बिंघम प्लास्टिक: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 97: | Line 97: | ||
{{reflist}} | {{reflist}} | ||
{{DEFAULTSORT:Bingham Plastic}} | {{DEFAULTSORT:Bingham Plastic}} | ||
[[Category:Created On 23/03/2023|Bingham Plastic]] | |||
[[Category:Lua-based templates|Bingham Plastic]] | |||
[[Category: Machine Translated Page]] | [[Category:Machine Translated Page|Bingham Plastic]] | ||
[[Category: | [[Category:Pages with script errors|Bingham Plastic]] | ||
[[Category:Templates Vigyan Ready|Bingham Plastic]] | |||
[[Category:Templates that add a tracking category|Bingham Plastic]] | |||
[[Category:Templates that generate short descriptions|Bingham Plastic]] | |||
[[Category:Templates using TemplateData|Bingham Plastic]] | |||
[[Category:अपतटीय इंजीनियरिंग|Bingham Plastic]] | |||
[[Category:गैर-न्यूटोनियन तरल पदार्थ|Bingham Plastic]] | |||
[[Category:श्यानता|Bingham Plastic]] | |||
[[Category:सामग्री|Bingham Plastic]] |
Latest revision as of 09:49, 24 April 2023
सामग्री विज्ञान में, एक बिंघम प्लास्टिक एक श्यानप्रत्यास्थ पदार्थ है जो कम तनाव पर एक कठोर तत्व के रूप में व्यवहार करती है लेकिन उच्च तनाव पर एक चिपचिपा तरल पदार्थ के रूप में बहती है। इसका नाम यूजीन सी. बिंघम के नाम पर रखा गया है जिन्होंने इसका गणितीय रूप प्रस्तावित किया था।[1]
यह ड्रिलिंग इंजीनियरिंग में पंक प्रवाह के एक सामान्य गणितीय प्रतिरूप के रूप में और घोल के संचालन में प्रयोग किया जाता है। एक सामान्य उदाहरण टूथपेस्ट है,[2] जो नली पर एक निश्चित दबाव लागू होने तक बाहर नहीं निकलेगा। इसके बाद इसे अपेक्षाकृत सुसंगत डाट के रूप में बाहर धकेल दिया जाता है।
स्पष्टीकरण
चित्र 1 लाल रंग में एक साधारण चिपचिपे (या न्यूटोनियन) द्रव के व्यवहार का एक आरेख दिखाता है, उदाहरण के लिए एक पाइप में। यदि एक पाइप के एक सिरा पर दबाव बढ़ जाता है तो यह तरल पदार्थ पर दबाव उत्पन्न करता है जो इसे विस्थापित करता है (जिसे कतरनी तनाव कहा जाता है) और अनुमापी प्रवाह दर आनुपातिक रूप से बढ़ जाती है। हालाँकि, बिंघम प्लास्टिक तरल पदार्थ (नीले रंग में) के लिए, तनाव लागू किया जा सकता है लेकिन यह तब तक प्रवाहित नहीं होगा जब तक कि एक निश्चित मान, उपज तनाव, पहुँच नहीं जाता। इस बिंदु से परे बढ़ते कतरनी तनाव के साथ प्रवाह दर लगातार बढ़ जाती है। रंगलेप के एक प्रायोगिक अध्ययन में बिंघम ने लगभग इसी तरह से अपना अवलोकन प्रस्तुत किया।[3] ये गुण बिंघम प्लास्टिक को न्यूटोनियन तरल पदार्थ जैसी साधारण सतह के बजाय चोटियों और उभाड़ के साथ बनावट वाली सतह की अनुमति देते हैं।
चित्रा 2 उस तरीके को दिखाता है जिसमें इसे वर्तमान में आमतौर पर प्रस्तुत किया जाता है।[2]आरेख ऊर्ध्वाधर अक्ष पर कतरनी तनाव क्षैतिज एक पर कतरनी दर दिखाता है। (अनुमापी प्रवाह दर पाइप के आकार पर निर्भर करती है, अपरूपण दर इस बात का माप है कि दूरी के साथ वेग कैसे बदलता है। यह प्रवाह दर के समानुपाती होता है, लेकिन पाइप के आकार पर निर्भर नहीं करता है।) पहले की तरह, न्यूटोनियन द्रव प्रवाहित होता है और कतरनी तनाव के किसी भी नियत मूल्य के लिए कतरनी दर देता है। हालांकि, बिंघम प्लास्टिक फिर से कोई अपरूपण दर (कोई प्रवाह नहीं और इस प्रकार कोई वेग नहीं) प्रदर्शित नहीं करता है जब तक कि एक निश्चित तनाव प्राप्त नहीं हो जाता। न्यूटोनियन द्रव के लिए इस रेखा का ढलान चिपचिपापन है, जो इसके प्रवाह का वर्णन करने के लिए आवश्यक एकमात्र मापदण्ड है। इसके विपरीत, बिंघम प्लास्टिक को दो मापदंडों की आवश्यकता होती है, उपज तनाव और रेखा का ढलान, जिसे प्लास्टिक की चिपचिपाहट के रूप में जाना जाता है।
इस व्यवहार का भौतिक कारण यह है कि तरल में कण (जैसे मिट्टी) या बड़े अणु (जैसे बहुलक) होते हैं, जिनमें किसी प्रकार की परस्पर क्रिया होती है, जिससे एक कमजोर ठोस संरचना बनती है, जिसे पहले एक कृत्रिम तत्व के रूप में जाना जाता था, और इस संरचना को तोड़ने के लिए एक निश्चित मात्रा में तनाव की आवश्यकता होती है। एक बार जब संरचना टूट जाती है, तो कण श्यान बल के तहत तरल के साथ चलते हैं। यदि तनाव हटा दिया जाता है, तो कण पुन: जुड़ जाते हैं।
परिभाषा
सामग्री कतरनी तनाव के लिए एक लोचदार ठोस है , एक महत्वपूर्ण मूल्य से कम |एक बार सूक्ष्म कतरनी तनाव (या "उपज तनाव ") पार हो जाने पर, सामग्री इस तरह से प्रवाहित होती हैकि कतरनी दर, ∂u/∂y (जैसा कि श्यानता पर लेख में परिभाषित किया गया है), उस मात्रा के सीधे आनुपातिक है जिसके द्वारा लागू किया गया कतरनी तनाव उपज तनाव से अधिक है:
घर्षण कारक सूत्र
द्रव प्रवाह में, स्थापित पाइपलाइन तंत्र में दाब ह्रास की गणना करना एक सामान्य समस्या है।[4] एक बार घर्षण कारक, f ज्ञात हो जाने पर, विभिन्न पाइप-प्रवाह समस्याओं को संभालना आसान हो जाता है, अर्थात पंपिंग लागत का मूल्यांकन करने के लिए दाब ह्रास की गणना करना या किसी दिए गए दाब ह्रास के लिए पाइपलाइन तंत्र में प्रवाह-दर का पता लगाना। गैर-न्यूटोनियन तरल पदार्थों के प्रवाह से जुड़े घर्षण कारक की गणना करना आमतौर पर एक सटीक विश्लेषणात्मक समाधान पर पहुंचना अत्यंत कठिन होता है और इसलिए इसकी गणना के लिए स्पष्ट अनुमानों का उपयोग किया जाता है। एक बार घर्षण कारक की गणना हो जाने के बाद डार्सी-वीसबैक समीकरण द्वारा दिए गए प्रवाह के लिए दाब ह्रास को सरलता से निर्धारित किया जा सकता है:
जहाँ:
- डार्सी घर्षण कारक है (एसआई इकाइयां: आयामहीन)
- घर्षणात्मक दाबोच्चता ह्रास है (एसआई इकाई: एम)
- गुरुत्वीय त्वरण है (एसआई इकाई: m/s²)
- पाइप का व्यास है (एसआई इकाइयाँ: एम)
- पाइप की लंबाई है (एसआई इकाइयाँ: एम)
- औसत द्रव वेग है (एसआई इकाइयाँ: m/s)
पटलीय प्रवाह
पूरी तरह से विकसित पटलीय पाइप प्रवाह में बिंघम प्लास्टिक के लिए घर्षण हानि का सटीक विवरण पहले बकिंघम द्वारा प्रकाशित किया गया था।[5] उनकी अभिव्यक्ति, बकिंघम-राइनर समीकरण को आयामहीन रूप में इस प्रकार लिखा जा सकता है:
जहाँ:
- पटलीय प्रवाह डार्सी घर्षण कारक है (एसआई इकाइयाँ: आयामहीन )
- रेनॉल्ड्स संख्या है (एसआई इकाइयां: आयामहीन)
- हेडस्ट्रॉम संख्या है (एसआई इकाइयां: आयामहीन)
रेनल्ड्स संख्या और हेडस्ट्रॉम संख्या को क्रमशः परिभाषित किया गया है:
- और
जहाँ:
- द्रव का घनत्व है (एसआई मात्रक: kg/m3)
- द्रव की गतिक श्यानता है (एसआई मात्रक: kg/ms)
- द्रव का पराभव बिन्दु (पराभव सामर्थ्य) है (एसआई मात्रक: Pa)
विक्षुब्ध प्रवाह
डार्बी और मेलसन ने एक अनुभवजन्य अभिव्यक्ति विकसित की[6] जिसे तब परिष्कृत किया गया था, और इसके द्वारा दिया गया है:[7]
जहाँ:
- विक्षुब्ध प्रवाह घर्षण कारक है (एसआई इकाइयां: आयामहीन)
नोट: डार्बी और मेलसन की अभिव्यक्ति फैनिंग घर्षण कारक के लिए है, और इस पृष्ठ पर कहीं और स्थित घर्षण हानि समीकरणों में उपयोग करने के लिए इसे 4 से गुणा करने की आवश्यकता है।
बकिंघम-रेनर समीकरण का अनुमान
हालांकि बकिंघम-रेनर समीकरण का एक सटीक विश्लेषणात्मक समाधान प्राप्त किया जा सकता है क्योंकि यह f में चौथा क्रम बहुपद समीकरण है,यह समाधान की जटिलता के कारण शायद ही कभी नियोजित होता है। इसलिए, शोधकर्ताओं ने बकिंघम-रेनर समीकरण के लिए स्पष्ट सन्निकटन सूत्र विकसित करने का प्रयास किया है।
स्वामी–अग्रवाल समीकरण
स्वामी-अग्रवाल समीकरण का उपयोग बिंघम प्लास्टिक तरल पदार्थ के पटलीय प्रवाह के लिए डार्सी-वीसबैक घर्षण कारक f के लिए सीधे हल करने के लिए किया जाता है।[8] यह अन्तर्निहित बकिंघम-रेनर समीकरण का एक अनुमान है, लेकिन प्रयोगात्मक विवरण से परिशुद्धता विवरण की सटीकता के भीतर है। स्वामी-अग्रवाल समीकरण द्वारा दिया गया है:
डेनिश-कुमार समाधान
डेनिश एट अल. एडोमियन अपघटन विधि का उपयोग करके घर्षण कारक f की गणना करने के लिए एक स्पष्ट प्रक्रिया प्रदान की है।[9] इस विधि के माध्यम से दो पद वाले घर्षण कारक को इस प्रकार दिया गया है:
जहाँ
और
सभी प्रवाह तंत्र और घर्षण कारक के लिए संयुक्त समीकरण
डार्बी-मेलसन समीकरण
1981 में, डार्बी और मेलसन, चर्चिल और उसागी के दृष्टिकोण का उपयोग करते हुए,[10] [11] सभी प्रवाह प्रणाली के लिए मान्य एकल घर्षण कारक समीकरण प्राप्त करने के लिए एक अभिव्यक्ति विकसित की:[6]
जहाँ:
स्वामी-अग्रवाल समीकरण और डार्बी-मेलसन समीकरण दोनों को किसी भी प्रणाली में बिंघम प्लास्टिक तरल पदार्थ के घर्षण कारक को निर्धारित करने के लिए एक स्पष्ट समीकरण देने के लिए जोड़ा जा सकता है। सापेक्ष खुरदरापन किसी भी समीकरण में एक मापदण्ड नहीं है क्योंकि बिंघम प्लास्टिक तरल पदार्थ का घर्षण कारक पाइप खुरदरापन के प्रति तेज़ नहीं है।
यह भी देखें
संदर्भ
- ↑ Bingham, E.C. (1916). "प्लास्टिक प्रवाह के नियमों की जांच". Bulletin of the Bureau of Standards. 13 (2): 309–353. doi:10.6028/bulletin.304. hdl:2027/mdp.39015086559054.
- ↑ 2.0 2.1 Steffe, J.F. (1996). खाद्य प्रक्रिया इंजीनियरिंग में रियोलॉजिकल तरीके (2nd ed.). ISBN 0-9632036-1-4.
- ↑ Bingham, E.C. (1922). तरलता और प्लास्टिसिटी. New York: McGraw-Hill. p. 219.
- ↑ Darby, Ron (1996). "Chapter 6". केमिकल इंजीनियरिंग द्रव यांत्रिकी।. Marcel Dekker. ISBN 0-8247-0444-4.
- ↑ Buckingham, E. (1921). "केशिका ट्यूबों के माध्यम से प्लास्टिक प्रवाह पर". ASTM Proceedings. 21: 1154–1156.
- ↑ 6.0 6.1 Darby, R. and Melson J.(1981). "How to predict the friction factor for flow of Bingham plastics". Chemical Engineering 28: 59–61.
- ↑ Darby, R.; et al. (September 1992). "गारा पाइपों में भविष्यवाणी घर्षण हानि". Chemical Engineering.
- ↑ Swamee, P.K. and Aggarwal, N.(2011). "Explicit equations for laminar flow of Bingham plastic fluids". Journal of Petroleum Science and Engineering. doi:10.1016/j.petrol.2011.01.015.
- ↑ Danish, M. et al. (1981). "Approximate explicit analytical expressions of friction factor for flow of Bingham fluids in smooth pipes using Adomian decomposition method". Communications in Nonlinear Science and Numerical Simulation 16: 239–251.
- ↑ Churchill, S.W. (November 7, 1977). "घर्षण कारक समीकरण सभी द्रव-प्रवाह शासनों को फैलाता है". Chemical Engineering: 91–92.
- ↑ Churchill, S.W.; Usagi, R.A. (1972). "स्थानांतरण और अन्य घटनाओं की दरों के सहसंबंध के लिए एक सामान्य अभिव्यक्ति". AIChE Journal. 18 (6): 1121–1128. doi:10.1002/aic.690180606.