प्रवर संवहन मैक्सवेल मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
:<math> \stackrel{\nabla}{\mathbf{T}} = \frac{\partial}{\partial t} \mathbf{T} + \mathbf{v} \cdot \nabla \mathbf{T} - (\nabla \mathbf{v})^T \cdot \mathbf{T} - \mathbf{T} \cdot (\nabla \mathbf{v}) </math> | :<math> \stackrel{\nabla}{\mathbf{T}} = \frac{\partial}{\partial t} \mathbf{T} + \mathbf{v} \cdot \nabla \mathbf{T} - (\nabla \mathbf{v})^T \cdot \mathbf{T} - \mathbf{T} \cdot (\nabla \mathbf{v}) </math> | ||
*<math>\mathbf{v}</math> द्रव वेग है | *<math>\mathbf{v}</math> द्रव वेग है | ||
*<math>\eta_0</math> भौतिक | *<math>\eta_0</math> भौतिक श्यानता स्थिर [[सरल कतरनी|सरल अपरुपण]] है; | ||
*<math>\mathbf {D}</math> [[तनाव दर टेंसर]] है। | *<math>\mathbf {D}</math> [[तनाव दर टेंसर]] है। | ||
== स्थिर | == स्थिर अपरुपण की स्थिति == | ||
इस स्थितियों के लिए | इस स्थितियों के लिए अपरुपण तनाव के केवल दो घटक गैर-शून्य हो गए: | ||
:<math>T_{12}=\eta_0 \dot \gamma \, </math> | :<math>T_{12}=\eta_0 \dot \gamma \, </math> | ||
और | और | ||
:<math>T_{11}=2 \eta_0 \lambda {\dot \gamma}^2 \, </math> | :<math>T_{11}=2 \eta_0 \lambda {\dot \gamma}^2 \, </math> | ||
जहाँ <math>\dot \gamma</math> | जहाँ <math>\dot \gamma</math> अपरुपण दर है। | ||
इस प्रकार, ऊपरी-संवहित मैक्सवेल मॉडल सरल | इस प्रकार, ऊपरी-संवहित मैक्सवेल मॉडल सरल अपरुपण के लिए भविष्यवाणी करता है कि अपरुपण तनाव अपरुपण दर और सामान्य तनाव के पहले अंतर <math>T_{11}-T_{22}</math> के समानुपाती होता है अपरुपण दर के वर्ग के समानुपाती है, सामान्य तनावों का दूसरा अंतर (<math>T_{22}-T_{33}</math>) हमेशा शून्य होता है। दूसरे शब्दों में, यूसीएम सामान्य तनावों के पहले अंतर की उपस्थिति की भविष्यवाणी करता है किंतु अपरुपण श्यानता के गैर-न्यूटोनियन व्यवहार और न ही सामान्य तनावों के दूसरे अंतर की भविष्यवाणी करता है। | ||
सामान्यतः सामान्य तनावों के पहले अंतर का द्विघात व्यवहार और सामान्य तनावों का कोई दूसरा अंतर नहीं है, मध्यम | सामान्यतः सामान्य तनावों के पहले अंतर का द्विघात व्यवहार और सामान्य तनावों का कोई दूसरा अंतर नहीं है, मध्यम अपरुपण दरों पर बहुलक पिघलने का यथार्थवादी व्यवहार है, किंतु निरंतर श्यानता अवास्तविक है और मॉडल की उपयोगिता को सीमित करती है। | ||
'''स्थिर अपरूपण के प्रारंभ''' '''की स्थिति''' | '''स्थिर अपरूपण के प्रारंभ''' '''की स्थिति''' | ||
इस स्थितियों के लिए | इस स्थितियों के लिए अपरुपण तनाव के केवल दो घटक गैर-शून्य हो गए: | ||
:<math>T_{12}=\eta_0 \dot \gamma \left(1-\exp\left(-\frac t \lambda\right)\right)</math> | :<math>T_{12}=\eta_0 \dot \gamma \left(1-\exp\left(-\frac t \lambda\right)\right)</math> | ||
और | और | ||
Line 31: | Line 31: | ||
ऊपर दिए गए समीकरण तनावों का वर्णन करते हैं जो धीरे-धीरे स्थिर-अवस्था मानो को शून्य से बढ़ाते हैं। | ऊपर दिए गए समीकरण तनावों का वर्णन करते हैं जो धीरे-धीरे स्थिर-अवस्था मानो को शून्य से बढ़ाते हैं। | ||
समीकरण तभी प्रयुक्त होता है, जब | समीकरण तभी प्रयुक्त होता है, जब अपरुपण प्रवाह में वेग प्रोफ़ाइल पूरी तरह से विकसित हो। फिर अपरुपण दर चैनल की ऊंचाई पर स्थिर रहती है। यदि स्टार्ट-अप फॉर्म को शून्य वेग वितरण की गणना करनी है, तो पीडीई का पूरा समूह हल करना होगा। | ||
==== स्थिर स्थिति एक अक्षीय विस्तार या एक अक्षीय संपीड़न की स्थिति ==== | ==== स्थिर स्थिति एक अक्षीय विस्तार या एक अक्षीय संपीड़न की स्थिति ==== | ||
Line 38: | Line 38: | ||
जहाँ <math>\dot \epsilon</math> बढ़ाव दर है। | जहाँ <math>\dot \epsilon</math> बढ़ाव दर है। | ||
समीकरण निकट आने वाले बढ़ाव | समीकरण निकट आने वाले बढ़ाव श्यानता की भविष्यवाणी करता है <math>3 \eta_0</math> ([[न्यूटोनियन द्रव]] पदार्थों के समान) कम बढ़ाव दर के स्थितियों में ( <math>\dot \epsilon \ll \frac 1 \lambda</math>) तेजी से विकृति के साथ स्थिर स्थिति श्यानता के साथ कुछ बढ़ाव दर पर अनंत तक पहुंचना (<math>\dot \epsilon_\infty = \frac 1 {2 \lambda}</math>) और कुछ संपीड़न दर पर (<math>\dot \epsilon_{-\infty} = -\frac 1 {\lambda}</math>). यह व्यवहार यथार्थवादी प्रतीत होता है। | ||
== छोटी विकृति का | == छोटी विकृति का स्थिति == | ||
छोटे विरूपण के | छोटे विरूपण के स्थितियों में ऊपरी संवहन व्युत्पन्न द्वारा प्रारंभ की गई गैर-रैखिकता गायब हो जाती है और मॉडल मैक्सवेल सामग्री का एक सामान्य मॉडल बन गया। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 10:32, 14 April 2023
ऊपरी-संवहित मैक्सवेल (यूसीएम) मॉडल ऊपरी-संवहित समय व्युत्पन्न का उपयोग करके बड़े विकृतियों के स्थितियों में मैक्सवेल सामग्री का एक सामान्यीकरण है। मॉडल का प्रस्ताव जेम्स जी ओल्ड्रोयड ने दिया था। अवधारणा का नाम जेम्स क्लर्क मैक्सवेल के नाम पर रखा गया है।
मॉडल को इस प्रकार लिखा जा सकता है:
जहाँ :
- तनाव (भौतिकी) टेन्सर है;
- विश्राम का समय है;
- तनाव टेन्सर का ऊपरी संवहन समय व्युत्पन्न है:
- द्रव वेग है
- भौतिक श्यानता स्थिर सरल अपरुपण है;
- तनाव दर टेंसर है।
स्थिर अपरुपण की स्थिति
इस स्थितियों के लिए अपरुपण तनाव के केवल दो घटक गैर-शून्य हो गए:
और
जहाँ अपरुपण दर है।
इस प्रकार, ऊपरी-संवहित मैक्सवेल मॉडल सरल अपरुपण के लिए भविष्यवाणी करता है कि अपरुपण तनाव अपरुपण दर और सामान्य तनाव के पहले अंतर के समानुपाती होता है अपरुपण दर के वर्ग के समानुपाती है, सामान्य तनावों का दूसरा अंतर () हमेशा शून्य होता है। दूसरे शब्दों में, यूसीएम सामान्य तनावों के पहले अंतर की उपस्थिति की भविष्यवाणी करता है किंतु अपरुपण श्यानता के गैर-न्यूटोनियन व्यवहार और न ही सामान्य तनावों के दूसरे अंतर की भविष्यवाणी करता है।
सामान्यतः सामान्य तनावों के पहले अंतर का द्विघात व्यवहार और सामान्य तनावों का कोई दूसरा अंतर नहीं है, मध्यम अपरुपण दरों पर बहुलक पिघलने का यथार्थवादी व्यवहार है, किंतु निरंतर श्यानता अवास्तविक है और मॉडल की उपयोगिता को सीमित करती है।
स्थिर अपरूपण के प्रारंभ की स्थिति
इस स्थितियों के लिए अपरुपण तनाव के केवल दो घटक गैर-शून्य हो गए:
और
ऊपर दिए गए समीकरण तनावों का वर्णन करते हैं जो धीरे-धीरे स्थिर-अवस्था मानो को शून्य से बढ़ाते हैं।
समीकरण तभी प्रयुक्त होता है, जब अपरुपण प्रवाह में वेग प्रोफ़ाइल पूरी तरह से विकसित हो। फिर अपरुपण दर चैनल की ऊंचाई पर स्थिर रहती है। यदि स्टार्ट-अप फॉर्म को शून्य वेग वितरण की गणना करनी है, तो पीडीई का पूरा समूह हल करना होगा।
स्थिर स्थिति एक अक्षीय विस्तार या एक अक्षीय संपीड़न की स्थिति
इस स्थितियों में यूसीएम सामान्य तनाव की भविष्यवाणी करता है निम्नलिखित समीकरण द्वारा गणना की गई:
जहाँ बढ़ाव दर है।
समीकरण निकट आने वाले बढ़ाव श्यानता की भविष्यवाणी करता है (न्यूटोनियन द्रव पदार्थों के समान) कम बढ़ाव दर के स्थितियों में ( ) तेजी से विकृति के साथ स्थिर स्थिति श्यानता के साथ कुछ बढ़ाव दर पर अनंत तक पहुंचना () और कुछ संपीड़न दर पर (). यह व्यवहार यथार्थवादी प्रतीत होता है।
छोटी विकृति का स्थिति
छोटे विरूपण के स्थितियों में ऊपरी संवहन व्युत्पन्न द्वारा प्रारंभ की गई गैर-रैखिकता गायब हो जाती है और मॉडल मैक्सवेल सामग्री का एक सामान्य मॉडल बन गया।
संदर्भ
- Macosko, Christopher (1993). Rheology. Principles, Measurements and Applications. VCH Publisher. ISBN 1-56081-579-5.