कंपन संरचना जाइरोस्कोप: Difference between revisions
No edit summary |
No edit summary |
||
Line 62: | Line 62: | ||
p. 8 section "1.5 Applications of MEMS Gyroscopes".</ref> | p. 8 section "1.5 Applications of MEMS Gyroscopes".</ref> | ||
== जाइरोस्कोप के अनुप्रयोग == | == जाइरोस्कोप के अनुप्रयोग == | ||
[[File:CVG IMG 6902.jpg|thumb| | [[File:CVG IMG 6902.jpg|thumb|इन्नालैब्स, आईएवी 2020 से कोरिओलिस कंपन जाइरोस्कोप।]] | ||
=== ऑटोमोटिव === | === ऑटोमोटिव === | ||
Line 69: | Line 69: | ||
=== मनोरंजन === | === मनोरंजन === | ||
निंटेंडो गेम ब्वॉय एडवांस गेम वारियोवेयर: ट्विस्टेड! घूर्णी गति का पता लगाने के लिए पीजोइलेक्ट्रिक जाइरोस्कोप का उपयोग करता है। | निंटेंडो गेम ब्वॉय एडवांस गेम वारियोवेयर: ट्विस्टेड! घूर्णी गति का पता लगाने के लिए पीजोइलेक्ट्रिक जाइरोस्कोप का उपयोग करता है। सोनी [[SIXAXIS|छह अक्ष]] पीएस3 नियंत्रक छठे अक्ष (यॉ) को मापने के लिए एकल एमईएमएस जाइरोस्कोप का उपयोग करता है। निनटेंडो [[Wii MotionPlus|वाईआई मोशनप्लस]] गौण, [[Wii MotionPlus|वाईआई]] रिमोट की गति संवेदन क्षमताओं को बढ़ाने के लिए इनवेनसेंस द्वारा प्रदान किए गए बहु-अक्ष एमईएमएस जाइरोस्कोप का उपयोग करता है।<ref name="Wii MoPlus">{{cite press release |title = InvenSense IDG-600 Motion Sensing Solution Showcased In Nintendo's New Wii MotionPlus Accessory |publisher = InvenSense |date = July 15, 2008 |url = http://www.invensense.com/news/071508.html |access-date = May 28, 2009 |archive-url = https://web.archive.org/web/20090417021633/http://invensense.com/news/071508.html |archive-date = April 17, 2009 |url-status = dead |df = mdy-all }}</ref> अधिकांश आधुनिक [[स्मार्टफोन]] और गेमिंग उपकरणों में एमईएमएस जाइरोस्कोप भी होते हैं। | ||
=== शौक === | === शौक === | ||
कंपन संरचना जाइरोस्कोप सामान्यतः रेडियो-नियंत्रित हेलीकाप्टरों में हेलीकॉप्टर के टेल रोटर को नियंत्रित करने में मदद करने के लिए और रेडियो-नियंत्रित हवाई जहाजों में उड़ान के समय रवैया स्थिर रखने में मदद के लिए उपयोग किया जाता है। उनका उपयोग [[ multirotor | | कंपन संरचना जाइरोस्कोप सामान्यतः रेडियो-नियंत्रित हेलीकाप्टरों में हेलीकॉप्टर के टेल रोटर को नियंत्रित करने में मदद करने के लिए और रेडियो-नियंत्रित हवाई जहाजों में उड़ान के समय रवैया स्थिर रखने में मदद के लिए उपयोग किया जाता है। उनका उपयोग [[ multirotor |मल्टीरोटर]] उड़ान नियंत्रकों में भी किया जाता है। जिससे कि मल्टीरोटर स्वाभाविक रूप से वायुगतिकीय रूप से अस्थिर होते हैं और इलेक्ट्रॉनिक स्थिरीकरण के बिना हवाई नहीं रह सकते है। | ||
=== औद्योगिक रोबोटिक्स === | === औद्योगिक रोबोटिक्स === | ||
Line 79: | Line 79: | ||
[[एप्सन रोबोट]] अपने रोबोट पर कंपन का पता लगाने और नियंत्रित करने के लिए क्यूएमईएमएस नामक क्वार्ट्ज एमईएमएस जाइरोस्कोप का उपयोग करते हैं। यह रोबोट को उच्च गति और तेज-मंदी गति में उच्च परिशुद्धता के साथ रोबोट के अंत प्रभावक की स्थिति में मदद करता है।<ref name="EPSON QMEMS">{{cite web |url = http://www5.epsondevice.com/en/quartz/aboutus/qmems/index.html |title = Epson Quartz Crystal Device – About QMEMS |access-date = March 12, 2013 }}</ref> | [[एप्सन रोबोट]] अपने रोबोट पर कंपन का पता लगाने और नियंत्रित करने के लिए क्यूएमईएमएस नामक क्वार्ट्ज एमईएमएस जाइरोस्कोप का उपयोग करते हैं। यह रोबोट को उच्च गति और तेज-मंदी गति में उच्च परिशुद्धता के साथ रोबोट के अंत प्रभावक की स्थिति में मदद करता है।<ref name="EPSON QMEMS">{{cite web |url = http://www5.epsondevice.com/en/quartz/aboutus/qmems/index.html |title = Epson Quartz Crystal Device – About QMEMS |access-date = March 12, 2013 }}</ref> | ||
=== फोटोग्राफी === | === फोटोग्राफी === | ||
वीडियो और स्थिर कैमरों पर | वीडियो और स्थिर कैमरों पर अनेक [[छवि स्थिरीकरण]] प्रणालियां कंपन संरचना जाइरोस्कोप का उपयोग करती हैं। | ||
=== अंतरिक्ष यान अभिविन्यास === | === अंतरिक्ष यान अभिविन्यास === | ||
दोलन के लिए कंपन संरचना जाइरोस्कोप में भी प्रेरित और नियंत्रित किया जा सकता | कैसिनी-ह्यूजेंस जैसे अंतरिक्ष यान की स्थिति की स्थिति के लिये दोलन के लिए कंपन संरचना जाइरोस्कोप में भी प्रेरित और नियंत्रित किया जा सकता है।<ref>Jet Propulsion Laboratory, "Cassini Spacecraft | ||
and Huygens Probe," pg. 2, [https://web.archive.org/web/20161222222838/https://saturn.jpl.nasa.gov/legacy/files/space_probe_fact.pdf]</ref> क्वार्ट्ज ग्लास से बने यह छोटे गोलार्द्ध गुंजयमान जाइरोस्कोप वैक्यूम में कार्य करते हैं। प्रत्यास्थ रूप से विघटित बेलनाकार गुंजयमान जाइरोस्कोप (सीआरजी) के प्रोटोटाइप भी हैं<ref>Sarapuloff S.A. High-Q Sapphire Resonator of Solid-State Gyroscope CRG-1 – In book: 100 Selected Technologies of Academy of Technological Sciences of Ukraine (ATS of Ukraine). Catalogue. – Published by STCU (Science & Technological Council for Ukraine). Kyiv. http://www.stcu.int/documents/reports/distribution/tpf/MATERIALS/Sapphire_Gyro_Sarapuloff_ATSU.pdf</ref><ref>Sarapuloff S. A., Lytvynov L.A., ''et al''. Particularities of Designs and Fabrication Technology of High-Q Sapphire Resonators of CRG-1 Type Solid-State Gyroscopes ''//XIVth International Conference on Integrated Navigation Systems (May 28–30, 2007. St.-Petersburg, RF.). – St.-Petersburg. The State Research Center of Russia – Central Scientific & Research Institute "ElektroPribor". RF. 2007. – P.47-48.''</ref> उच्च शुद्धता वाले ल्यूको-नीलम में एचआरजी के लिए उपयोग किए जाने वाले क्वार्ट्ज ग्लास की तुलना में क्यू-फैक्टर का मूल्य अधिक होता है। किन्तु यह सामग्री कठोर होती है और इसमें [[असमदिग्वर्ती होने की दशा]] होती है। वे अंतरिक्ष यान की त्रुटिहीन 3 अक्ष स्थिति प्रदान करते हैं और वर्षों से अत्यधिक विश्वसनीय हैं। जिससे कि उनके समीप कोई गतिमान भाग नहीं है। | |||
and Huygens Probe," pg. 2, [https://web.archive.org/web/20161222222838/https://saturn.jpl.nasa.gov/legacy/files/space_probe_fact.pdf]</ref> क्वार्ट्ज ग्लास से बने | |||
=== अन्य === | === अन्य === | ||
[[सेगवे मानव ट्रांसपोर्टर]] ऑपरेटर प्लेटफॉर्म को स्थिर करने के लिए [[सिलिकॉन सेंसिंग सिस्टम]] | [[सेगवे मानव ट्रांसपोर्टर]] ऑपरेटर प्लेटफॉर्म को स्थिर करने के लिए [[सिलिकॉन सेंसिंग सिस्टम]] द्वारा बनाई गई कंपन संरचना जीरोस्कोप का उपयोग करता है।<ref name=MEMSyroComp>{{cite web |url = http://www.invensense.com/mems/gyro/documents/whitepapers/MEMSGyroComp.pdf |title = एमईएमएस जाइरोस्कोप्स प्रौद्योगिकी और व्यावसायीकरण की स्थिति की एक महत्वपूर्ण समीक्षा|author = Steven Nasiri |access-date = July 1, 2010 |archive-url = https://web.archive.org/web/20101206122853/http://invensense.com/mems/gyro/documents/whitepapers/MEMSGyroComp.pdf |archive-date = December 6, 2010 |url-status = dead |df = mdy-all }}</ref> | ||
== संदर्भ == | == संदर्भ == | ||
Revision as of 14:24, 1 April 2023
आईईईई द्वारा कोरिओलिस स्पंदनात्मक जाइरोस्कोप (सीवीजी) के रूप में परिभाषित कंपन संरचना जाइरोस्कोप[1] विशेष प्रकार का जाइरोस्कोप है। जो घूर्णन की दर निर्धारित करने के लिए कंपन संरचना का उपयोग करता है। कंपन संरचना जाइरोस्कोप अधिक सीमा तक मक्खियों के डम्बल (डिप्टेरा के क्रम में कीड़े) की प्रकार कार्य करता है।
अंतर्निहित भौतिक सिद्धांत यह है कि कंपन वस्तु उसी तल में कंपन करना जारी रखती है। यदि उसका समर्थन घूमता है। तब कोरिओलिस प्रभाव वस्तु को उसके समर्थन पर बल लगाने का कारण बनता है और इस बल को मापकर घूर्णन की दर निर्धारित की जा सकती है।
कंपन संरचना जाइरोस्कोप समान त्रुटिहीनता के पारंपरिक गायरोस्कोप की तुलना में सरल और अल्पमूल्य हैं। माइक्रोइलेक्ट्रॉनिक सिस्टम (एमईएमएस) प्रौद्योगिकी के साथ निर्मित सस्ती कंपन संरचना जाइरोस्कोप स्मार्टफोन, गेमिंग डिवाइस, कैमरा और प्रत्येक अन्य अनुप्रयोगों में व्यापक रूप से उपयोग किए जाते हैं।
संचालन का सिद्धांत
आवृत्ति पर विमान में कंपन करने वाले दो सबूत द्रव्यमानों पर विचार करते है। (जैसे कि एमईएमएस जाइरो में) कोरिओलिस प्रभाव के समान्तर प्रमाण द्रव्यमान पर त्वरण उत्पन्न करता है। , जहाँ वेग है और घूर्णन की कोणीय आवृत्ति है। प्रमाण द्रव्यमान का इन-प्लेन वेग किसके द्वारा दिया जाता है। यदि इन-प्लेन स्थिति द्वारा दी गई है। आउट-ऑफ़-प्लेन गति , घूर्णन द्वारा प्रेरित द्वारा दिया गया है।
जहाँ
- प्रमाण द्रव्यमान का द्रव्यमान है
- समतल दिशा के बाहर स्प्रिंग नियतांक है।
- ड्रिवेन प्रूफ मास मोशन के समतल और लम्बवत् घूर्णन सदिश का परिमाण है।
नापने के जरिए , हम इस प्रकार घूर्णन की दर निर्धारित कर सकते हैं .
कार्यान्वयन
बेलनाकार गुंजयमान जाइरोस्कोप (सीआरजी)
सन्न 1980 के दशक में जीईसी मारकोनी और फेरांती द्वारा इस प्रकार के जाइरोस्कोप को संलग्न पीजोइलेक्ट्रिक तत्वों और सिंगल-पीस पीज़ोसिरेमिक डिज़ाइन के साथ धातु मिश्र धातुओं का उपयोग करके विकसित किया गया था। इसके पश्चात् 90 के दशक में मैग्नेटो-इलेक्ट्रिक उत्तेजना और रीडआउट वाले सीआरजी कैलिफोर्निया में अमेरिकी-आधारित जड़त्वीय अभियांत्रिकी इंक द्वारा उत्पादित किए गए थे और वाटसन इंडस्ट्रीज द्वारा पीजो-सिरेमिक रूपांतर इनैलैब्स द्वारा हाल ही में पेटेंट किए गए वैरिएंट में एलिनवर-टाइप मिश्र धातु से बने बेलनाकार डिज़ाइन गुंजयमान यंत्र का उपयोग किया गया है। जिसमें इसके तल पर उत्तेजना और उठाने के लिए पीज़ो-सिरामिक तत्व होता हैं।
इस सफलता प्रौद्योगिकी ने उत्पाद जीवन में अधिक वृद्धि की (एमटीबीएफ> 500,000 घंटे) इसके आघात प्रतिरोध (>300जी) के साथ इसे सामरिक (मध्य-त्रुटिहीनता) अनुप्रयोगों के लिए योग्य होना चाहिए।
समान्यतः गुंजयमान यंत्र अपने दूसरे क्रम के गुंजयमान मोड में संचालित होता है। चूँकि क्यू-कारक सामान्यतः लगभग 20,000 होता है। जो इसकी ध्वनि और कोणीय यादृच्छिक चाल को पूर्व निर्धारित करता है। अतः स्थायी तरंगें अण्डाकार आकार के दोलन हैं। जिनमें चार एंटीनोड और रिम के साथ परिधि में स्थित चार नोड होते हैं।
दो आसन्न एंटीनोड - नोड्स के मध्य का कोण 45 डिग्री है। जो अण्डाकार अनुनाद मोड में से निर्धारित आयाम के लिए उत्साहित है। जब उपकरण अपने संवेदनशील अक्ष (इसके आंतरिक तने के साथ) के बारे में घूमता है। तब परिणामी कोरिओलिस बल गुंजयमान यंत्र के कंपन द्रव्यमान तत्वों पर कार्य करता है। जो दूसरे गुंजयमान मोड को उत्तेजित करता है। अतः दो विधाओं के प्रमुख अक्षों के मध्य का कोण भी 45 डिग्री है।
बंद लूप दूसरे गुंजयमान मोड को शून्य पर ले जाता है और इस मोड को शून्य करने के लिए आवश्यक बल इनपुट घूर्णन दर के समानुपाती होता है। इस नियंत्रण पाश को बल-पुनर्संतुलन मोड नामित किया गया है।
गुंजयमान यंत्र पर पीजो-इलेक्ट्रिक तत्व बल और संवेदी प्रेरित गति उत्पन्न करते हैं। यह इलेक्ट्रोमेकैनिकल सिस्टम कम आउटपुट ध्वनि और बड़ी गतिशील सीमा प्रदान करता है। जिसकी मांग करने वाले अनुप्रयोगों की आवश्यकता होती है। किन्तु तीव्र ध्वनि और उच्च अधिभार से असंतुष्ट होता है।
पीजोइलेक्ट्रिक जाइरोस्कोप
पीजोइलेक्ट्रिक सामग्री को कंपन करने के लिए प्रेरित किया जा सकता है और कोरिओलिस बल के कारण पार्श्व गति को घूर्णन की दर से संबंधित संकेत उत्पन्न करने के लिए मापा जा सकता है।[2]
ट्यूनिंग कांटा जाइरोस्कोप
इस प्रकार के जाइरोस्कोप अनुनाद के लिए संचालित परीक्षण द्रव्यमान की जोड़ी का उपयोग करते हैं। दोलन के तल से उनके विस्थापन को प्रणाली के घूर्णन की दर से संबंधित संकेत उत्पन्न करने के लिए मापा जाता है।
एफ. डब्लू. मेरेडिथ ने सन्न 1942 में राजकीय विमान प्रतिष्ठान में कार्य करते हुए इस प्रकार के उपकरण के लिए पेटेंट अंकित कराया था। सन्न 1958 में जी.एच. द्वारा आरएई में और विकास किया गया था। हंट और ए.ई.डब्लू. हॉब्स, जिन्होंने 1°/h या (2.78.1×10−4)°/से.) से कम के बहाव का प्रदर्शन किया था।[3]
टैक्टिकल जाइरोस के आधुनिक रूपांतर में दोगुने ट्यूनिंग कांटा का उपयोग होता है। जैसे कि कैलिफोर्निया में अमेरिकी निर्माता सिस्ट्रॉन डोनर और फ्रांसीसी निर्माता सफ्रान इलेक्ट्रॉनिक्स एंड डिफेंस / सफ्रान ग्रुप द्वारा निर्मित किया गया था।[4]
वाइन-ग्लास गुंजयमान यंत्र
अर्धगोल गुंजयमान यंत्र जाइरोस्कोप या एचआरजी भी कहा जाता है। वाइन-ग्लास अनुनादक मोटी तने द्वारा लंगर डाले हुए पतले ठोस-राज्य गोलार्ध का उपयोग करता है। इसके तने के साथ गोलार्द्ध को वंक अनुनाद के लिए प्रेरित किया जाता है और घूर्णन का पता लगाने के लिए नोडल बिंदुओं को मापा जाता है। इस प्रकार की प्रणाली के दो मूल संस्करण होते हैं। ऑपरेशन के दर शासन ("बल-से-पुनर्संतुलन मोड") पर आधारित है और दूसरा संस्करण ऑपरेशन के एकीकृत शासन ("संपूर्ण-कोण मोड") पर आधारित है। सामान्यतः बाद वाले का उपयोग नियंत्रित पैरामीट्रिक उत्तेजना के संयोजन में किया जाता है। अतः हार्डवेयर के साथ दोनों व्यवस्थाओं का उपयोग करना संभव है। जो कि इन जाइरोस्कोप के लिए अद्वितीय विशेषता है।
उच्च शुद्धता वाले क्वार्ट्ज ग्लास से बने सिंगल-पीस डिज़ाइन (अर्थात, अर्धगोल कप और स्टेम अखंड भाग बनाते हैं।) के लिए, वैक्यूम (शून्यक) में 30-50 मिलियन से अधिक क्यू-कारक तक पहुंचना संभव है। चूँकि संगत यादृच्छिक चाल अत्यधिक कम होती हैं। अतः क्यू कोटिंग, सोने या प्लेटिनम की अत्यंत पतली फिल्म और स्थिरता के हानि से सीमित है।[5] इस प्रकार के गुंजयमान यंत्रों को कांच के आयन-बीम सूक्ष्म-क्षरण या लेजर पृथक्करण द्वारा ठीक किया जाना चाहिए। अतः अनेक देशों के इंजीनियर और शोधकर्ता इन परिष्कृत अत्याधुनिक विधियों के और सुधार पर कार्य कर रहे हैं।[6]
सफरान और नॉर्थ्रॉप ग्रुम्मन गोलार्ध गुंजयमान यंत्र जाइरोस्कोप (एचआरजी) के प्रमुख निर्माता हैं।[7][8]
कंपन पहिया जाइरोस्कोप
पहिये को अपनी धुरी के चारों ओर पूर्ण घुमाव के अंश को घुमाने के लिए चलाया जाता है। घुमाव की दर से संबंधित संकेत उत्पन्न करने के लिए पहिये के झुकाव को मापा जाता है।[9]
एमईएमएस जाइरोस्कोप
अल्पमूल्य कंपन संरचना माइक्रो इलेक्ट्रो मैकेनिकल सिस्टम्स (एमईएमएस) जाइरोस्कोप व्यापक रूप से उपलब्ध हो गए हैं। यह अन्य एकीकृत परिपथ के समान ही पैक किए जाते हैं और ये एनालॉग या डिजिटल आउटपुट प्रदान कर सकते हैं। प्रत्येक स्थितियों में, प्रत्येक भाग में अनेक अक्षों के लिए जाइरोस्कोपिक सेंसर (नियंत्रक) सम्मिलित होते हैं। कुछ भागों में छह पूर्ण डिग्री स्वतंत्रता वाले आउटपुट को प्राप्त करने के लिए अनेक जीरोस्कोप और एक्सेलेरोमीटर (या एकाधिक-अक्ष जीरोस्कोप और एक्सेलेरोमीटर) सम्मिलित होते हैं। इन इकाइयों को जड़त्वीय मापन इकाइयाँ या आईएमयू कहा जाता है। पैनासोनिक, रॉबर्ट बॉश जीएमबीएच, इनवेनसेंस, सिएको एप्सन, सेंसर (नियंत्रक), हैकिंग इलेक्ट्रॉनिक्स, एसटीमाइक्रोइलेक्ट्रॉनिक, मुक्त पैमाने अर्धचालक और अनुरूप युक्ति प्रमुख निर्माता हैं।
आंतरिक रूप से एमईएमएस जाइरोस्कोप ऊपर उल्लिखित तंत्रों में से या लिथोग्राफिक रूप से निर्मित संस्करणों का उपयोग करते हैं। (ट्यूनिंग कांटे, कंपन पहिया या विभिन्न डिजाइनों के गुंजयमान ठोस अर्थात ऊपर उल्लिखित टीएफजी, सीआरजी या एचआरजी के समान)।[10]
एमईएमएस जायरोस्कोप का उपयोग ऑटोमोटिव रोल-ओवर रोकथाम और एयरबैग सिस्टम, छवि स्थिरीकरण में किया जाता है, और अनेक अन्य संभावित अनुप्रयोग हैं।[11]
जाइरोस्कोप के अनुप्रयोग
ऑटोमोटिव
ऑटोमोटिव यॉ सेंसर (नियंत्रक) को कंपन संरचना जाइरोस्कोप के आसपास बनाया जा सकता है। स्टीयरिंग पहिया सेंसर (नियंत्रक) के संयोजन के साथ इलेक्ट्रॉनिक स्थिरता नियंत्रण प्रणाली के इनपुट के रूप में कनेक्ट होने पर अनुमानित प्रतिक्रिया की तुलना में यव में त्रुटि राज्यों का पता लगाने के लिए इनका उपयोग किया जाता है।[12] उन्नत प्रणालियाँ दूसरे वीएसजी के आधार पर रोलओवर डिटेक्शन की कल्पना कर सकती हैं। किन्तु उपस्तिथा पार्श्व में अनुदैर्ध्य और ऊर्ध्वाधर त्वरणमापी को इस अंत तक जोड़ना अल्पमूल्य है।
मनोरंजन
निंटेंडो गेम ब्वॉय एडवांस गेम वारियोवेयर: ट्विस्टेड! घूर्णी गति का पता लगाने के लिए पीजोइलेक्ट्रिक जाइरोस्कोप का उपयोग करता है। सोनी छह अक्ष पीएस3 नियंत्रक छठे अक्ष (यॉ) को मापने के लिए एकल एमईएमएस जाइरोस्कोप का उपयोग करता है। निनटेंडो वाईआई मोशनप्लस गौण, वाईआई रिमोट की गति संवेदन क्षमताओं को बढ़ाने के लिए इनवेनसेंस द्वारा प्रदान किए गए बहु-अक्ष एमईएमएस जाइरोस्कोप का उपयोग करता है।[13] अधिकांश आधुनिक स्मार्टफोन और गेमिंग उपकरणों में एमईएमएस जाइरोस्कोप भी होते हैं।
शौक
कंपन संरचना जाइरोस्कोप सामान्यतः रेडियो-नियंत्रित हेलीकाप्टरों में हेलीकॉप्टर के टेल रोटर को नियंत्रित करने में मदद करने के लिए और रेडियो-नियंत्रित हवाई जहाजों में उड़ान के समय रवैया स्थिर रखने में मदद के लिए उपयोग किया जाता है। उनका उपयोग मल्टीरोटर उड़ान नियंत्रकों में भी किया जाता है। जिससे कि मल्टीरोटर स्वाभाविक रूप से वायुगतिकीय रूप से अस्थिर होते हैं और इलेक्ट्रॉनिक स्थिरीकरण के बिना हवाई नहीं रह सकते है।
औद्योगिक रोबोटिक्स
एप्सन रोबोट अपने रोबोट पर कंपन का पता लगाने और नियंत्रित करने के लिए क्यूएमईएमएस नामक क्वार्ट्ज एमईएमएस जाइरोस्कोप का उपयोग करते हैं। यह रोबोट को उच्च गति और तेज-मंदी गति में उच्च परिशुद्धता के साथ रोबोट के अंत प्रभावक की स्थिति में मदद करता है।[14]
फोटोग्राफी
वीडियो और स्थिर कैमरों पर अनेक छवि स्थिरीकरण प्रणालियां कंपन संरचना जाइरोस्कोप का उपयोग करती हैं।
अंतरिक्ष यान अभिविन्यास
कैसिनी-ह्यूजेंस जैसे अंतरिक्ष यान की स्थिति की स्थिति के लिये दोलन के लिए कंपन संरचना जाइरोस्कोप में भी प्रेरित और नियंत्रित किया जा सकता है।[15] क्वार्ट्ज ग्लास से बने यह छोटे गोलार्द्ध गुंजयमान जाइरोस्कोप वैक्यूम में कार्य करते हैं। प्रत्यास्थ रूप से विघटित बेलनाकार गुंजयमान जाइरोस्कोप (सीआरजी) के प्रोटोटाइप भी हैं[16][17] उच्च शुद्धता वाले ल्यूको-नीलम में एचआरजी के लिए उपयोग किए जाने वाले क्वार्ट्ज ग्लास की तुलना में क्यू-फैक्टर का मूल्य अधिक होता है। किन्तु यह सामग्री कठोर होती है और इसमें असमदिग्वर्ती होने की दशा होती है। वे अंतरिक्ष यान की त्रुटिहीन 3 अक्ष स्थिति प्रदान करते हैं और वर्षों से अत्यधिक विश्वसनीय हैं। जिससे कि उनके समीप कोई गतिमान भाग नहीं है।
अन्य
सेगवे मानव ट्रांसपोर्टर ऑपरेटर प्लेटफॉर्म को स्थिर करने के लिए सिलिकॉन सेंसिंग सिस्टम द्वारा बनाई गई कंपन संरचना जीरोस्कोप का उपयोग करता है।[18]
संदर्भ
- ↑ IEEE Std 1431–2004 Coriolis Vibratory Gyroscopes.
- ↑ "NEC TOKIN का सिरेमिक पीजो जायरोस". Archived from the original on November 18, 2016. Retrieved May 28, 2009.
- ↑ Collinson, R.P.G. Introduction to Avionics, Second edition, Kluwer Academic Publishers: Netherlands, 2003, p.235
- ↑ "Sagem Défense Sécurité : MARCHÉS / PRODUITS - Systèmes Avioniques & Navigation - Navigation". archive.org. October 16, 2007. Archived from the original on October 16, 2007. Retrieved September 27, 2016.
- ↑ Sarapuloff S.A., Rhee H.-N., and Park S.-J. Avoidance of Internal Resonances in Hemispherical Resonator Assembly from Fused Quartz Connected by Indium Solder //Proceedings of the 23rd KSNVE (Korean Society for Noise & Vibration Engineering) Annual Spring Conference. Yeosu-city, April 24–26, 2013. – P.835-841.
- ↑ Sarapuloff S.A. 15 Years of Solid-State Gyrodynamics Development in the USSR and Ukraine: Results and Perspectives of Applied Theory //Proc. of the National Technical Meeting of Institute of Navigation (Santa Monica, Calif., USA. January 14–16, 1997). – P.151-164.
- ↑ "चाणक्य एयरोस्पेस डिफेंस एंड मैरीटाइम रिव्यू". www.chanakyaaerospacedefence.com.
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on September 21, 2013. Retrieved August 4, 2017.
- ↑ "Inertial Sensors – Angular Rate Sensors". Retrieved May 28, 2009.
- ↑ Bernstein, Jonathan. "An Overview of MEMS Inertial Sensing Technology", Sensors Weekly, February 1, 2003.
- ↑ Cenk Acar, Andrei Shkel. "MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness". 2008. p. 8 section "1.5 Applications of MEMS Gyroscopes".
- ↑ "द फॉलिंग बॉक्स (वीडियो)". Archived from the original on July 23, 2011. Retrieved July 1, 2010.
- ↑ "InvenSense IDG-600 Motion Sensing Solution Showcased In Nintendo's New Wii MotionPlus Accessory" (Press release). InvenSense. July 15, 2008. Archived from the original on April 17, 2009. Retrieved May 28, 2009.
- ↑ "Epson Quartz Crystal Device – About QMEMS". Retrieved March 12, 2013.
- ↑ Jet Propulsion Laboratory, "Cassini Spacecraft and Huygens Probe," pg. 2, [1]
- ↑ Sarapuloff S.A. High-Q Sapphire Resonator of Solid-State Gyroscope CRG-1 – In book: 100 Selected Technologies of Academy of Technological Sciences of Ukraine (ATS of Ukraine). Catalogue. – Published by STCU (Science & Technological Council for Ukraine). Kyiv. http://www.stcu.int/documents/reports/distribution/tpf/MATERIALS/Sapphire_Gyro_Sarapuloff_ATSU.pdf
- ↑ Sarapuloff S. A., Lytvynov L.A., et al. Particularities of Designs and Fabrication Technology of High-Q Sapphire Resonators of CRG-1 Type Solid-State Gyroscopes //XIVth International Conference on Integrated Navigation Systems (May 28–30, 2007. St.-Petersburg, RF.). – St.-Petersburg. The State Research Center of Russia – Central Scientific & Research Institute "ElektroPribor". RF. 2007. – P.47-48.
- ↑ Steven Nasiri. "एमईएमएस जाइरोस्कोप्स प्रौद्योगिकी और व्यावसायीकरण की स्थिति की एक महत्वपूर्ण समीक्षा" (PDF). Archived from the original (PDF) on December 6, 2010. Retrieved July 1, 2010.
बाहरी संबंध
- Proceedings of Anniversary Workshop on Solid-State Gyroscopy (May 19–21, 2008. Yalta, Ukraine). - Kyiv-Kharkiv. ATS of Ukraine. 2009. - ISBN 978-976-0-25248-5. See also the next meetings at: International Workshops on Solid-State Gyroscopy [2].
- Silicon Sensing – Case Study: Segway HT
- Apostolyuk V. Theory and Design of Micromechanical Vibratory Gyroscopes
- Prandi L., Antonello R., Oboe R., and Biganzoli F. Automatic Mode-Matching in एमईएमएस Vibrating Gyroscopes Using Extremum Seeking Control //IEEE Transactions on Industrial Electronics. 2009. Vol.56. - P.3880-3891.. [3]
- Prandi L., Antonello R., Oboe R., Caminada C., and Biganzoli F. Open-Loop Compensation of the Quadrature Error in एमईएमएस Vibrating Gyroscopes //Proceedings of 35th Annual Conference of the IEEE Industrial Electronics Society – IECON-2009. 2009. [4]