द्रव समाधान: Difference between revisions
m (Abhishek moved page द्रव घोल to द्रव समाधान without leaving a redirect) |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Class of exact solutions to Einstein's field equations}} | {{short description|Class of exact solutions to Einstein's field equations}} | ||
{{ | {{द्रव समाधान}} | ||
द्रव समाधान [[आइंस्टीन क्षेत्र समीकरण|आइंस्टीन समीकरण]] के सामान्य सापेक्षता में एक विरूपित समाधान है जिसमें गुरुत्वाकर्षण क्षेत्र पूरी तरह से द्रव के द्रव्यमान संवेग और तनाव घनत्व द्वारा निर्मित होता है। | |||
[[खगोल भौतिकी]] में द्रव समाधान अधिकतर तारकीय प्रारूप के रूप में कार्यरत होते हैं आदर्श गैस को एक आदर्श द्रव के रूप में जाना जाता है [[भौतिक ब्रह्मांड विज्ञान]] में द्रव समाधान अधिकतर [[ब्रह्माण्ड संबंधी मॉडल|ब्रह्माण्ड प्रारूप]] के रूप में उपयोग किए जाते हैं। | [[खगोल भौतिकी]] में द्रव समाधान अधिकतर तारकीय प्रारूप के रूप में कार्यरत होते हैं आदर्श गैस को एक आदर्श द्रव के रूप में जाना जाता है तथा [[भौतिक ब्रह्मांड विज्ञान]] में द्रव समाधान अधिकतर [[ब्रह्माण्ड संबंधी मॉडल|ब्रह्माण्ड प्रारूप]] के रूप में उपयोग किए जाते हैं। | ||
== गणितीय परिभाषा == | == गणितीय परिभाषा == | ||
एक आपेक्षिक द्रव के प्रतिबल-ऊर्जा को प्रदिश के रूप में लिखा जा सकता है<ref>{{cite journal|last1=Eckart|first1=Carl|title=अपरिवर्तनीय प्रक्रियाओं III की ऊष्मप्रवैगिकी। सरल द्रव का सापेक्षवादी सिद्धांत|journal=Phys. Rev.|date=1940|volume=58|issue=10 |page=919|doi=10.1103/PhysRev.58.919|bibcode=1940PhRv...58..919E}}</ref> | एक आपेक्षिक द्रव के प्रतिबल-ऊर्जा को प्रदिश के रूप में लिखा जा सकता है जो इस प्रकार है-<ref>{{cite journal|last1=Eckart|first1=Carl|title=अपरिवर्तनीय प्रक्रियाओं III की ऊष्मप्रवैगिकी। सरल द्रव का सापेक्षवादी सिद्धांत|journal=Phys. Rev.|date=1940|volume=58|issue=10 |page=919|doi=10.1103/PhysRev.58.919|bibcode=1940PhRv...58..919E}}</ref> | ||
:<math>T^{ab} = \mu \, u^a \, u^b + p \, h^{ab} + \left( u^a \, q^b + q^a \, u^b \right) + \pi^{ab}</math> | :<math>T^{ab} = \mu \, u^a \, u^b + p \, h^{ab} + \left( u^a \, q^b + q^a \, u^b \right) + \pi^{ab}</math> | ||
यहाँ | यहाँ | ||
*द्रव तत्त्वों की | *द्रव तत्त्वों की रेखाएँ प्रक्षेपण के अभिन्न वक्र में हैं | ||
* प्रक्षेपण | * प्रक्षेपण प्रदिश को अधिसमतल तत्वों पर आयतीय परियोजना द्वारा निरूपित किया जाता है | ||
* पदार्थ का घनत्व अदिश राशि द्वारा दिया जाता है | * पदार्थ का घनत्व अदिश राशि द्वारा दिया जाता है | ||
* अदिश द्वारा दबाव भी दिया जाता है | * अदिश द्वारा दबाव भी दिया जाता है | ||
* यह गर्म अगणनीय निश्चित मात्रा वाली रॉशि के नाम से जाना जाता है | * यह गर्म अगणनीय निश्चित मात्रा वाली रॉशि के नाम से जाना जाता है | ||
* विस्कस अपरूपण प्रदिश द्वारा दिया जाता है | * विस्कस अपरूपण प्रदिश द्वारा दिया जाता है | ||
निश्चित मात्रा वाली राशि और प्रदिश रॉशि | निश्चित मात्रा वाली राशि और प्रदिश रॉशि रेखाओं के अनुप्रस्थ है इस अर्थ में कि | ||
:<math>q_a \, u^a = 0, \; \; \pi_{ab} \, u^b = 0 </math> | :<math>q_a \, u^a = 0, \; \; \pi_{ab} \, u^b = 0 </math> | ||
इसका मतलब यह है कि वे प्रभावी रूप से त्रि-आयामी मात्राएं हैं और चिपचिपा तनाव प्रदिश [[सममित मैट्रिक्स|सममित]] हैं उनके पास क्रमशः तीन और पांच [[रैखिक स्वतंत्रता|रैखिक स्वतंत्रत]] घटक हैं घनत्व और दबाव के साथ यह कुल 10 रैखिक रूप से स्वतंत्र घटक बनाता है जो चार-आयामी सममित | इसका मतलब यह है कि वे प्रभावी रूप से त्रि-आयामी मात्राएं हैं और इसका चिपचिपा तनाव प्रदिश [[सममित मैट्रिक्स|सममित]] हैं उनके पास क्रमशः तीन और पांच [[रैखिक स्वतंत्रता|रैखिक स्वतंत्रत]] घटक हैं घनत्व और दबाव के साथ यह कुल 10 रैखिक रूप से स्वतंत्र घटक बनाता है जो चार-आयामी सममित या मात्र दो प्रदिश में रैखिक रूप से स्वतंत्र घटकों की संख्या है। | ||
== विशेष स्थान == | == विशेष स्थान == | ||
Line 30: | Line 30: | ||
* एक [[विकिरण द्रव]] एक संपूर्ण तरल पदार्थ है <math>\mu = 3p</math> | * एक [[विकिरण द्रव]] एक संपूर्ण तरल पदार्थ है <math>\mu = 3p</math> | ||
::<math>T^{ab} = p \, \left( 4 \, u^a \, u^b + \, g^{ab} \right).</math> | ::<math>T^{ab} = p \, \left( 4 \, u^a \, u^b + \, g^{ab} \right).</math> | ||
अंतिम दो पदार्थ | अंतिम दो पदार्थ प्रबल वाले और विकिरण प्रबल वाले युगों के लिए ब्रह्माण्ड संबंधी प्रारूप के रूप में उपयोग किए जाते हैं जबकि सामान्य तौर पर तरल पदार्थ को निर्दिष्ट करने के लिए दस कार्यों की आवश्यकता होती है एक पूर्ण तरल पदार्थ को और दूसरा धूल विकिरण तरल पदार्थ प्रत्येक को केवल एक समारोह की आवश्यकता होती है जबकि सामान्य द्रव समाधान खोजने की तुलना में इस तरह के समाधानों को खोजना बहुत आसान समझता है। | ||
धूल या विकिरण तरल पदार्थों | धूल या विकिरण तरल पदार्थों को छोड़कर अन्य सभी तरल पदार्थों में अब तक का सबसे महत्वपूर्ण स्थान [[स्थिर गोलाकार सममित पूर्ण द्रव]] समाधान है इन्हें हमेशा एक गोलाकार सतह पर [[श्वार्जस्चिल्ड मीट्रिक|श्वार्जस्चिल्ड]] से मिलान किया जा सकता है इसलिए उन्हें तारकीय प्रारूप में आंतरिक समाधान के रूप में उपयोग किया जा सकता है ऐसे प्रारूपों में तरल पदार्थ का आंतरिक भाग निर्वात से मेल खाता है वह तारे की सतह है और यह दबाव सीमा में गायब हो जाना चाहिए क्योंकि त्रिज्या निकट आती है जबकि घनत्व नीचे की सीमा में गैर शून्य हो सकता है तथा निश्चित रूप से यह ऊपर से सीमा में शून्य है हाल के वर्षों में इन सभी समाधानों को प्राप्त करने के लिए कई आश्चर्यजनक सरल योजनाएँ दी गई हैं। | ||
== आइंस्टीन प्रदिश == | == आइंस्टीन प्रदिश == | ||
समन्वय आधार के अलावा सामान्य सापेक्षता में एक ढ़ॉंचा क्षेत्र के संबंध में गणना किए गए प्रदिश के घटकों | समन्वय आधार के अलावा सामान्य सापेक्षता में एक ढ़ॉंचा क्षेत्र के संबंध में गणना किए गए प्रदिश के घटकों को अधिकतर भौतिक घटक कहा जाता है क्योंकि ये प्रदिश घटक हैं जो सिद्धांत के रूप में एक पर्यवेक्षक द्वारा मापा जाता है। | ||
एक आदर्श द्रव के विशेष जगहों में एक अनुकूलित ढॉचा | यहाँ एक आदर्श द्रव के विशेष जगहों में एक अनुकूलित ढॉचा इस प्रकार दिया है | ||
:<math>\vec{e}_0, \; \vec{e}_1, \; \vec{e}_2, \; \vec{e}_3</math> | :<math>\vec{e}_0, \; \vec{e}_1, \; \vec{e}_2, \; \vec{e}_3</math> | ||
यह हमेशा इकाई क्षेत्र में पाया जाता है जिसमें आइंस्टीन प्रदिश सरल रूप लेता है | यह हमेशा इकाई क्षेत्र में पाया जाता है जिसमें आइंस्टीन प्रदिश सरल रूप ले लेता है | ||
:<math>G^{\widehat{a\,}\widehat{b\,}} = 8 \pi \, \left[ \begin{matrix} \mu &0&0&0\\0&p&0&0\\0&0&p&0\\0&0&0&p\end{matrix} \right] </math> | :<math>G^{\widehat{a\,}\widehat{b\,}} = 8 \pi \, \left[ \begin{matrix} \mu &0&0&0\\0&p&0&0\\0&0&p&0\\0&0&0&p\end{matrix} \right] </math> | ||
जहाँ <math>\mu</math> ऊर्जा घनत्व है और <math>p</math> द्रव का दबाव है यहाँ समयरेखा इकाई सदिश क्षेत्र में तरल तत्वों के साथ आने वाले पर्यवेक्षकों की | जहाँ <math>\mu</math> ऊर्जा घनत्व है और <math>p</math> द्रव का दबाव है यहाँ समयरेखा इकाई सदिश के क्षेत्र में तरल तत्वों के साथ आने वाले पर्यवेक्षकों की रेखाओं के लिए हर जगह स्पर्शरेखा महत्वपूर्ण है इसी लिए घनत्व और दबाव का उल्लेख किया गया है जो आने वाले पर्यवेक्षकों द्वारा मापा जाता है ये वही मात्राएँ हैं जो पूर्ववर्ती अनुभाग में दी गई सामान्य समन्वय आधार अभिव्यक्ति में दिखाई देती हैं। | ||
== ईजेनवेल्यूज == | == ईजेनवेल्यूज == | ||
Line 59: | Line 59: | ||
:<math> t_2^3 + 4 t_3^2 + t_1^2 t_4 - 4 t_2 t_4 - 2 t_1 t_2 t_3 = 0 </math> | :<math> t_2^3 + 4 t_3^2 + t_1^2 t_4 - 4 t_2 t_4 - 2 t_1 t_2 t_3 = 0 </math> | ||
:<math> t_1^4 + 7 t_2^2- 8 t_1^2 t_2 + 12 t_1 t_3 - 12 t_4 = 0 </math> | :<math> t_1^4 + 7 t_2^2- 8 t_1^2 t_2 + 12 t_1 t_3 - 12 t_4 = 0 </math> | ||
धूल के कण के जगहों में ये स्थितियाँ अधिकतर सरल हो जाती | |||
धूल के कण के जगहों में ये स्थितियाँ अधिकतर सरल हो जाती ह। ैं | |||
:<math> a_2 \, = a_3 = a_4 = 0 </math> | :<math> a_2 \, = a_3 = a_4 = 0 </math> | ||
या | या | ||
:<math> t_2 = t_1^2, \; \; t_3 = t_1^3, \; \; t_4 = t_1^4</math> | :<math> t_2 = t_1^2, \; \; t_3 = t_1^3, \; \; t_4 = t_1^4</math> | ||
प्रदिश व्यायाम संकेतन में इसे [[रिक्की अदिश]] का उपयोग करके लिखा जा सकता | प्रदिश व्यायाम संकेतन में इसे [[रिक्की अदिश]] का उपयोग करके लिखा जा सकता है। | ||
:<math> {G^a}_a = -R</math> | :<math> {G^a}_a = -R</math> | ||
:<math> {G^a}_b \, {G^b}_a = R^2</math> | :<math> {G^a}_b \, {G^b}_a = R^2</math> | ||
:<math> {G^a}_b \, {G^b}_c \, {G^c}_a = -R^3</math> | :<math> {G^a}_b \, {G^b}_c \, {G^c}_a = -R^3</math> | ||
:<math> {G^a}_b \, {G^b}_c \, {G^c}_d \, {G^d}_a = -R^4</math> | :<math> {G^a}_b \, {G^b}_c \, {G^c}_d \, {G^d}_a = -R^4</math> | ||
विकिरण द्रव के स्थान में मानदंड बन जाते | विकिरण द्रव के स्थान में मानदंड बन जाते हैं। | ||
:<math>a_1 = 0, \; 27 \, a_3^2 + 8 a_2^3 = 0, \; 12 \, a_4 + a_2^2 = 0</math> | :<math>a_1 = 0, \; 27 \, a_3^2 + 8 a_2^3 = 0, \; 12 \, a_4 + a_2^2 = 0</math> | ||
या | या | ||
:<math>t_1 = 0, 7 \, t_3^2 - t_2 \, t_4 = 0, \; 12 \, t_4 - 7 \, t_2^2 = 0</math> | :<math>t_1 = 0, 7 \, t_3^2 - t_2 \, t_4 = 0, \; 12 \, t_4 - 7 \, t_2^2 = 0</math> | ||
इन मानदंडों का उपयोग करने में | इन मानदंडों का उपयोग करने में तथा यह सुनिश्चित करने के लिए सावधानी बरतनी चाहिए कि सबसे बड़ा आइगेनवैल्यू समयरेखा सदिश रेखा से संबंधित है जो इस मानदंड को संतुष्ट करते हैं | ||
विशेषता के गुणांक अधिकतर बहुत जटिल दिखाई देंगे और चिन्ह बहुत बेहतर नहीं होंगे समाधानों की तलाश करते समय उपयुक्त रूप से अनुकूलित ढ़ॉचे के संबंध में आइंस्टीन प्रदिश के घटकों की गणना करना लगभग हमेशा बेहतर होता है और फिर सीधे घटकों के उपयुक्त संयोजनों को खत्म करना होता है जबकि कोई अनुकूलित ढॉचा स्पष्ट नहीं होता है तो ये ईगेनवैल्यू मानदंड कभी-कभी उपयोगी हो सकते हैं | विशेषता के गुणांक अधिकतर बहुत जटिल दिखाई देंगे और चिन्ह बहुत बेहतर नहीं होंगे समाधानों की तलाश करते समय उपयुक्त रूप से अनुकूलित ढ़ॉचे के संबंध में आइंस्टीन प्रदिश के घटकों की गणना करना लगभग हमेशा बेहतर होता है और फिर सीधे घटकों के उपयुक्त संयोजनों को खत्म करना होता है जबकि कोई अनुकूलित ढॉचा स्पष्ट नहीं होता है तो ये ईगेनवैल्यू मानदंड कभी-कभी उपयोगी हो सकते हैं । | ||
== उदाहरण == | == उदाहरण == | ||
Line 84: | Line 84: | ||
स्थिर गोलाकार सममित परिपूर्ण तरल पदार्थों के परिवार के अलावा उल्लेखनीय घूर्णन द्रव समाधान सम्मिलित हैं। | स्थिर गोलाकार सममित परिपूर्ण तरल पदार्थों के परिवार के अलावा उल्लेखनीय घूर्णन द्रव समाधान सम्मिलित हैं। | ||
* [[वाह्लक्विस्ट तरल पदार्थ|तरल पदार्थ]] जिसमें कोर निर्वात के समान | * [[वाह्लक्विस्ट तरल पदार्थ|तरल पदार्थ]] जिसमें कोर निर्वात के समान है तथा यह प्रारंभिक आशाओं के लिए अग्रणी है यह एक घूर्णन तारे के एक साधारण प्रारूप के लिए आंतरिक समाधान प्रदान कर सकता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 102: | Line 102: | ||
*{{cite journal | author=Lake, Kayll | title=All static spherically symmetric perfect fluid solutions of Einstein's Equations | journal= Phys. Rev. D | year=2003 | volume=67 | pages=104015 | doi=10.1103/PhysRevD.67.104015 |arxiv=gr-qc/0209104|bibcode = 2003PhRvD..67j4015L | issue=10 | s2cid=119447644 }}. This article describes one of several schemes recently found for obtaining all the static spherically symmetric perfect fluid solutions in general relativity. | *{{cite journal | author=Lake, Kayll | title=All static spherically symmetric perfect fluid solutions of Einstein's Equations | journal= Phys. Rev. D | year=2003 | volume=67 | pages=104015 | doi=10.1103/PhysRevD.67.104015 |arxiv=gr-qc/0209104|bibcode = 2003PhRvD..67j4015L | issue=10 | s2cid=119447644 }}. This article describes one of several schemes recently found for obtaining all the static spherically symmetric perfect fluid solutions in general relativity. | ||
{{DEFAULTSORT:Fluid Solution}} | {{DEFAULTSORT:Fluid Solution}} | ||
[[Category: Machine Translated Page]] | [[Category:Created On 29/03/2023|Fluid Solution]] | ||
[[Category: | [[Category:Lua-based templates|Fluid Solution]] | ||
[[Category:Machine Translated Page|Fluid Solution]] | |||
[[Category:Pages with empty portal template|Fluid Solution]] | |||
[[Category:Pages with script errors|Fluid Solution]] | |||
[[Category:Portal templates with redlinked portals|Fluid Solution]] | |||
[[Category:Templates Vigyan Ready|Fluid Solution]] | |||
[[Category:Templates that add a tracking category|Fluid Solution]] | |||
[[Category:Templates that generate short descriptions|Fluid Solution]] | |||
[[Category:Templates using TemplateData|Fluid Solution]] | |||
[[Category:सामान्य सापेक्षता में सटीक समाधान|Fluid Solution]] |
Latest revision as of 11:13, 24 April 2023
द्रव समाधान आइंस्टीन समीकरण के सामान्य सापेक्षता में एक विरूपित समाधान है जिसमें गुरुत्वाकर्षण क्षेत्र पूरी तरह से द्रव के द्रव्यमान संवेग और तनाव घनत्व द्वारा निर्मित होता है।
खगोल भौतिकी में द्रव समाधान अधिकतर तारकीय प्रारूप के रूप में कार्यरत होते हैं आदर्श गैस को एक आदर्श द्रव के रूप में जाना जाता है तथा भौतिक ब्रह्मांड विज्ञान में द्रव समाधान अधिकतर ब्रह्माण्ड प्रारूप के रूप में उपयोग किए जाते हैं।
गणितीय परिभाषा
एक आपेक्षिक द्रव के प्रतिबल-ऊर्जा को प्रदिश के रूप में लिखा जा सकता है जो इस प्रकार है-[1]
यहाँ
- द्रव तत्त्वों की रेखाएँ प्रक्षेपण के अभिन्न वक्र में हैं
- प्रक्षेपण प्रदिश को अधिसमतल तत्वों पर आयतीय परियोजना द्वारा निरूपित किया जाता है
- पदार्थ का घनत्व अदिश राशि द्वारा दिया जाता है
- अदिश द्वारा दबाव भी दिया जाता है
- यह गर्म अगणनीय निश्चित मात्रा वाली रॉशि के नाम से जाना जाता है
- विस्कस अपरूपण प्रदिश द्वारा दिया जाता है
निश्चित मात्रा वाली राशि और प्रदिश रॉशि रेखाओं के अनुप्रस्थ है इस अर्थ में कि
इसका मतलब यह है कि वे प्रभावी रूप से त्रि-आयामी मात्राएं हैं और इसका चिपचिपा तनाव प्रदिश सममित हैं उनके पास क्रमशः तीन और पांच रैखिक स्वतंत्रत घटक हैं घनत्व और दबाव के साथ यह कुल 10 रैखिक रूप से स्वतंत्र घटक बनाता है जो चार-आयामी सममित या मात्र दो प्रदिश में रैखिक रूप से स्वतंत्र घटकों की संख्या है।
विशेष स्थान
द्रव विलयन के कई जगहें उल्लेखनीय हैं यहाँ प्रकाश की गति c = 1
- एक आदर्श तरल पदार्थ में चिपचिपा कतरनी और लुप्त गर्मी प्रवाह होता है
- जहाँ
- धूल का घोल एक दबाव रहित संपूर्ण तरल पदार्थ है
- तब
- एक विकिरण द्रव एक संपूर्ण तरल पदार्थ है
अंतिम दो पदार्थ प्रबल वाले और विकिरण प्रबल वाले युगों के लिए ब्रह्माण्ड संबंधी प्रारूप के रूप में उपयोग किए जाते हैं जबकि सामान्य तौर पर तरल पदार्थ को निर्दिष्ट करने के लिए दस कार्यों की आवश्यकता होती है एक पूर्ण तरल पदार्थ को और दूसरा धूल विकिरण तरल पदार्थ प्रत्येक को केवल एक समारोह की आवश्यकता होती है जबकि सामान्य द्रव समाधान खोजने की तुलना में इस तरह के समाधानों को खोजना बहुत आसान समझता है।
धूल या विकिरण तरल पदार्थों को छोड़कर अन्य सभी तरल पदार्थों में अब तक का सबसे महत्वपूर्ण स्थान स्थिर गोलाकार सममित पूर्ण द्रव समाधान है इन्हें हमेशा एक गोलाकार सतह पर श्वार्जस्चिल्ड से मिलान किया जा सकता है इसलिए उन्हें तारकीय प्रारूप में आंतरिक समाधान के रूप में उपयोग किया जा सकता है ऐसे प्रारूपों में तरल पदार्थ का आंतरिक भाग निर्वात से मेल खाता है वह तारे की सतह है और यह दबाव सीमा में गायब हो जाना चाहिए क्योंकि त्रिज्या निकट आती है जबकि घनत्व नीचे की सीमा में गैर शून्य हो सकता है तथा निश्चित रूप से यह ऊपर से सीमा में शून्य है हाल के वर्षों में इन सभी समाधानों को प्राप्त करने के लिए कई आश्चर्यजनक सरल योजनाएँ दी गई हैं।
आइंस्टीन प्रदिश
समन्वय आधार के अलावा सामान्य सापेक्षता में एक ढ़ॉंचा क्षेत्र के संबंध में गणना किए गए प्रदिश के घटकों को अधिकतर भौतिक घटक कहा जाता है क्योंकि ये प्रदिश घटक हैं जो सिद्धांत के रूप में एक पर्यवेक्षक द्वारा मापा जाता है।
यहाँ एक आदर्श द्रव के विशेष जगहों में एक अनुकूलित ढॉचा इस प्रकार दिया है
यह हमेशा इकाई क्षेत्र में पाया जाता है जिसमें आइंस्टीन प्रदिश सरल रूप ले लेता है
जहाँ ऊर्जा घनत्व है और द्रव का दबाव है यहाँ समयरेखा इकाई सदिश के क्षेत्र में तरल तत्वों के साथ आने वाले पर्यवेक्षकों की रेखाओं के लिए हर जगह स्पर्शरेखा महत्वपूर्ण है इसी लिए घनत्व और दबाव का उल्लेख किया गया है जो आने वाले पर्यवेक्षकों द्वारा मापा जाता है ये वही मात्राएँ हैं जो पूर्ववर्ती अनुभाग में दी गई सामान्य समन्वय आधार अभिव्यक्ति में दिखाई देती हैं।
ईजेनवेल्यूज
एक आदर्श द्रव में आइंस्टीन प्रदिश के अभिलाक्षणिक बहुपद का रूप होना चाहिए
जहाँ द्रव तत्वों के साथ आने वाले पर्यवेक्षकों द्वारा मापा गया द्रव का घनत्व और दबाव है परिणामी बीजगणितीय संबंधों को सरल बनाने के लिए इसे लिखने और ग्रोबनर आधार विधियों को लागू करने पर हमें विशेषता के गुणांकों को निम्नलिखित दो बीजगणितीय रूप से स्वतंत्र और अपरिवर्तनीय शर्तों को पूरा करना चाहिए
लेकिन न्यूटन की सर्वसमिका के अनुसार आइंस्टीन प्रदिश की शक्तियों के निशान इन गुणांकों से निम्नानुसार संबंधित हैं
इसलिए हम उपरोक्त दो मात्राओं को पूरी तरह से घात के अंश के रूप में लिख सकते हैं ये स्पष्ट रूप से अदिश अपरिवर्तनीय हैं और एक पूर्ण द्रव समाधान के स्थान में उन्हें समान रूप से गायब होना चाहिए
धूल के कण के जगहों में ये स्थितियाँ अधिकतर सरल हो जाती ह। ैं
या
प्रदिश व्यायाम संकेतन में इसे रिक्की अदिश का उपयोग करके लिखा जा सकता है।
विकिरण द्रव के स्थान में मानदंड बन जाते हैं।
या
इन मानदंडों का उपयोग करने में तथा यह सुनिश्चित करने के लिए सावधानी बरतनी चाहिए कि सबसे बड़ा आइगेनवैल्यू समयरेखा सदिश रेखा से संबंधित है जो इस मानदंड को संतुष्ट करते हैं
विशेषता के गुणांक अधिकतर बहुत जटिल दिखाई देंगे और चिन्ह बहुत बेहतर नहीं होंगे समाधानों की तलाश करते समय उपयुक्त रूप से अनुकूलित ढ़ॉचे के संबंध में आइंस्टीन प्रदिश के घटकों की गणना करना लगभग हमेशा बेहतर होता है और फिर सीधे घटकों के उपयुक्त संयोजनों को खत्म करना होता है जबकि कोई अनुकूलित ढॉचा स्पष्ट नहीं होता है तो ये ईगेनवैल्यू मानदंड कभी-कभी उपयोगी हो सकते हैं ।
उदाहरण
उल्लेखनीय व्यक्तिगत धूल समाधानों पर लेख में सूचीबद्ध किया गया है उल्लेखनीय संपूर्ण द्रव समाधान जिसमें सकारात्मक दबाव होता है इसमें विभिन्न विकिरण द्रव प्रारूप सम्मिलित हैं।
- फ्रीडमैन-लेमैत्रे-रॉबर्टसन-वाकर जिन्हें अधिकतर विकिरण-प्रभुत्व वाले प्रारूप के रूप में संदर्भित किया जाता है।
स्थिर गोलाकार सममित परिपूर्ण तरल पदार्थों के परिवार के अलावा उल्लेखनीय घूर्णन द्रव समाधान सम्मिलित हैं।
- तरल पदार्थ जिसमें कोर निर्वात के समान है तथा यह प्रारंभिक आशाओं के लिए अग्रणी है यह एक घूर्णन तारे के एक साधारण प्रारूप के लिए आंतरिक समाधान प्रदान कर सकता है।
यह भी देखें
- धूल समाधान के महत्वपूर्ण स्थान।
- सामान्य रूप से सही समाधान।
- लोरेंत्ज़ समूह।
- उत्तम तरल पदार्थ सामान्य रूप से भौतिकी में परिपूर्ण तरल पदार्थ।
- आपेक्षिकीय पूर्ण तरल पदार्थ के संदर्भ में सापेक्षतावादी की व्याख्या।
संदर्भ
- ↑ Eckart, Carl (1940). "अपरिवर्तनीय प्रक्रियाओं III की ऊष्मप्रवैगिकी। सरल द्रव का सापेक्षवादी सिद्धांत". Phys. Rev. 58 (10): 919. Bibcode:1940PhRv...58..919E. doi:10.1103/PhysRev.58.919.
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. (2003). Exact Solutions of Einstein's Field Equations (2nd edn.). Cambridge: Cambridge University Press. ISBN 0-521-46136-7. Gives many examples of exact perfect fluid and dust solutions.
- Stephani, Hans (1996). General relativity (second ed.). Cambridge: Cambridge University Press. ISBN 0-521-37941-5.. See Chapter 8 for a discussion of relativistic fluids and thermodynamics.
- Delgaty, M. S. R.; Lake, Kayll (1998). "Physical Acceptability of Isolated, Static, Spherically Symmetric, Perfect Fluid Solutions of Einstein's Equations". Comput. Phys. Commun. 115 (2–3): 395–415. arXiv:gr-qc/9809013. Bibcode:1998CoPhC.115..395D. doi:10.1016/S0010-4655(98)00130-1. S2CID 17957408.. This review article surveys static spherically symmetric fluid solutions known up to about 1995.
- Lake, Kayll (2003). "All static spherically symmetric perfect fluid solutions of Einstein's Equations". Phys. Rev. D. 67 (10): 104015. arXiv:gr-qc/0209104. Bibcode:2003PhRvD..67j4015L. doi:10.1103/PhysRevD.67.104015. S2CID 119447644.. This article describes one of several schemes recently found for obtaining all the static spherically symmetric perfect fluid solutions in general relativity.