/S021773239900208X. S2CID 16923959.
  22. Bull, Philip, Yashar Akrami, Julian Adamek, Tessa Baker, Emilio Bellini, Jose Beltrán Jiménez, Eloisa Bentivegna et al. "Beyond ΛCDM: Problems, solutions, and the road ahead." Physics of the Dark Universe 12 (2016): 56-99.
  23. Ellis, George F. R. (2014). "ट्रेस मुक्त आइंस्टीन समीकरण और मुद्रास्फीति". General Relativity and Gravitation. 46: 1619. arXiv:1306.3021. Bibcode:2014GReGr..46.1619E. doi:10.1007/s10714-013-1619-5. S2CID 119000135.
  24. Percacci, R. (2018). "यूनिमॉड्यूलर क्वांटम ग्रेविटी और कॉस्मोलॉजिकल स्थिरांक". Foundations of Physics. 48 (10): 1364–1379. arXiv:1712.09903. Bibcode:2018FoPh...48.1364P. doi:10.1007/s10701-018-0189-5. S2CID 118934871.
  25. Luongo, Orlando; Muccino, Marco (2018-11-21). "दबाव के साथ धूल का उपयोग कर ब्रह्मांड को गति देना". Physical Review D. 98 (10): 2–3. arXiv:1807.00180. Bibcode:2018PhRvD..98j3520L. doi:10.1103/physrevd.98.103520. ISSN 2470-0010. S2CID 119346601.
  26. Cohen, Andrew; Kaplan, David B.; Nelson, Ann (21 June 1999). "इफेक्टिव फील्ड थ्योरी, ब्लैक होल और कॉस्मोलॉजिकल कॉन्स्टेंट". Physical Review Letters. 82 (25): 4971–4974. arXiv:hep-th/9803132. Bibcode:1999PhRvL..82.4971C. doi:10.1103/PhysRevLett.82.4971. S2CID 17203575.
  27. Nikita Blinov; Patrick Draper (7 July 2021). "राज्यों की घनत्व और सीकेएन बाउंड". arXiv:2107.03530 [hep-ph].
  28. Martel, Hugo; Shapiro, Paul R.; Weinberg, Steven (January 1998). "ब्रह्माण्ड संबंधी स्थिरांक के संभावित मान". The Astrophysical Journal. 492 (1): 29–40. arXiv:astro-ph/9701099. Bibcode:1998ApJ...492...29M. doi:10.1086/305016. S2CID 119064782.
  29. Penrose, R. (1989). सम्राट का नया मन. Oxford University Press. ISBN 978-0-19-851973-7. Chapter 10.
  30. Starkman, G. D.; Trotta, R. (2006). "Why Anthropic Reasoning Cannot Predict Λ". Physical Review Letters. 97 (20): 201301. arXiv:astro-ph/0607227. Bibcode:2006PhRvL..97t1301S. doi:10.1103/PhysRevLett.97.201301. PMID 17155671. S2CID 27409290. See also this news story.