प्रवर संवहन मैक्सवेल मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
ऊपरी-संवहित मैक्सवेल (यूसीएम) मॉडल ऊपरी-संवहित समय व्युत्पन्न का उपयोग करके बड़े विकृतियों के | ऊपरी-संवहित मैक्सवेल (यूसीएम) मॉडल ऊपरी-संवहित समय व्युत्पन्न का उपयोग करके बड़े विकृतियों के स्थितियों में [[मैक्सवेल सामग्री]] का एक सामान्यीकरण है। मॉडल का प्रस्ताव जेम्स जी ओल्ड्रोयड ने दिया था। अवधारणा का नाम [[जेम्स क्लर्क मैक्सवेल]] के नाम पर रखा गया है। | ||
मॉडल को इस प्रकार लिखा जा सकता है: | मॉडल को इस प्रकार लिखा जा सकता है: | ||
Line 12: | Line 12: | ||
*<math>\mathbf {D}</math> [[तनाव दर टेंसर]] है। | *<math>\mathbf {D}</math> [[तनाव दर टेंसर]] है। | ||
== स्थिर कतरनी की | == स्थिर कतरनी की स्थिति == | ||
इस | इस स्थितियों के लिए कतरनी तनाव के केवल दो घटक गैर-शून्य हो गए: | ||
:<math>T_{12}=\eta_0 \dot \gamma \, </math> | :<math>T_{12}=\eta_0 \dot \gamma \, </math> | ||
और | और | ||
Line 19: | Line 19: | ||
जहाँ <math>\dot \gamma</math> कतरनी दर है। | जहाँ <math>\dot \gamma</math> कतरनी दर है। | ||
इस प्रकार, ऊपरी-संवहित मैक्सवेल मॉडल सरल कतरनी के लिए भविष्यवाणी करता है कि कतरनी तनाव कतरनी दर और सामान्य तनाव के पहले अंतर <math>T_{11}-T_{22}</math> के समानुपाती होता है कतरनी दर के वर्ग के समानुपाती है, सामान्य तनावों का दूसरा अंतर (<math>T_{22}-T_{33}</math>) हमेशा शून्य होता है। दूसरे शब्दों में, यूसीएम सामान्य तनावों के पहले अंतर की उपस्थिति की भविष्यवाणी करता है | इस प्रकार, ऊपरी-संवहित मैक्सवेल मॉडल सरल कतरनी के लिए भविष्यवाणी करता है कि कतरनी तनाव कतरनी दर और सामान्य तनाव के पहले अंतर <math>T_{11}-T_{22}</math> के समानुपाती होता है कतरनी दर के वर्ग के समानुपाती है, सामान्य तनावों का दूसरा अंतर (<math>T_{22}-T_{33}</math>) हमेशा शून्य होता है। दूसरे शब्दों में, यूसीएम सामान्य तनावों के पहले अंतर की उपस्थिति की भविष्यवाणी करता है किंतु कतरनी श्यानता के गैर-न्यूटोनियन व्यवहार और न ही सामान्य तनावों के दूसरे अंतर की भविष्यवाणी करता है। | ||
सामान्यतः सामान्य तनावों के पहले अंतर का द्विघात व्यवहार और सामान्य तनावों का कोई दूसरा अंतर नहीं है, मध्यम कतरनी दरों पर बहुलक पिघलने का यथार्थवादी व्यवहार है, किंतु निरंतर श्यानता अवास्तविक है और मॉडल की उपयोगिता को सीमित करती है। | |||
'''स्थिर अपरूपण के प्रारंभ''' '''की स्थिति''' | |||
इस | इस स्थितियों के लिए कतरनी तनाव के केवल दो घटक गैर-शून्य हो गए: | ||
:<math>T_{12}=\eta_0 \dot \gamma \left(1-\exp\left(-\frac t \lambda\right)\right)</math> | :<math>T_{12}=\eta_0 \dot \gamma \left(1-\exp\left(-\frac t \lambda\right)\right)</math> | ||
और | और | ||
:<math>T_{11}=2 \eta_0 \lambda {\dot \gamma}^2 \left(1 -\exp\left(-\frac t \lambda\right)\left(1+\frac t \lambda \right)\right)</math> | :<math>T_{11}=2 \eta_0 \lambda {\dot \gamma}^2 \left(1 -\exp\left(-\frac t \lambda\right)\left(1+\frac t \lambda \right)\right)</math> | ||
ऊपर दिए गए समीकरण तनावों का वर्णन करते हैं जो धीरे-धीरे स्थिर-अवस्था | ऊपर दिए गए समीकरण तनावों का वर्णन करते हैं जो धीरे-धीरे स्थिर-अवस्था मानो को शून्य से बढ़ाते हैं। | ||
समीकरण तभी | समीकरण तभी प्रयुक्त होता है, जब कतरनी प्रवाह में वेग प्रोफ़ाइल पूरी तरह से विकसित हो। फिर कतरनी दर चैनल की ऊंचाई पर स्थिर रहती है। यदि स्टार्ट-अप फॉर्म को शून्य वेग वितरण की गणना करनी है, तो पीडीई का पूरा समूह हल करना होगा। | ||
== स्थिर स्थिति एक अक्षीय विस्तार या एक अक्षीय संपीड़न == | ==== स्थिर स्थिति एक अक्षीय विस्तार या एक अक्षीय संपीड़न की स्थिति ==== | ||
इस स्थितियों में यूसीएम सामान्य तनाव की भविष्यवाणी करता है <math>\sigma=T_{11}-T_{22}=T_{11}-T_{33}</math> निम्नलिखित समीकरण द्वारा गणना की गई: | |||
इस | |||
: <math>\sigma=\frac {2 \eta_0 \dot \epsilon} {1-2\lambda \dot \epsilon} + \frac {\eta_0 \dot \epsilon} {1+ \lambda \dot \epsilon}</math> | : <math>\sigma=\frac {2 \eta_0 \dot \epsilon} {1-2\lambda \dot \epsilon} + \frac {\eta_0 \dot \epsilon} {1+ \lambda \dot \epsilon}</math> | ||
जहाँ <math>\dot \epsilon</math> बढ़ाव दर है। | जहाँ <math>\dot \epsilon</math> बढ़ाव दर है। | ||
समीकरण निकट आने वाले बढ़ाव चिपचिपाहट की भविष्यवाणी करता है <math>3 \eta_0</math> ([[न्यूटोनियन द्रव]] पदार्थों के समान) कम बढ़ाव दर के | समीकरण निकट आने वाले बढ़ाव चिपचिपाहट की भविष्यवाणी करता है <math>3 \eta_0</math> ([[न्यूटोनियन द्रव]] पदार्थों के समान) कम बढ़ाव दर के स्थितियों में ( <math>\dot \epsilon \ll \frac 1 \lambda</math>) तेजी से विकृति के साथ स्थिर राज्य चिपचिपाहट के साथ कुछ बढ़ाव दर पर अनंत तक पहुंचना (<math>\dot \epsilon_\infty = \frac 1 {2 \lambda}</math>) और कुछ संपीड़न दर पर (<math>\dot \epsilon_{-\infty} = -\frac 1 {\lambda}</math>). यह व्यवहार यथार्थवादी प्रतीत होता है। | ||
== छोटी विकृति का मामला == | == छोटी विकृति का मामला == |
Revision as of 10:30, 14 April 2023
ऊपरी-संवहित मैक्सवेल (यूसीएम) मॉडल ऊपरी-संवहित समय व्युत्पन्न का उपयोग करके बड़े विकृतियों के स्थितियों में मैक्सवेल सामग्री का एक सामान्यीकरण है। मॉडल का प्रस्ताव जेम्स जी ओल्ड्रोयड ने दिया था। अवधारणा का नाम जेम्स क्लर्क मैक्सवेल के नाम पर रखा गया है।
मॉडल को इस प्रकार लिखा जा सकता है:
जहाँ :
- तनाव (भौतिकी) टेन्सर है;
- विश्राम का समय है;
- तनाव टेन्सर का ऊपरी संवहन समय व्युत्पन्न है:
- द्रव वेग है
- भौतिक चिपचिपाहट स्थिर सरल कतरनी है;
- तनाव दर टेंसर है।
स्थिर कतरनी की स्थिति
इस स्थितियों के लिए कतरनी तनाव के केवल दो घटक गैर-शून्य हो गए:
और
जहाँ कतरनी दर है।
इस प्रकार, ऊपरी-संवहित मैक्सवेल मॉडल सरल कतरनी के लिए भविष्यवाणी करता है कि कतरनी तनाव कतरनी दर और सामान्य तनाव के पहले अंतर के समानुपाती होता है कतरनी दर के वर्ग के समानुपाती है, सामान्य तनावों का दूसरा अंतर () हमेशा शून्य होता है। दूसरे शब्दों में, यूसीएम सामान्य तनावों के पहले अंतर की उपस्थिति की भविष्यवाणी करता है किंतु कतरनी श्यानता के गैर-न्यूटोनियन व्यवहार और न ही सामान्य तनावों के दूसरे अंतर की भविष्यवाणी करता है।
सामान्यतः सामान्य तनावों के पहले अंतर का द्विघात व्यवहार और सामान्य तनावों का कोई दूसरा अंतर नहीं है, मध्यम कतरनी दरों पर बहुलक पिघलने का यथार्थवादी व्यवहार है, किंतु निरंतर श्यानता अवास्तविक है और मॉडल की उपयोगिता को सीमित करती है।
स्थिर अपरूपण के प्रारंभ की स्थिति
इस स्थितियों के लिए कतरनी तनाव के केवल दो घटक गैर-शून्य हो गए:
और
ऊपर दिए गए समीकरण तनावों का वर्णन करते हैं जो धीरे-धीरे स्थिर-अवस्था मानो को शून्य से बढ़ाते हैं।
समीकरण तभी प्रयुक्त होता है, जब कतरनी प्रवाह में वेग प्रोफ़ाइल पूरी तरह से विकसित हो। फिर कतरनी दर चैनल की ऊंचाई पर स्थिर रहती है। यदि स्टार्ट-अप फॉर्म को शून्य वेग वितरण की गणना करनी है, तो पीडीई का पूरा समूह हल करना होगा।
स्थिर स्थिति एक अक्षीय विस्तार या एक अक्षीय संपीड़न की स्थिति
इस स्थितियों में यूसीएम सामान्य तनाव की भविष्यवाणी करता है निम्नलिखित समीकरण द्वारा गणना की गई:
जहाँ बढ़ाव दर है।
समीकरण निकट आने वाले बढ़ाव चिपचिपाहट की भविष्यवाणी करता है (न्यूटोनियन द्रव पदार्थों के समान) कम बढ़ाव दर के स्थितियों में ( ) तेजी से विकृति के साथ स्थिर राज्य चिपचिपाहट के साथ कुछ बढ़ाव दर पर अनंत तक पहुंचना () और कुछ संपीड़न दर पर (). यह व्यवहार यथार्थवादी प्रतीत होता है।
छोटी विकृति का मामला
छोटे विरूपण के मामले स्थितियों में ऊपरी संवहन व्युत्पन्न द्वारा शुरू की गई गैर-रैखिकता गायब हो जाती है और मॉडल मैक्सवेल सामग्री का एक सामान्य मॉडल बन गया।
संदर्भ
- Macosko, Christopher (1993). Rheology. Principles, Measurements and Applications. VCH Publisher. ISBN 1-56081-579-5.