श्रृंखला और समानांतर स्प्रिंग्स: Difference between revisions
m (added Category:Machine Translated Page using HotCat) |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 111: | Line 111: | ||
{{reflist}} | {{reflist}} | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 18:43, 21 April 2023
- यांत्रिकी में, दो या दो से अधिक स्प्रिंग्स उपकरण को श्रृंखला कहा जाता है जब वे प्रारंभ से अंत तक या बिंदु से बिंदु तक जुड़े होते हैं,तो इसे समानांतर कहा जाता है, तथा वे दोनों विषयो में,आस-पास जुड़े होते हैं जिससे एक स्प्रिंग्स के रूप में कार्य किया जा सके।
श्रेणी | समानांतर | |
सामान्यतः दो या दो से अधिक स्प्रिंग्स श्रृंखला में होते हैं जब आवरण पर लागू कोई बाहरी बल (भौतिकी) परिमाण के परिवर्तन के अतिरिक्त प्रत्येक स्प्रिंग्स पर लागू होता है, और आवरण की मात्रा बल अलग -अलग स्प्रिंग्स के उपभेदों का योग होता है, यदि आवरण बल उनका सामान्य बल है और आवरण का बल उनके बलो का योग हैं,तो इसके विपरीत,उन्हे समानांतर कहा जाता है।
श्रृंखला या समानांतर में हुकियन रैखिक-प्रतिक्रिया स्प्रिंग्स का कोई भी संयोजन एकल हुकियन स्प्रिंग्स की तरह व्यवहार करता है। उनकी भौतिक विशेषताओं के संयोजन के सूत्र उन लोगों के समान हैं जो विद्युत परिपथ में श्रृंखला और समानांतर परिपथ में जुड़े संधारित्र पर लागू होते हैं।
सूत्र
समतुल्य स्प्रिंग्स
निम्न तालिका स्प्रिंग्स के लिए सूत्र देती है जो दो स्प्रिंग्स की प्रणाली के बराबर होती है,जिसका स्प्रिंग स्थिरांक और . है[1] अनुपालन c एक स्प्रिंग का व्युत्क्रम है और इसके स्प्रिंग्स का स्थिरांक हैं
मात्रा | शृंखला में | समानांतर में |
---|---|---|
समतुल्य स्प्रिंग्स स्थिरांक | ||
समतुल्य अनुपालन | ||
विक्षेपण (बढ़ाव) | ||
दबाव | ||
संग्रहित ऊर्जा |
विभाजन सूत्र
मात्रा | शृंखला में | समानांतर में |
---|---|---|
विक्षेपण (बढ़ाव) | ||
दबाव | ||
संग्रहित ऊर्जा |
स्प्रिंग्स सूत्र की व्युत्पत्ति (समतुल्य स्प्रिंग्स स्थिरांक)
समतुल्य स्प्रिंग स्थिरांक (श्रृंखला)
- जब एक ब्लॉक के अंत मे शृंखला मे दो स्प्रिंग कि उनके संतुलन कि स्थिति मे रखा जाता जाता है और पुनः इसे संतुलन से विस्थापित किया जाता है,तो प्रत्येक स्प्रिंग के कुल विस्थापन के लिए संबंधित विस्थापन और का अनुभव करता है हम इस तरह दिखने वाले ब्लॉक पर बल के लिए एक समीकरण का अन्वेषण करते हैं
- ,
इससे हमें श्रृंखला के विषय में संकुचित दूरी के बीच का संबंध मिलता है ऐसे विषयो में जहां दो स्प्रिंग्स श्रृंखला में हैं, और एक दूसरे पर स्प्रिंग्स का बल बराबर है तो उसे समान होना होगा,अन्यथा स्प्रिंग आकुंचन हो जाएंगी। इसके अतिरिक्त यह बल Fb. के समान होगा। इसका अर्थ है कि
- ,
और इसी तरह
ऊर्जा संग्रहीत श्रृंखला विषय के लिए, स्प्रिंग्स में संग्रहीत ऊर्जा का अनुपात होता है
लेकिन x1 और x2 के मध्य पहले से व्युत्पन्न संबंध है, इसलिए हम इसमें अवरोध कर सकते हैं:
समानांतर विषय के लिए,
क्योंकि स्प्रिंग्स की संकुचित दूरी समान है, और इसे यह सरल बनाता है
यह भी देखें
- पुलिंदा
- द्वैत (मैकेनिकल इंजीनियरिंग)
संदर्भ
- ↑ Keith Symon (1971), Mechanics. Addison-Wesley. ISBN 0-201-07392-7