कक्षीय गति: Difference between revisions
(Created page with "{{Short description|Speed at which a body orbits around the barycenter of a system}} {{Distinguish|Escape velocity}} {{refimprove|date=September 2007}} {{Astrodynamics}} ग...") |
(a) |
||
Line 4: | Line 4: | ||
{{Astrodynamics}} | {{Astrodynamics}} | ||
गुरुत्वाकर्षण से बंधी प्रणालियों में, किसी [https://alpha.indicwiki.in/%E0%A4%96%E0%A4%97%E0%A5%8B%E0%A4%B2%E0%A5%80%E0%A4%AF%20%E0%A4%AA%E0%A4%BF%E0%A4%82%E0%A4%A1 खगोलीय पिंड] या वस्तु की कक्षीय गति (उदा [[ग्रह]], चन्द्रमा, कृत्रिम [[उपग्रह]], [[अंतरिक्ष यान]], या [[तारा]]) वह गति है जिस पर यह या तो बैरीसेंटर के आसपास परिक्रमा करती है या, यदि एक निकाय संयोजित प्रणाली के अन्य निकायों की तुलना में कहीं अधिक विशाल है तो सबसे [[प्राथमिक निकाय]] के द्रव्यमान के केंद्र के सापेक्ष इसकी गति होती है। | |||
शब्द का उपयोग या तो मध्यमा कक्षीय गति (अर्थात् संपूर्ण कक्षा के ऊपर औसत गति) या उसकी कक्षा में किसी विशेष बिंदु पर उसकी तात्कालिक गति को संदर्भित करने के लिए किया जा सकता है। अधिकतम (तात्कालिक) कक्षीय गति पेरीसिस (पेरिगी, पेरिहेलियन, आदि) पर होती है, जबकि बंद कक्षाओं में वस्तुओं के लिए न्यूनतम गति एपोप्सिस (अपोजी, अपहेलियन, आदि) पर होती है। आदर्श [[दो-शरीर की समस्या|दो-निकाय प्रणालियों में]], खुली कक्षाओं [[ की परिक्रमा |की परिक्रमा]], [[केन्द्रक]] तक उनकी दूरी बढ़ने के साथ-साथ हमेशा के लिए धीमा होता रहता है। | |||
जब एक प्रणाली दो-निकाय प्रणाली की सन्निकट करती है, तो कक्षा के एक दिए गए बिंदु पर तात्कालिक कक्षीय गति को उसकी दूरी से केंद्रीय शरीर और वस्तु की विशिष्ट कक्षीय ऊर्जा को कभी-कभी "कुल ऊर्जा" कहा जा सकता है। [[विशिष्ट कक्षीय ऊर्जा]] स्थिर और स्थिति से स्वतंत्र है<ref name="lissauer2019" /> | |||
== रेडियल प्रक्षेपवक्र == | == रेडियल प्रक्षेपवक्र == | ||
निम्नलिखित में | निम्नलिखित में यह विचार किया जाता है कि प्रणाली दो-निकाय वाली प्रणाली है और परिक्रमा करने वाली वस्तु में बड़े (मध्य) वस्तु की तुलना में नगण्य द्रव्यमान होता है। वास्तविक-विश्व कक्षीय यांत्रिकी में, यह प्रणाली का बेरिसेंटर है, न कि बड़ी वस्तु, जो फोकस पर है। | ||
विशिष्ट कक्षीय ऊर्जा, या कुल ऊर्जा, ई के बराबर है<sub>k</sub>- ई<sub>p</sub>. (गतिज ऊर्जा − संभावित ऊर्जा)। परिणाम का चिन्ह | विशिष्ट कक्षीय ऊर्जा, या कुल ऊर्जा, ई के बराबर है<sub>k</sub>- ई<sub>p</sub>. (गतिज ऊर्जा − संभावित ऊर्जा)। परिणाम का चिन्ह धनात्मक, शून्य या ऋणात्मक हो सकता है और संकेत हमें कक्षा के प्रकार के बारे में कुछ बताता है:<ref name="lissauer2019">{{Cite book |title=Fundamental Planetary Sciences: physics, chemistry, and habitability |last1=Lissauer |first1=Jack J. |last2=de Pater |first2=Imke |year=2019 |publisher=Cambridge University Press |isbn=9781108411981 |location=New York, NY, USA |pages=29–31 }}</ref> | ||
* यदि विशिष्ट कक्षीय ऊर्जा | * यदि विशिष्ट कक्षीय ऊर्जा धनात्मक है तो कक्षा अनबाउंड या खुली है, और [[ अतिशयोक्ति |अतिशयोक्ति]] के [[फोकस (ज्यामिति)]] के बड़े शरीर के साथ एक हाइपरबोला का पालन करेगी। खुली कक्षाओं में वस्तुएँ वापस नहीं आतीं; एक बार पेरियाप्सिस के बाद फोकस से उनकी दूरी बिना किसी सीमा के बढ़ जाती है। [[रेडियल हाइपरबोलिक प्रक्षेपवक्र]] देखें | ||
* यदि कुल ऊर्जा शून्य है, ( | * यदि कुल ऊर्जा शून्य है, (''E''<sub>k</sub> = ''E''<sub>p</sub>): कक्षा एक परवलय है जिसका फोकस दूसरे शरीर पर होता है। [[रेडियल परवलयिक प्रक्षेपवक्र]] देखें. परवलयिक कक्षाएं भी खुली हैं। | ||
* यदि कुल ऊर्जा ऋणात्मक है, तो | * यदि कुल ऊर्जा ऋणात्मक है, तो''E''<sub>k</sub> − ''E''<sub>p</sub> < 0: कक्षा बाउंड है, या बंद है. गति एक दीर्घवृत्त पर होगी जिसका एक फोकस दूसरे शरीर पर होगा। [[रेडियल अण्डाकार प्रक्षेपवक्र]], [[ फ्री-फॉल का समय]] ग्रहों की परिक्रमा सूर्य के चारों ओर होती है | ||
== अनुप्रस्थ कक्षीय गति == | == अनुप्रस्थ कक्षीय गति == | ||
अनुप्रस्थ कक्षीय गति कोणीय | अनुप्रस्थ कक्षीय गति कोणीय संवेग के संरक्षण के नियम, या तुल्यता, [[जोहान्स केप्लर]] केप्लर के दूसरे नियम के कारण केंद्रीय निकाय की दूरी के व्युत्क्रमानुपाती होती है। यह बताता है कि एक निकाय के रूप में एक निश्चित मात्रा में समय के दौरान अपनी कक्षा के चारों ओर चलती है, बरियासेंटर से शरीर की रेखा कक्षीय [[apoapsis|एपॉप्सीस]] के एक स्थिर क्षेत्र को [[पेरीपसिस]] करती है, चाहे इसकी कक्षा के किस भाग के दौरान शरीर का निशान हो।<ref>{{cite book | ||
| last = Gamow | | last = Gamow | ||
| first = George | | first = George | ||
Line 34: | Line 32: | ||
| isbn = 0-486-42563-0 | | isbn = 0-486-42563-0 | ||
| quote = "...the motion of planets along their elliptical orbits proceeds in such a way that an imaginary line connecting the Sun with the planet sweeps over equal areas of the planetary orbit in equal intervals of time." }}</ref> | | quote = "...the motion of planets along their elliptical orbits proceeds in such a way that an imaginary line connecting the Sun with the planet sweeps over equal areas of the planetary orbit in equal intervals of time." }}</ref> | ||
इस | इस विधि का तात्पर्य यह है कि शरीर अपने अपबिंदु के निकट के स्थान पर अपने अपोपसिस के निकट धीमा चलता है, क्योंकि चाप के साथ छोटी दूरी पर उसी क्षेत्र को ढंकने के लिए उसे तेजी से आगे बढ़ने की आवश्यकता होती है।<ref name="lissauer2019" /> | ||
== औसत कक्षीय गति == | == औसत कक्षीय गति == | ||
Revision as of 23:42, 17 April 2023
This article needs additional citations for verification. (September 2007) (Learn how and when to remove this template message) |
Part of a series on |
Astrodynamics |
---|
गुरुत्वाकर्षण से बंधी प्रणालियों में, किसी खगोलीय पिंड या वस्तु की कक्षीय गति (उदा ग्रह, चन्द्रमा, कृत्रिम उपग्रह, अंतरिक्ष यान, या तारा) वह गति है जिस पर यह या तो बैरीसेंटर के आसपास परिक्रमा करती है या, यदि एक निकाय संयोजित प्रणाली के अन्य निकायों की तुलना में कहीं अधिक विशाल है तो सबसे प्राथमिक निकाय के द्रव्यमान के केंद्र के सापेक्ष इसकी गति होती है।
शब्द का उपयोग या तो मध्यमा कक्षीय गति (अर्थात् संपूर्ण कक्षा के ऊपर औसत गति) या उसकी कक्षा में किसी विशेष बिंदु पर उसकी तात्कालिक गति को संदर्भित करने के लिए किया जा सकता है। अधिकतम (तात्कालिक) कक्षीय गति पेरीसिस (पेरिगी, पेरिहेलियन, आदि) पर होती है, जबकि बंद कक्षाओं में वस्तुओं के लिए न्यूनतम गति एपोप्सिस (अपोजी, अपहेलियन, आदि) पर होती है। आदर्श दो-निकाय प्रणालियों में, खुली कक्षाओं की परिक्रमा, केन्द्रक तक उनकी दूरी बढ़ने के साथ-साथ हमेशा के लिए धीमा होता रहता है।
जब एक प्रणाली दो-निकाय प्रणाली की सन्निकट करती है, तो कक्षा के एक दिए गए बिंदु पर तात्कालिक कक्षीय गति को उसकी दूरी से केंद्रीय शरीर और वस्तु की विशिष्ट कक्षीय ऊर्जा को कभी-कभी "कुल ऊर्जा" कहा जा सकता है। विशिष्ट कक्षीय ऊर्जा स्थिर और स्थिति से स्वतंत्र है[1]
रेडियल प्रक्षेपवक्र
निम्नलिखित में यह विचार किया जाता है कि प्रणाली दो-निकाय वाली प्रणाली है और परिक्रमा करने वाली वस्तु में बड़े (मध्य) वस्तु की तुलना में नगण्य द्रव्यमान होता है। वास्तविक-विश्व कक्षीय यांत्रिकी में, यह प्रणाली का बेरिसेंटर है, न कि बड़ी वस्तु, जो फोकस पर है।
विशिष्ट कक्षीय ऊर्जा, या कुल ऊर्जा, ई के बराबर हैk- ईp. (गतिज ऊर्जा − संभावित ऊर्जा)। परिणाम का चिन्ह धनात्मक, शून्य या ऋणात्मक हो सकता है और संकेत हमें कक्षा के प्रकार के बारे में कुछ बताता है:[1]
- यदि विशिष्ट कक्षीय ऊर्जा धनात्मक है तो कक्षा अनबाउंड या खुली है, और अतिशयोक्ति के फोकस (ज्यामिति) के बड़े शरीर के साथ एक हाइपरबोला का पालन करेगी। खुली कक्षाओं में वस्तुएँ वापस नहीं आतीं; एक बार पेरियाप्सिस के बाद फोकस से उनकी दूरी बिना किसी सीमा के बढ़ जाती है। रेडियल हाइपरबोलिक प्रक्षेपवक्र देखें
- यदि कुल ऊर्जा शून्य है, (Ek = Ep): कक्षा एक परवलय है जिसका फोकस दूसरे शरीर पर होता है। रेडियल परवलयिक प्रक्षेपवक्र देखें. परवलयिक कक्षाएं भी खुली हैं।
- यदि कुल ऊर्जा ऋणात्मक है, तोEk − Ep < 0: कक्षा बाउंड है, या बंद है. गति एक दीर्घवृत्त पर होगी जिसका एक फोकस दूसरे शरीर पर होगा। रेडियल अण्डाकार प्रक्षेपवक्र, फ्री-फॉल का समय ग्रहों की परिक्रमा सूर्य के चारों ओर होती है
अनुप्रस्थ कक्षीय गति
अनुप्रस्थ कक्षीय गति कोणीय संवेग के संरक्षण के नियम, या तुल्यता, जोहान्स केप्लर केप्लर के दूसरे नियम के कारण केंद्रीय निकाय की दूरी के व्युत्क्रमानुपाती होती है। यह बताता है कि एक निकाय के रूप में एक निश्चित मात्रा में समय के दौरान अपनी कक्षा के चारों ओर चलती है, बरियासेंटर से शरीर की रेखा कक्षीय एपॉप्सीस के एक स्थिर क्षेत्र को पेरीपसिस करती है, चाहे इसकी कक्षा के किस भाग के दौरान शरीर का निशान हो।[2] इस विधि का तात्पर्य यह है कि शरीर अपने अपबिंदु के निकट के स्थान पर अपने अपोपसिस के निकट धीमा चलता है, क्योंकि चाप के साथ छोटी दूरी पर उसी क्षेत्र को ढंकने के लिए उसे तेजी से आगे बढ़ने की आवश्यकता होती है।[1]
औसत कक्षीय गति
कम विकेन्द्रता (कक्षा) वाली कक्षाओं के लिए, कक्षा की लंबाई एक गोलाकार के करीब है, और औसत कक्षीय गति को या तो कक्षीय अवधि और इसकी कक्षा के अर्ध-प्रमुख अक्ष के अवलोकन से, या दो पिंडों के द्रव्यमान और अर्ध-प्रमुख अक्ष के ज्ञान से अनुमानित किया जा सकता है।[3]
कहाँ v कक्षीय वेग है, a सेमीमेजर अक्ष की लंबाई है, T कक्षीय अवधि है, और μ = GM मानक गुरुत्वाकर्षण पैरामीटर है। यह एक सन्निकटन है जो केवल तभी सत्य होता है जब परिक्रमा करने वाला पिंड केंद्रीय की तुलना में काफी कम द्रव्यमान का होता है, और विलक्षणता शून्य के करीब होती है।
जब निकायों में से एक काफी कम द्रव्यमान का नहीं है तो देखें: गुरुत्वाकर्षण दो-शरीर की समस्या
इसलिए, जब द्रव्यमान में से एक अन्य द्रव्यमान की तुलना में लगभग नगण्य होता है, जैसा कि पृथ्वी और सूर्य के मामले में होता है, तो कक्षा के वेग का अनुमान लगाया जा सकता है जैसा:[1]
या मान रहा है r कक्षा की त्रिज्या के बराबर[citation needed]
कहाँ M वह (बड़ा) द्रव्यमान है जिसके चारों ओर यह नगण्य द्रव्यमान या पिंड परिक्रमा कर रहा है, और ve पलायन वेग है।
एक बहुत बड़े पिंड की परिक्रमा करने वाली उत्केंद्रित कक्षा में किसी वस्तु के लिए, कक्षीय उत्केन्द्रता के साथ कक्षा की लंबाई घट जाती है e, और एक दीर्घवृत्त#परिधि है। इसका उपयोग औसत कक्षीय गति का अधिक सटीक अनुमान प्राप्त करने के लिए किया जा सकता है:[4]
माध्य कक्षीय गति उत्केन्द्रता के साथ घटती है।
तात्कालिक कक्षीय गति
प्रक्षेपवक्र में किसी दिए गए बिंदु पर शरीर की तात्कालिक कक्षीय गति के लिए, औसत दूरी और तात्कालिक दूरी दोनों को ध्यान में रखा जाता है:
कहाँ μ कक्षीय पिंड का मानक गुरुत्वीय पैरामीटर है, r वह दूरी है जिस पर गति की गणना की जानी है, और a अण्डाकार कक्षा के अर्ध-प्रमुख अक्ष की लंबाई है। इस अभिव्यक्ति को विवा-वाइवा समीकरण कहा जाता है।[1]
उपसौर पर पृथ्वी के लिए, मान है:
जो पृथ्वी की औसत कक्षीय गति से थोड़ा तेज है 29,800 m/s (67,000 mph), जैसा कि केप्लर के ग्रहों की गति के नियमों से अपेक्षित है#दूसरा नियम|केप्लर का दूसरा नियम।
Tangential velocities at altitude
Orbit | Center-to-center distance |
Altitude above the Earth's surface |
Speed | Orbital period | Specific orbital energy |
---|---|---|---|---|---|
Earth's own rotation at surface (for comparison— not an orbit) | 6,378 km | 0 km | 465.1 m/s (1,674 km/h or 1,040 mph) | 23 h 56 min 4.09 sec | −62.6 MJ/kg |
Orbiting at Earth's surface (equator) theoretical | 6,378 km | 0 km | 7.9 km/s (28,440 km/h or 17,672 mph) | 1 h 24 min 18 sec | −31.2 MJ/kg |
Low Earth orbit | 6,600–8,400 km | 200–2,000 km |
|
1 h 29 min – 2 h 8 min | −29.8 MJ/kg |
Molniya orbit | 6,900–46,300 km | 500–39,900 km | 1.5–10.0 km/s (5,400–36,000 km/h or 3,335–22,370 mph) respectively | 11 h 58 min | −4.7 MJ/kg |
Geostationary | 42,000 km | 35,786 km | 3.1 km/s (11,600 km/h or 6,935 mph) | 23 h 56 min 4.09 sec | −4.6 MJ/kg |
Orbit of the Moon | 363,000–406,000 km | 357,000–399,000 km | 0.97–1.08 km/s (3,492–3,888 km/h or 2,170–2,416 mph) respectively | 27.27 days | −0.5 MJ/kg |
ग्रह
कोई वस्तु सूर्य के जितनी करीब होती है, कक्षा को बनाए रखने के लिए उसे उतनी ही तेजी से आगे बढ़ने की जरूरत होती है। वस्तुएं पेरिहेलियन (सूर्य के निकटतम पहुंच) पर सबसे तेज चलती हैं और अपहेलियन (सूर्य से सबसे दूर की दूरी) पर सबसे धीमी गति से चलती हैं। चूंकि सौर मंडल में ग्रह लगभग वृत्ताकार कक्षाओं में हैं, इसलिए उनके अलग-अलग कक्षीय वेग बहुत भिन्न नहीं होते हैं। सूर्य के सबसे निकट होने और सबसे अधिक विलक्षण कक्षा होने के कारण, बुध की कक्षीय गति उपसौर पर लगभग 59 किमी/सेकेंड से अपसौर पर 39 किमी/सेकंड तक भिन्न होती है।[5]
Planet | Orbital velocity |
---|---|
Mercury | 47.9 km/s (29.8 mi/s) |
Venus | 35.0 km/s (21.7 mi/s) |
Earth | 29.8 km/s (18.5 mi/s) |
Mars | 24.1 km/s (15.0 mi/s) |
Jupiter | 13.1 km/s (8.1 mi/s) |
Saturn | 9.7 km/s (6.0 mi/s) |
Uranus | 6.8 km/s (4.2 mi/s) |
Neptune | 5.4 km/s (3.4 mi/s) |
कक्षीय उत्केन्द्रता पर हैली का धूमकेतु, जो नेपच्यून से आगे तक पहुँचता है, 54.6 किमी/सेकंड की गति से चलेगा जब 0.586 AU (87,700 thousand km) सूर्य से, 41.5 किमी/सेकंड जब सूर्य से 1 एयू (पृथ्वी की कक्षा से गुजरना), और लगभग 1 किमी/सेकंड अपहेलियन पर 35 AU (5.2 billion km) सूर्य से।[7] 42.1 किमी/सेकेंड से अधिक तेजी से पृथ्वी की कक्षा से गुजरने वाली वस्तुओं ने एस्केप वेलोसिटी हासिल कर ली है #एस्केप वेलोसिटी की सूची और अगर किसी ग्रह के साथ गड़बड़ी (एस्ट्रोनॉमी) द्वारा धीमा नहीं किया जाता है तो सौर मंडल से बाहर हो जाएगा।
Object | Velocity at perihelion | Velocity at 1 AU (passing Earth's orbit) |
---|---|---|
322P/SOHO | 181 km/s @ 0.0537 AU | 37.7 km/s |
96P/Machholz | 118 km/s @ 0.124 AU | 38.5 km/s |
3200 Phaethon | 109 km/s @ 0.140 AU | 32.7 km/s |
1566 Icarus | 93.1 km/s @ 0.187 AU | 30.9 km/s |
66391 Moshup | 86.5 km/s @ 0.200 AU | 19.8 km/s |
1P/Halley | 54.6 km/s @ 0.586 AU | 41.5 km/s |
यह भी देखें
- एस्केप वेलोसिटी
- डेल्टा-वी बजट
- होहमान स्थानांतरण कक्षा
- द्वि-अण्डाकार स्थानांतरण
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 Lissauer, Jack J.; de Pater, Imke (2019). Fundamental Planetary Sciences: physics, chemistry, and habitability. New York, NY, USA: Cambridge University Press. pp. 29–31. ISBN 9781108411981.
- ↑ Gamow, George (1962). Gravity. New York, NY, USA: Anchor Books, Doubleday & Co. pp. 66. ISBN 0-486-42563-0.
...the motion of planets along their elliptical orbits proceeds in such a way that an imaginary line connecting the Sun with the planet sweeps over equal areas of the planetary orbit in equal intervals of time.
- ↑ Wertz, James R.; Larson, Wiley J., eds. (2010). अंतरिक्ष मिशन विश्लेषण और डिजाइन (3rd ed.). Hawthorne, CA, USA: Microcosm. p. 135. ISBN 978-1881883-10-4.
- ↑ Stöcker, Horst; Harris, John W. (1998). गणित और कम्प्यूटेशनल विज्ञान की पुस्तिका. Springer. pp. 386. ISBN 0-387-94746-9.
- ↑ "Horizons Batch for Mercury aphelion (2021-Jun-10) to perihelion (2021-Jul-24)". JPL Horizons (VmagSn is velocity with respect to Sun.). Jet Propulsion Laboratory. Retrieved 26 August 2021.
- ↑ "Which Planet Orbits our Sun the Fastest?".
- ↑ v = 42.1219 √1/r − 0.5/a, where r is the distance from the Sun, and a is the major semi-axis.