विरूपण सूचकांक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Parameter used in engineering}} | {{Short description|Parameter used in engineering}} | ||
विरूपण | विरूपण सूचकांक एक पैरामीटर है जो नियंत्रण के विधि को निर्दिष्ट करता है जिसके तहत एक ठोस में समय -भिन्न विरूपण या लोडिंग प्रक्रियाएं होती हैं। यह [[Viscoelasticity|विस्कोलेस्टिक]] के साथ लोचदार कठोरता की पारस्परिक क्रिया का मूल्यांकन करने के लिए उपयोगी है<ref>{{cite journal |last1=Futamura |first1=Shingo |title=Deformation Index—Concept for Hysteretic Energy-Loss Process |journal=Rubber Chemistry and Technology |date=1 March 1991 |volume=64 |issue=1 |pages=57–64 |doi=10.5254/1.3538540 |url=https://meridian.allenpress.com/rct/article/64/1/57/91469/Deformation-Index-Concept-for-Hysteretic-Energy |access-date=4 August 2022}}</ref><ref>{{cite journal |last1=Mars |first1=William V. |title=तनाव-, तनाव- और ऊर्जा-नियंत्रित प्रक्रियाओं के संदर्भ में कठोरता विविधताओं का विश्लेषण|journal=Rubber Chemistry and Technology |date=1 June 2011 |volume=84 |issue=2 |pages=178–186 |doi=10.5254/1.3570530 |url=https://doi.org/10.5254/1.3570530 |access-date=19 August 2022}}</ref> यदि भार परिवर्तन के समय विरूपण स्थिर रहता है, तो इस प्रक्रिया को विरूपण नियंत्रित कहा जाता है। इसी प्रकार , यदि विरूपण भिन्न होने पर लोड को स्थिर रखा जाता है, तो प्रक्रिया को लोड नियंत्रित कहा जाता है। विरूपण और भार नियंत्रण के चरम के बीच, ऊर्जा नियंत्रण सहित नियंत्रण के मध्यवर्ती विधियों का एक स्पेक्ट्रम होता है। | ||
उदाहरण के लिए, समान विस्कोलेस्टिक व्यवहार किंतु विभिन्न कठोरता वाले दो रबर यौगिकों के बीच, किसी दिए गए अनुप्रयोग के लिए कौन सा यौगिक पसंद किया जाता है? एक तनाव नियंत्रित अनुप्रयोग में, कम कठोरता वाला रबर कम तनाव पर काम करेगा और इसलिए कम श्यान ताप उत्पन्न करेगा। किंतु एक तनाव नियंत्रित अनुप्रयोग में, उच्च कठोरता वाला रबर छोटे उपभेदों पर काम करेगा जिससे कम श्यान ताप उत्पन्न होगा। एक ऊर्जा नियंत्रित अनुप्रयोग में, दो यौगिक समान मात्रा में श्यान ताप दे सकते हैं। श्यान तापक को कम करने के लिए सही चयन इसलिए नियंत्रण के विधि पर निर्भर करता है। | उदाहरण के लिए, समान विस्कोलेस्टिक व्यवहार किंतु विभिन्न कठोरता वाले दो रबर यौगिकों के बीच, किसी दिए गए अनुप्रयोग के लिए कौन सा यौगिक पसंद किया जाता है? एक तनाव नियंत्रित अनुप्रयोग में, कम कठोरता वाला रबर कम तनाव पर काम करेगा और इसलिए कम श्यान ताप उत्पन्न करेगा। किंतु एक तनाव नियंत्रित अनुप्रयोग में, उच्च कठोरता वाला रबर छोटे उपभेदों पर काम करेगा जिससे कम श्यान ताप उत्पन्न होगा। एक ऊर्जा नियंत्रित अनुप्रयोग में, दो यौगिक समान मात्रा में श्यान ताप दे सकते हैं। श्यान तापक को कम करने के लिए सही चयन इसलिए नियंत्रण के विधि पर निर्भर करता है। | ||
Line 13: | Line 13: | ||
== इतिहास == | == इतिहास == | ||
पैरामीटर मूल रूप से [[शिंगो फुतामुरा]] द्वारा प्रस्तावित किया गया था, जिन्होंने इस विकास की मान्यता में [[मेल्विन मूनी विशिष्ट प्रौद्योगिकी पुरस्कार]] जीता था। फुतामुरा का संबंध यह भविष्यवाणी करने से था कि यौगिक कठोरता में परिवर्तन से विस्कोलेस्टिक अपव्यय में परिवर्तन कैसे प्रभावित होते हैं। बाद में, उन्होंने टायर में थर्मल और मैकेनिकल व्यवहार | पैरामीटर मूल रूप से [[शिंगो फुतामुरा]] द्वारा प्रस्तावित किया गया था, जिन्होंने इस विकास की मान्यता में [[मेल्विन मूनी विशिष्ट प्रौद्योगिकी पुरस्कार]] जीता था। फुतामुरा का संबंध यह भविष्यवाणी करने से था कि यौगिक कठोरता में परिवर्तन से विस्कोलेस्टिक अपव्यय में परिवर्तन कैसे प्रभावित होते हैं। बाद में, उन्होंने टायर में थर्मल और मैकेनिकल व्यवहार के युग्मन की परिमित तत्व गणनाओं को सरल बनाने के लिए दृष्टिकोण की प्रयोज्यता को बढ़ाया।<ref name="tst2004">{{cite journal |last1=Futamura |first1=Shingo |last2=Goldstein |first2=Art |title=एक रोलिंग टायर में तापमान संगणना के लिए थर्मोमैकेनिकल कपलिंग को संभालने का एक सरल तरीका|journal=Tire Science and Technology |date=2004 |volume=32 |issue=2 |pages=56–68 |doi=10.2346/1.2186774 |url=https://meridian.allenpress.com/tst/article/32/2/56/129391/A-Simple-Method-of-Handling-Thermomechanical |access-date=7 October 2022}}</ref> थकान विश्लेषण में अनुप्रयोग के लि ए विलियम मार्स ने फुतामुरा की अवधारणा को अपनाया। | ||
== [[पॉलीट्रोपिक प्रक्रिया]] के अनुरूप == | == [[पॉलीट्रोपिक प्रक्रिया]] के अनुरूप == | ||
यह देखते हुए कि विरूपण सूचकांक एक समान बीजगणितीय रूप में लिखा जा सकता है, यह कहा जा सकता है कि विरूपण सूचकांक एक निश्चित अर्थ में एक पॉलीट्रोपिक प्रक्रिया के लिए पॉलीट्रोपिक सूची के अनुरूप है। | यह देखते हुए कि विरूपण सूचकांक एक समान बीजगणितीय रूप में लिखा जा सकता है, यह कहा जा सकता है कि विरूपण सूचकांक एक निश्चित अर्थ में एक पॉलीट्रोपिक प्रक्रिया के लिए पॉलीट्रोपिक सूची के अनुरूप है। | ||
== संदर्भ == | == संदर्भ == |
Revision as of 11:03, 14 April 2023
विरूपण सूचकांक एक पैरामीटर है जो नियंत्रण के विधि को निर्दिष्ट करता है जिसके तहत एक ठोस में समय -भिन्न विरूपण या लोडिंग प्रक्रियाएं होती हैं। यह विस्कोलेस्टिक के साथ लोचदार कठोरता की पारस्परिक क्रिया का मूल्यांकन करने के लिए उपयोगी है[1][2] यदि भार परिवर्तन के समय विरूपण स्थिर रहता है, तो इस प्रक्रिया को विरूपण नियंत्रित कहा जाता है। इसी प्रकार , यदि विरूपण भिन्न होने पर लोड को स्थिर रखा जाता है, तो प्रक्रिया को लोड नियंत्रित कहा जाता है। विरूपण और भार नियंत्रण के चरम के बीच, ऊर्जा नियंत्रण सहित नियंत्रण के मध्यवर्ती विधियों का एक स्पेक्ट्रम होता है।
उदाहरण के लिए, समान विस्कोलेस्टिक व्यवहार किंतु विभिन्न कठोरता वाले दो रबर यौगिकों के बीच, किसी दिए गए अनुप्रयोग के लिए कौन सा यौगिक पसंद किया जाता है? एक तनाव नियंत्रित अनुप्रयोग में, कम कठोरता वाला रबर कम तनाव पर काम करेगा और इसलिए कम श्यान ताप उत्पन्न करेगा। किंतु एक तनाव नियंत्रित अनुप्रयोग में, उच्च कठोरता वाला रबर छोटे उपभेदों पर काम करेगा जिससे कम श्यान ताप उत्पन्न होगा। एक ऊर्जा नियंत्रित अनुप्रयोग में, दो यौगिक समान मात्रा में श्यान ताप दे सकते हैं। श्यान तापक को कम करने के लिए सही चयन इसलिए नियंत्रण के विधि पर निर्भर करता है।
परिभाषा
फूटामुरा का विरूपण सूचकांक निम्नानुसार परिभाषित किया जा सकता है। वह पैरामीटर है जिसका मान नियंत्रित है (अर्थात स्थिर रखा गया है)। रेखीय प्रत्यास्थता का यंग गुणांक है। तनाव है। दबाव है।
के विशेष विकल्प नियंत्रण के विशेष विधि प्राप्त करते हैं और इकाइयों का निर्धारण करते हैं।. के लिए , हमें तनाव नियंत्रण मिलता है: . के लिए , हमें ऊर्जा नियंत्रण मिलता है: . के लिए , हमें तनाव नियंत्रण मिलता है: .
इतिहास
पैरामीटर मूल रूप से शिंगो फुतामुरा द्वारा प्रस्तावित किया गया था, जिन्होंने इस विकास की मान्यता में मेल्विन मूनी विशिष्ट प्रौद्योगिकी पुरस्कार जीता था। फुतामुरा का संबंध यह भविष्यवाणी करने से था कि यौगिक कठोरता में परिवर्तन से विस्कोलेस्टिक अपव्यय में परिवर्तन कैसे प्रभावित होते हैं। बाद में, उन्होंने टायर में थर्मल और मैकेनिकल व्यवहार के युग्मन की परिमित तत्व गणनाओं को सरल बनाने के लिए दृष्टिकोण की प्रयोज्यता को बढ़ाया।[3] थकान विश्लेषण में अनुप्रयोग के लि ए विलियम मार्स ने फुतामुरा की अवधारणा को अपनाया।
पॉलीट्रोपिक प्रक्रिया के अनुरूप
यह देखते हुए कि विरूपण सूचकांक एक समान बीजगणितीय रूप में लिखा जा सकता है, यह कहा जा सकता है कि विरूपण सूचकांक एक निश्चित अर्थ में एक पॉलीट्रोपिक प्रक्रिया के लिए पॉलीट्रोपिक सूची के अनुरूप है।
संदर्भ
- ↑ Futamura, Shingo (1 March 1991). "Deformation Index—Concept for Hysteretic Energy-Loss Process". Rubber Chemistry and Technology. 64 (1): 57–64. doi:10.5254/1.3538540. Retrieved 4 August 2022.
- ↑ Mars, William V. (1 June 2011). "तनाव-, तनाव- और ऊर्जा-नियंत्रित प्रक्रियाओं के संदर्भ में कठोरता विविधताओं का विश्लेषण". Rubber Chemistry and Technology. 84 (2): 178–186. doi:10.5254/1.3570530. Retrieved 19 August 2022.
- ↑ Futamura, Shingo; Goldstein, Art (2004). "एक रोलिंग टायर में तापमान संगणना के लिए थर्मोमैकेनिकल कपलिंग को संभालने का एक सरल तरीका". Tire Science and Technology. 32 (2): 56–68. doi:10.2346/1.2186774. Retrieved 7 October 2022.