माधव श्रृंखला: Difference between revisions

From Vigyanwiki
No edit summary
 
(20 intermediate revisions by 3 users not shown)
Line 19: Line 19:
तीनों श्रृंखलाओं को बाद में 17वीं सदी के यूरोप में स्वतंत्र रूप से खोजा गया। 1669 में [[आइजैक न्यूटन]] द्वारा ज्या और कोज्या की श्रृंखला को फिर से खोजा गया,<ref>Newton (1669) ''[[De analysi per aequationes numero terminorum infinitas]]'' was circulated as a manuscript but not published until 1711. For context, see:{{pb}}{{harvnb|Roy|2021|loc=Ch. 8. ''De Analysi per Aequationes Infinitas'', pp.&nbsp;165–185}}.{{pb}}Leibniz later included the series for sine and cosine in Leibniz (1676) ''De quadratura arithmetica circuli ellipseos et hyperbola cujus corollarium est trigonometria sine tabulis'', which was only finally published in 1993. However, he had been sent Newton's sine and cosine series by [[Henry Oldenburg]] in 1675 and did not claim to have discovered them. See:{{pb}}{{cite book |last=Probst |first=Siegmund |year=2015 |chapter=Leibniz as reader and second inventor: The cases of Barrow and Mengoli |editor1-last=Goethe |editor1-first=N. |editor2-last=Beeley |editor2-first=P. |editor3-last=Rabouin |editor3-first=D. |title=G.W. Leibniz, Interrelations between Mathematics and Philosophy |pages=111-134 |publisher=Springer |doi=10.1007/978-94-017-9664-4_6 }}</ref> और चाप स्पर्शरेखा की श्रृंखला को 1671 में [[जेम्स ग्रेगरी]] और 1673 में [[गॉटफ्रीड लाइबनिज]] द्वारा फिर से खोजा गया था, <ref>Gregory received a letter from [[John Collins (mathematician)|John Collins]] including Newton's sine and cosine series in late 1670. He discovered the general [[Taylor series]] and sent a now-famous letter back to Collins in 1671 including several specific series including the arctangent. See {{harvnb|Roy|1990}}.{{pb}}{{cite journal |last=Horvath |first=Miklos |title=On the Leibnizian quadrature of the circle. |journal=Annales Universitatis Scientiarum Budapestiensis (Sectio Computatorica) |volume=4 |year=1983 |pages=75-83 |url=http://ac.inf.elte.hu/Vol_004_1983/075.pdf }}</ref> और इसे पारंपरिक रूप से ''[[ग्रेगरी की श्रृंखला]]'' कहा जाता है। विशिष्ट मान <math display="inline">\arctan 1 = \tfrac14\pi</math> [[वृत्त नियतांक π]] की गणना करने के लिए किया जा सकता है, और {{math|1}} के लिए स्पर्शरेखा श्रृंखला को पारंपरिक रूप से ''[[लीबनिज़ की श्रृंखला]]'' कहा जाता है।
तीनों श्रृंखलाओं को बाद में 17वीं सदी के यूरोप में स्वतंत्र रूप से खोजा गया। 1669 में [[आइजैक न्यूटन]] द्वारा ज्या और कोज्या की श्रृंखला को फिर से खोजा गया,<ref>Newton (1669) ''[[De analysi per aequationes numero terminorum infinitas]]'' was circulated as a manuscript but not published until 1711. For context, see:{{pb}}{{harvnb|Roy|2021|loc=Ch. 8. ''De Analysi per Aequationes Infinitas'', pp.&nbsp;165–185}}.{{pb}}Leibniz later included the series for sine and cosine in Leibniz (1676) ''De quadratura arithmetica circuli ellipseos et hyperbola cujus corollarium est trigonometria sine tabulis'', which was only finally published in 1993. However, he had been sent Newton's sine and cosine series by [[Henry Oldenburg]] in 1675 and did not claim to have discovered them. See:{{pb}}{{cite book |last=Probst |first=Siegmund |year=2015 |chapter=Leibniz as reader and second inventor: The cases of Barrow and Mengoli |editor1-last=Goethe |editor1-first=N. |editor2-last=Beeley |editor2-first=P. |editor3-last=Rabouin |editor3-first=D. |title=G.W. Leibniz, Interrelations between Mathematics and Philosophy |pages=111-134 |publisher=Springer |doi=10.1007/978-94-017-9664-4_6 }}</ref> और चाप स्पर्शरेखा की श्रृंखला को 1671 में [[जेम्स ग्रेगरी]] और 1673 में [[गॉटफ्रीड लाइबनिज]] द्वारा फिर से खोजा गया था, <ref>Gregory received a letter from [[John Collins (mathematician)|John Collins]] including Newton's sine and cosine series in late 1670. He discovered the general [[Taylor series]] and sent a now-famous letter back to Collins in 1671 including several specific series including the arctangent. See {{harvnb|Roy|1990}}.{{pb}}{{cite journal |last=Horvath |first=Miklos |title=On the Leibnizian quadrature of the circle. |journal=Annales Universitatis Scientiarum Budapestiensis (Sectio Computatorica) |volume=4 |year=1983 |pages=75-83 |url=http://ac.inf.elte.hu/Vol_004_1983/075.pdf }}</ref> और इसे पारंपरिक रूप से ''[[ग्रेगरी की श्रृंखला]]'' कहा जाता है। विशिष्ट मान <math display="inline">\arctan 1 = \tfrac14\pi</math> [[वृत्त नियतांक π]] की गणना करने के लिए किया जा सकता है, और {{math|1}} के लिए स्पर्शरेखा श्रृंखला को पारंपरिक रूप से ''[[लीबनिज़ की श्रृंखला]]'' कहा जाता है।


माधव की [[वैज्ञानिक प्राथमिकता|प्राथमिकता]] की मान्यता में, हाल ही की रचना में इन
माधव की [[वैज्ञानिक प्राथमिकता|प्राथमिकता]] की मान्यता में, हाल ही की रचना में इन  


श्रृंखलाओं को कभी-कभी ''माधव-न्यूटन श्रृंखला'',<ref>For example:{{pb}}{{cite book |last=Plofker |first=Kim |year=2005 |chapter=Relations between approximations to the sine in Kerala mathematics |title=Contributions to the History of Indian Mathematics |editor1-last= Emch |editor1-first=Gérard G. |editor2-last=Sridharan |editor2-first=R. |editor3-last=Srinivas |editor3-first=M. D. |publisher=Hindustan Book Agency |location=Gurgaon |pages=135-152 |doi=10.1007/978-93-86279-25-5_6 }}{{pb}}{{cite journal |last=Filali |first=Mahmoud |year=2012 |title=Harmonic analysis and applications |journal=Kybernetes |volume=41 |pages=129-144 |doi=10.1108/03684921211213160 }}</ref> ''माधव-ग्रेगरी श्रृंखला''<ref>For example: {{harvnb|Gupta|1973}}; {{harvnb|Joseph|2011|page=428}};{{pb}}{{cite journal |last=Levrie |first=Paul |year=2011 |title=Lost and Found: An Unpublished {{math|''ζ''(2)}}-Proof |journal=Mathematical Intelligencer |volume=33 |pages=29–32 |doi=10.1007/s00283-010-9179-y}}</ref> या ''माधव-लीबनिज श्रृंखला''<ref>For example: {{harvnb|Gupta|1992}};{{pb}}{{cite journal |last=Pouvreau |first=David |year=2015 |title=Sur l'accélération de la convergence de la série de Madhava-Leibniz |language=fr |journal=Quadrature |volume=97 |pages=17–25 |url=https://hal.science/hal-03186128 }}{{pb}}{{cite journal |last=Young |first=Paul Thomas |year=2022 |title=From Madhava–Leibniz to Lehmer’s Limit |journal=American Mathematical Monthly |volume=129 |number=6 |pages=524-538 |doi=10.1080/00029890.2022.2051405 }}</ref>(अन्य समुच्चयों के बीच) कहा जाता है।<ref>For example,{{pb}}  
श्रृंखलाओं को कभी-कभी ''माधव-न्यूटन श्रृंखला'',<ref>For example:{{pb}}{{cite book |last=Plofker |first=Kim |year=2005 |chapter=Relations between approximations to the sine in Kerala mathematics |title=Contributions to the History of Indian Mathematics |editor1-last= Emch |editor1-first=Gérard G. |editor2-last=Sridharan |editor2-first=R. |editor3-last=Srinivas |editor3-first=M. D. |publisher=Hindustan Book Agency |location=Gurgaon |pages=135-152 |doi=10.1007/978-93-86279-25-5_6 }}{{pb}}{{cite journal |last=Filali |first=Mahmoud |year=2012 |title=Harmonic analysis and applications |journal=Kybernetes |volume=41 |pages=129-144 |doi=10.1108/03684921211213160 }}</ref> ''माधव-ग्रेगरी श्रृंखला''<ref>For example: {{harvnb|Gupta|1973}}; {{harvnb|Joseph|2011|page=428}};{{pb}}{{cite journal |last=Levrie |first=Paul |year=2011 |title=Lost and Found: An Unpublished {{math|''ζ''(2)}}-Proof |journal=Mathematical Intelligencer |volume=33 |pages=29–32 |doi=10.1007/s00283-010-9179-y}}</ref> या ''माधव-लीबनिज श्रृंखला''<ref>For example: {{harvnb|Gupta|1992}};{{pb}}{{cite journal |last=Pouvreau |first=David |year=2015 |title=Sur l'accélération de la convergence de la série de Madhava-Leibniz |language=fr |journal=Quadrature |volume=97 |pages=17–25 |url=https://hal.science/hal-03186128 }}{{pb}}{{cite journal |last=Young |first=Paul Thomas |year=2022 |title=From Madhava–Leibniz to Lehmer’s Limit |journal=American Mathematical Monthly |volume=129 |number=6 |pages=524-538 |doi=10.1080/00029890.2022.2051405 }}</ref>(अन्य समुच्चयों के बीच) कहा जाता है।<ref>For example,{{pb}}  
Line 51: Line 51:
मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब ''s = r θ'' और ''जीवा = r sin θ''। इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरल करने पर हमें प्राप्त होता है
मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब ''s = r θ'' और ''जीवा = r sin θ''। इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरल करने पर हमें प्राप्त होता है
:<math>\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \quad \cdots </math>
:<math>\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \quad \cdots </math>
जो कोज्या फलन की अनंत घात श्रृंखला विस्तार देता है।
जो ज्या फलन की अनंत घात श्रृंखला विस्तार देता है।


=== संख्यात्मक गणना के लिए माधव का सुधार ===
=== संख्यात्मक गणना के लिए माधव का सुधार ===
छंद की अंतिम पंक्ति '''विदवान' आदि से शुरू होने वाले छंद'' में एक साथ एकत्र की गई है, माधव द्वारा प्रस्तुत श्रृंखला के एक सुधार का संदर्भ है, जो चाप और त्रिज्या के निर्दिष्ट मानो के लिए आसान गणना की सुविधा प्रदान करता है।
छंद की अंतिम पंक्ति '''विदवान' आदि से शुरू होने वाले छंद'' में एक साथ एकत्र की गई है, माधव द्वारा प्रस्तुत श्रृंखला के एक सुधार का संदर्भ है, जो चाप और त्रिज्या के निर्दिष्ट मानो के लिए आसान गणना की सुविधा प्रदान करता है।
इस तरह के सुधार के लिए, माधव एक वृत्त के एक चौथाई भाग पर विचार करते हैं, जिसकी माप 5400 मिनट (मान लीजिए C मिनट) है और ऐसे वृत्त के विभिन्न चापों के ''जीवाओं'' की आसान गणना के लिए एक पद्धति विकसित करते हैं। R को एक वृत्त की त्रिज्या होने दें, जिसका एक-चौथाई भाग C को मापता है।
इस तरह के सुधार के लिए, माधव एक वृत्त के एक चौथाई भाग पर विचार करते हैं, जिसकी माप 5400 मिनट (मान लीजिए C मिनट) है और ऐसे वृत्त के विभिन्न चापों के ''जीवाओं'' की आसान गणना के लिए एक पद्धति विकसित करते हैं। R वृत्त की त्रिज्या है, जिसका एक-चौथाई भाग C को मापता है।
माधव ने π के लिए अपने श्रृंखला सूत्र का उपयोग करके π के मान की गणना पहले ही कर ली थी।{{sfn|Raju|2007|page=119}} π के इस मान का उपयोग करते हुए, अर्थात् 3.1415926535922, त्रिज्या R की गणना निम्नानुसार की जाती है:
माधव ने π के लिए अपने श्रृंखला सूत्र का उपयोग करके π के मान की गणना पहले ही कर ली थी।{{sfn|Raju|2007|page=119}} π के इस मान का उपयोग करते हुए, अर्थात् 3.1415926535922, त्रिज्या R की गणना निम्नानुसार की जाती है:
तब
तब
Line 76: Line 76:
! व्यंजक
! व्यंजक
! मान
! मान
! कटापैयाडी प्रणाली मे मान
! [[कटापैयाडी प्रणाली]] मे मान
|-
|-
| &nbsp;&nbsp; 1 &nbsp;&nbsp;
| &nbsp;&nbsp; 1 &nbsp;&nbsp;
Line 108: Line 108:
: ''जीवा'' = s − (s / C)3 [ (2220′ 39′′ 40′′′) − (s / C)2 [ (273′ 57′′ 47′′′) − (s / C)2 [ (16′ 05′′ 41′′′) − (s / C)2[ (33′′ 06′′′) − (s / C)2 (44′′′ ) ] ] ] ].
: ''जीवा'' = s − (s / C)3 [ (2220′ 39′′ 40′′′) − (s / C)2 [ (273′ 57′′ 47′′′) − (s / C)2 [ (16′ 05′′ 41′′′) − (s / C)2[ (33′′ 06′′′) − (s / C)2 (44′′′ ) ] ] ] ].


यह 11वें क्रम के टेलर बहुपद द्वारा जीवा का सन्निकटन देता है। इसमें केवल एक विभाजन, छह गुणन और पांच व्यवकलन सम्मिलित हैं। माधव ने संख्यात्मक रूप से कुशल अभिकलनी योजना को निम्नलिखित शब्दों में निर्धारित किया है (युक्ति-दीपिका में छंद 2.437 का अनुवाद):
यह 11वें क्रम के टेलर बहुपद द्वारा जीवा का सन्निकटन देता है। इसमें केवल एक विभाजन, छह गुणन और पांच व्यवकलन सम्मिलित हैं। माधव ने संख्यात्मक रूप से कुशल अभिकलनी पद्धति को निम्नलिखित शब्दों में निर्धारित किया है (युक्ति-दीपिका में छंद 2.437 का अनुवाद):


''vi-dvān, tu-nna-ba-la, ka-vī-śa-ni-ca-ya, sa-rvā-rtha-śī-la-sthi-ro, ni-rvi-ddhā-nga-na-rē-ndra-rung /''  ''परिधि के एक-चौथाई (5400') से विभाजित चाप के वर्ग द्वारा क्रमिक रूप से इन पांच संख्याओं को गुणा करें, और अगली संख्या से घटाएं। (प्राप्त परिणाम और अगली संख्या के साथ इस विधि को जारी रखें।) परिधि के एक चौथाई से विभाजित चाप के घन द्वारा अंतिम परिणाम को गुणा करें और चाप से घटाएं।''
''vi-dvān, tu-nna-ba-la, ka-vī-śa-ni-ca-ya, sa-rvā-rtha-śī-la-sthi-ro, ni-rvi-ddhā-nga-na-rē-ndra-rung /''  ''परिधि के एक-चौथाई (5400') से विभाजित चाप के वर्ग द्वारा क्रमिक रूप से इन पांच संख्याओं को गुणा करें, और अगली संख्या से घटाएं। (प्राप्त परिणाम और अगली संख्या के साथ इस विधि को जारी रखें।) परिधि के एक चौथाई से विभाजित चाप के घन द्वारा अंतिम परिणाम को गुणा करें और चाप से घटाएं।''
Line 118: Line 118:
माधव की कोज्या श्रंखला [[शंकर वरियार]] द्वारा ''युक्ति-दीपिका वृत्तवर्णन'' (''तंत्रसंग्रह-व्याख्या'') में 2.442 और 2.443 छंदों में बताई गई है। छंद का अनुवाद इस प्रकार है।
माधव की कोज्या श्रंखला [[शंकर वरियार]] द्वारा ''युक्ति-दीपिका वृत्तवर्णन'' (''तंत्रसंग्रह-व्याख्या'') में 2.442 और 2.443 छंदों में बताई गई है। छंद का अनुवाद इस प्रकार है।


चाप के वर्ग को इकाई (यानी त्रिज्या) से गुणा करें और इसे पुनरावर्ती का परिणाम लें (कितनी बार)। क्रमिक सम संख्याओं के वर्ग से विभाजित करें (उपरोक्त अंशों में से प्रत्येक) उस संख्या से घटाकर और त्रिज्या के वर्ग से गुणा करें। लेकिन पहला पद (अब) (जो है) दो बार त्रिज्या से विभाजित है। इस प्रकार प्राप्त क्रमिक परिणामों को एक के नीचे एक रखें और प्रत्येक को ऊपर वाले में से घटाएँ। ये मिलकर śara देते हैं जैसा कि स्टेना,स्ट्री आदि से शुरू होने वाले छंद में एक साथ एकत्र किया जाता है।
चाप के वर्ग को इकाई (यानी त्रिज्या) से गुणा करें और इसे पुनरावर्ती का परिणाम लें (कितनी बार)। क्रमिक सम संख्याओं के वर्ग से विभाजित करें (उपरोक्त अंशों में से प्रत्येक) उस संख्या से घटाकर और त्रिज्या के वर्ग से गुणा करें। लेकिन पहला पद (अब) (जो है) दो बार त्रिज्या से विभाजित है। इस प्रकार प्राप्त क्रमिक परिणामों को एक के नीचे एक रखें और प्रत्येक को ऊपर वाले से घटाएँ। ये मिलकर śara देते हैं जैसा कि स्टेना,स्ट्री आदि से शुरू होने वाले छंद में एक साथ एकत्र किया जाता है।


=== आधुनिक अंकन में प्रतिपादन ===
=== आधुनिक अंकन में प्रतिपादन ===
Line 124: Line 124:
मान लीजिए r वृत्त की त्रिज्या और s चाप-लंबाई को निरूपित करता है।
मान लीजिए r वृत्त की त्रिज्या और s चाप-लंबाई को निरूपित करता है।


*निम्नलिखित अंश पहले बनते हैं:
*निम्नलिखित अंश पहले रूपांकित हैं:
:: <math>r \cdot s^2 ,\qquad r \cdot s^2 \cdot s^2 , \qquad r \cdot s^2 \cdot s^2 \cdot s^2 , \qquad \cdots </math>
:: <math>r \cdot s^2 ,\qquad r \cdot s^2 \cdot s^2 , \qquad r \cdot s^2 \cdot s^2 \cdot s^2 , \qquad \cdots </math>
*फिर इन्हें पद्य में निर्दिष्ट मात्राओं से विभाजित किया जाता है।
*फिर इन्हें छंद में निर्दिष्ट मात्राओं से विभाजित किया जाता है।
:: <math>r\cdot \frac{s^2}{(2^2 - 2)r^2}, \qquad r\cdot \frac{s^2}{(2^2 - 2)r^2}\cdot \frac{s^2}{(4^2-4)r^2},\qquad r\cdot \frac{s^2}{(2^2-2)r^2}\cdot \frac{s^2}{(4^2-4)r^2}\cdot \frac{s^2}{(6^2-6)r^2}, \qquad \cdots </math>
:: <math>r\cdot \frac{s^2}{(2^2 - 2)r^2}, \qquad r\cdot \frac{s^2}{(2^2 - 2)r^2}\cdot \frac{s^2}{(4^2-4)r^2},\qquad r\cdot \frac{s^2}{(2^2-2)r^2}\cdot \frac{s^2}{(4^2-4)r^2}\cdot \frac{s^2}{(6^2-6)r^2}, \qquad \cdots </math>
*आर्क और क्रमिक परिणाम एक के नीचे एक रखें, और शर प्राप्त करने के लिए प्रत्येक को ऊपर वाले से घटाएं:
*चाप और क्रमिक परिणाम एक के नीचे एक रखें, और śara प्राप्त करने के लिए प्रत्येक को ऊपर वाले से घटाएं:
:: <math> \text{sara}=  r\cdot \frac{s^2}{(2^2 - 2)r^2} - \left [ r\cdot \frac{ s^2}{(2^2-2)r^2}\cdot \frac{s^2}{(4^2-4)r^2} -\left [ r\cdot \frac{ s^2}{(2^2-2)r^2}\cdot \frac{s^2}{(4^2-4)r^2}\cdot \frac{s^2}{(6^2-6)r^2}-\cdots\right]\right] </math>
:: <math> \text{sara}=  r\cdot \frac{s^2}{(2^2 - 2)r^2} - \left [ r\cdot \frac{ s^2}{(2^2-2)r^2}\cdot \frac{s^2}{(4^2-4)r^2} -\left [ r\cdot \frac{ s^2}{(2^2-2)r^2}\cdot \frac{s^2}{(4^2-4)r^2}\cdot \frac{s^2}{(6^2-6)r^2}-\cdots\right]\right] </math>


Line 134: Line 134:
=== वर्तमान अंकन में परिवर्तन ===
=== वर्तमान अंकन में परिवर्तन ===


मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब s = rθ और शर = r(1 - cos θ). इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरल करने पर हमें प्राप्त होता है
मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब s = rθ और śara = r(1 - cos θ) है। इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरलीकृत करने पर हमें प्राप्त होता है
:<math>1 - \cos \theta = \frac{\theta^2}{2!}  -  \frac{\theta^4}{4!} + \frac{\theta^6}{6!} + \quad \cdots </math>
:<math>1 - \cos \theta = \frac{\theta^2}{2!}  -  \frac{\theta^4}{4!} + \frac{\theta^6}{6!} + \quad \cdots </math>
जो कोज्या फलन की अनंत शक्ति श्रृंखला विस्तार देता है।
जो कोज्या फलन की अनंत घात श्रृंखला विस्तार देता है।


=== संख्यात्मक गणना के लिए माधव का सुधार ===
=== संख्यात्मक गणना के लिए माधव का सुधार ===


छंद की अंतिम पंक्ति '<nowiki/>''स्टेना, स्ट्री, आदि से शुरू होने वाले छंद में एक साथ एकत्रित''' माधव द्वारा स्वयं प्रस्तुत किए गए एक सुधार का संदर्भ है, जो चाप और त्रिज्या के निर्दिष्ट मानो के लिए श्रृंखला की आसान गणना की सुविधा प्रदान करता है।                                           ज्या श्रृंखला के मामले में, माधव एक वृत्त पर विचार करते हैं जिसका एक चौथाई हिस्सा 5400 मिनट (मान लीजिए C मिनट) को मापता है और ऐसे वृत्त के विभिन्न चापों के शर की आसान गणना के लिए एक योजना विकसित करता है। मान लीजिए R एक वृत्त की त्रिज्या है जिसका एक चौथाई भाग C को मापता है। फिर, ज्या श्रृंखला के मामले में, माधव को मिलता है
छंद की अंतिम पंक्ति '<nowiki/>''स्टेना, स्ट्री, आदि से शुरू होने वाले छंद में एक साथ एकत्रित''' माधव द्वारा स्वयं प्रस्तुत किए गए एक सुधार का संदर्भ है, जो चाप और त्रिज्या के निर्दिष्ट मानो के लिए श्रृंखला की आसान गणना की सुविधा प्रदान करता है।                                           ज्या श्रृंखला की स्थिति में, माधव एक वृत्त पर विचार करते हैं जिसका एक चौथाई हिस्सा 5400 मिनट (मान लीजिए C मिनट) को मापता है और ऐसे वृत्त के विभिन्न चापों के śara की आसान गणना के लिए एक पद्धति विकसित करता है। मान लीजिए R एक वृत्त की त्रिज्या है जिसका एक चौथाई भाग C को मापता है। फिर, ज्या श्रृंखला की स्थिति में, माधव को R = 3437′ 44′ 48′′ प्राप्त होता है।
आर = 3437' 44'' 48''।


त्रिज्या R के एक वृत्त के किसी चाप s के संगत शर के लिए माधव की अभिव्यक्ति निम्नलिखित के समतुल्य है:
त्रिज्या R के एक वृत्त के किसी चाप s के संगत śara के लिए माधव के व्यंजक निम्नलिखित के समतुल्य है:


:<math>
:<math>
Line 157: Line 156:
{| class="wikitable" style="margin:1em auto;"
{| class="wikitable" style="margin:1em auto;"
|-
|-
! No.
! क्रमांक
! Expression
! व्यंजक
! Value
! मान
! Value in [[Katapayadi system]]
! [[कटापैयाडी प्रणाली]] मे मान
|-
|-
| &nbsp;&nbsp; 1 &nbsp;&nbsp;
| &nbsp;&nbsp; 1 &nbsp;&nbsp;
Line 193: Line 192:
|-
|-
|}
|}
शर की गणना अब निम्नलिखित योजना का उपयोग करके की जा सकती है:
śara की गणना अब निम्नलिखित पद्धति का उपयोग करके की जा सकती है:


: शार = (एस / सी)<sup>2</sup> [(4241' 09'' 00''') - (s / C)<sup>2</sup> [ (872′ 03′′ 05”′) − (s / C)<sup>2</सुप> [(071' 43'' 24''') - (एस/सी)<sup>2</sup>[ (03' 09'' 37''') - (एस / सी)<sup>2</sup> [(05'' 12''') - (एस / सी)<sup>2</sup> (06''') ] ] ] ] ]
: ''śara'' = (''s'' / ''C'')<sup>2</sup> [ (4241′ 09′′ 00′′′) − (''s'' / ''C'')<sup>2</sup> [ (872′ 03′′ 05 ′′′) − (''s'' / ''C'')<sup>2</sup> [ (071′ 43′′ 24′′′) − (''s'' / ''C'')<sup>2</sup>[ (03′ 09′′ 37′′′) − (''s'' / ''C'')<sup>2</sup> [(05′′ 12′′′) (s / C)<sup>2</sup> (06′′′) ] ] ] ] ]


यह 12वें क्रम के टेलर बहुपद द्वारा शर का सन्निकटन देता है। इसमें एक विभाजन, छह गुणा और पांच घटाव भी शामिल हैं। माधव ने संख्यात्मक रूप से कुशल कम्प्यूटेशनल योजना को निम्नलिखित शब्दों में निर्धारित किया है (युक्ति-दीपिका में श्लोक 2.438 का अनुवाद):
यह 12वें क्रम के टेलर बहुपद द्वारा śara का सन्निकटन देता है। इसमें एक विभाजन, छह गुणन और पांच व्यवकलन भी सम्मिलित हैं। माधव ने संख्यात्मक रूप से कुशल अभिकलनी पद्धति को निम्नलिखित शब्दों में निर्धारित किया है (''युक्ति-दीपिका'' में छंद 2.438 का अनुवाद):


छ: चरण, स्त्रिपिशुन, सुगंधिनगानुद, भद्रांगभव्यासन, मिनांगोनारसिम्हा, उन्धनकृतभुरेव। परिधि के चौथाई से विभाजित चाप के वर्ग से गुणा करें और अगली संख्या से घटाएं। (परिणाम और अगली संख्या के साथ जारी रखें।) अंतिम परिणाम [[उत्क्रम-ज्य]] (आर छंद चिह्न) होगा।
''छ: चरण, स्ट्रीपिशुन, सुगंधिनगानुद, भद्रांगभव्यासन, मिनांगोनारसिम्हा, उन्धनकृतभुरेव। परिधि के एक-चौथाई से विभाजित चाप के वर्ग से गुणा करें और अगली संख्या से घटाएं। (परिणाम और अगली संख्या के साथ जारी रखें।) अंतिम परिणाम [[उत्क्रम-ज्य]] (आर छंद चिह्न) होगा।''


== माधव की चाप स्पर्शरेखा श्रृंखला ==
== माधव की चाप स्पर्शरेखा श्रृंखला ==


===In Madhava's own words===
===माधव के अपने शब्दों में===


Madhava's arctangent series is stated in verses 2.206 2.209 in Yukti-dipika commentary (Tantrasamgraha-vyakhya) by Sankara Variar. A translation of the verses is given below.{{sfn|Raju|2007|page=231}} [[ज्येष्ठदेव]] ने [[युक्तिभाषा]] में भी इस श्रृंखला का वर्णन किया है।<ref>{{Cite web |last1=O'Connor |first1=John J. |last2=Robertson |first2=Edmund F. |year=2000 |title=संगमग्राम के माधव|url=https://mathshistory.st-andrews.ac.uk/Biographies/Madhava/ |website=[[MacTutor History of Mathematics archive]]}}</ref>{{sfn|Gupta|1973}}{{sfn|Sarma|1972}}
माधव की चापस्पर्शा श्रंखला को ''युक्ति-दीपिका विवरण (तंत्रसंग्रह-व्याख्या'') में [[शंकर वरियार]] द्वारा 2.206 - 2.209 छंदों में कहा गया है। {{sfn|Raju|2007|page=231}} [[ज्येष्ठदेव]] ने [[युक्तिभाषा]] में भी इस श्रृंखला का वर्णन किया है।<ref>{{Cite web |last1=O'Connor |first1=John J. |last2=Robertson |first2=Edmund F. |year=2000 |title=संगमग्राम के माधव|url=https://mathshistory.st-andrews.ac.uk/Biographies/Madhava/ |website=[[MacTutor History of Mathematics archive]]}}</ref>{{sfn|Gupta|1973}}{{sfn|Sarma|1972}}  


अब, केवल उसी तर्क से, वांछित ज्या के चाप का निर्धारण (बनाया) जा सकता है। वह इस प्रकार है: पहला परिणाम वांछित ज्या और चाप के कोज्या से विभाजित त्रिज्या का गुणनफल है। जब किसी ने साइन के वर्ग को गुणक और कोसाइन के वर्ग को भाजक बना दिया है, तो अब परिणामों का एक समूह पहले से शुरू होने वाले (पिछले) परिणामों से निर्धारित किया जाना है। जब इन्हें विषम संख्या 1, 3, और आगे से क्रम में विभाजित किया जाता है, और जब किसी ने सम (-क्रमांकित) परिणामों के योग को विषम (इकाई) के योग से घटाया है, तो वह चाप होना चाहिए। यहाँ साइन और कोसाइन के छोटे को वांछित (साइन) माना जाना आवश्यक है। अन्यथा, बार-बार (गणना) करने पर भी परिणामों की समाप्ति नहीं होगी।
''अब, केवल उसी कोणांक से, वांछित ज्या के चाप का निर्धारण (बनाया) जा सकता है। वह इस प्रकार है: पहला परिणाम वांछित ज्या और चाप के कोज्या से विभाजित त्रिज्या का गुणनफल है। जब किसी ने ज्या के वर्ग को गुणक और कोज्या के वर्ग को भाजक बना दिया है, तो अब परिणामों का एक समूह पहले से शुरू होने वाले (पिछले) परिणामों से निर्धारित किया जाना है। जब इन्हें विषम संख्या 1, 3, और इसी तरह से क्रम में विभाजित किया जाता है,और जब किसी ने सम(-क्रमांकित) परिणामों के योग को विषम (इकाई) के योग से घटाया है, तो वह चाप होना चाहिए। यहाँ ज्या और कोज्या के छोटे को वांछित (ज्या) माना जाना आवश्यक है। अन्यथा, बार-बार (गणना) करने पर भी परिणामों की समाप्ति नहीं होगी।''


इसी तर्क के द्वारा परिधि की गणना दूसरे तरीके से भी की जा सकती है। वह इस प्रकार है (निम्नानुसार): पहले परिणाम को व्यास के वर्ग के वर्गमूल को बारह से गुणा करना चाहिए। तब से, परिणाम को तीन (इन) प्रत्येक क्रमिक (केस) से विभाजित किया जाना चाहिए। जब इन्हें 1 से शुरू होने वाली विषम संख्याओं के क्रम में विभाजित किया जाता है, और जब विषम के योग से (सम) परिणाम घटाया जाता है, (वह) परिधि होनी चाहिए।
''इसी कोणांक के द्वारा परिधि की गणना दूसरे तरीके से भी की जा सकती है। वह इस प्रकार है (निम्नानुसार): पहले परिणाम को व्यास के वर्ग के वर्गमूल को बारह से गुणा करना चाहिए। तब से, परिणाम को प्रत्येक अनुक्रमी (स्थिति) में तीन (इन) से विभाजित किया जाना चाहिए। जब इन्हें 1 से शुरू होने वाली विषम संख्याओं के क्रम में विभाजित किया जाता है, और जब (सम) परिणाम को विषम संख्याओं के योग से घटाया जाता है, तो (वह) परिधि होनी चाहिए।''


=== आधुनिक अंकन में प्रतिपादन ===
=== आधुनिक अंकन में प्रतिपादन ===


आइए वांछित साइन (ज्य या जीव) वाई का चाप बनें। मान लीजिए कि r त्रि[[ जाना ]] है और x कोसाइन ([[कोज्या]]) है।
वांछित ज्या (''[[ज्या]]'' या जीवा) y का चाप है। मान लीजिए कि r त्रिज्या है और x कोज्या ([[कोटिज्य]]) है।


*पहला परिणाम है <math>\tfrac{y \cdot r}{x}</math>.
*पहला परिणाम <math>\tfrac{y \cdot r}{x}</math> है।
* गुणक और भाजक बनाएँ <math>\tfrac{y^2}{x^2}</math>.
* गुणक और भाजक बनाएँ <math>\tfrac{y^2}{x^2}</math>
*परिणामों का समूह बनाएं:
*परिणामों का समूह बनाएं:
::<math>\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}, \qquad \frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}, \qquad \cdots</math>
::<math>\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}, \qquad \frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}, \qquad \cdots</math>
*इन्हें संख्या 1, 3, और इसी क्रम में विभाजित किया गया है:
*इन्हें संख्या 1, 3, आदि से विभाजित किया गया है:
:: <math> \frac{1}{1}\frac{y \cdot r}{x}, \qquad \frac{1}{3}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}, \qquad \frac{1}{5}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}, \qquad \cdots</math>
:: <math> \frac{1}{1}\frac{y \cdot r}{x}, \qquad \frac{1}{3}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}, \qquad \frac{1}{5}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}, \qquad \cdots</math>
* विषम संख्या वाले परिणामों का योग:
* विषम संख्या वाले परिणामों का योग:
Line 225: Line 224:
*सम संख्या वाले परिणामों का योग:
*सम संख्या वाले परिणामों का योग:
::<math>\frac{1}{3}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2} + \frac{1}{7}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}+\cdots</math>
::<math>\frac{1}{3}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2} + \frac{1}{7}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}+\cdots</math>
*चाप अब किसके द्वारा दिया जाता है
*अब चाप द्वारा दिया गया है
::<math>s = \left(\frac{1}{1}\frac{y \cdot r}{x} + \frac{1}{5}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}+\cdots\right) - \left(\frac{1}{3}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2} + \frac{1}{7}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}+\cdots\right)</math>
::<math>s = \left(\frac{1}{1}\frac{y \cdot r}{x} + \frac{1}{5}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}+\cdots\right) - \left(\frac{1}{3}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2} + \frac{1}{7}\frac{y \cdot r}{x}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}\cdot\frac{y^2}{x^2}+\cdots\right)</math>


Line 231: Line 230:
=== वर्तमान अंकन में परिवर्तन ===
=== वर्तमान अंकन में परिवर्तन ===


मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब s = rθ, x = jya = r cos θ और y = jya = r sin θ.
मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब s = rθ, x = [[kotijya]] = r cos θ और y = [[jya]] = r sin θ /
तब y / x = tan θ. इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरल करने पर हमें प्राप्त होता है
बाद में y / x = tan θ। इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरलीकृत करने पर हमें प्राप्त होता है
*<math>\theta = \tan \theta - \frac{\tan^3 \theta}{3} + \frac{\tan^5\theta}{5} - \frac{\tan^7 \theta}{7} + \quad \cdots </math>.
*<math>\theta = \tan \theta - \frac{\tan^3 \theta}{3} + \frac{\tan^5\theta}{5} - \frac{\tan^7 \theta}{7} + \quad \cdots </math>.
माना tan θ = q हमारे पास अंत में है
माना tan θ = q हमारे पास अंततः है


*<math> \tan^{-1} q = q - \frac{q^3}{3} + \frac{q^5}{5} - \frac{q^7}{7} +  \quad \cdots </math>
*<math> \tan^{-1} q = q - \frac{q^3}{3} + \frac{q^5}{5} - \frac{q^7}{7} +  \quad \cdots </math>
Line 241: Line 240:
=== एक वृत्त की परिधि के लिए एक अन्य सूत्र ===
=== एक वृत्त की परिधि के लिए एक अन्य सूत्र ===


उद्धृत पाठ का दूसरा भाग व्यास d वाले वृत्त की परिधि c की गणना के लिए एक अन्य सूत्र निर्दिष्ट करता है। यह इस प्रकार है।
उद्धृत सूत्र का दूसरा भाग व्यास d वाले वृत्त की परिधि c की गणना के लिए एक अन्य सूत्र निर्दिष्ट करता है। यह इस प्रकार है।


:<math>  
:<math>  
c= \sqrt{12 d^2} - \frac{\sqrt{12 d^2}}{3\cdot 3} + \frac{\sqrt{12 d^2}}{3^2 \cdot 5} - \frac{\sqrt{12 d^2}}{3^3 \cdot 7}+ \quad \cdots
c= \sqrt{12 d^2} - \frac{\sqrt{12 d^2}}{3\cdot 3} + \frac{\sqrt{12 d^2}}{3^2 \cdot 5} - \frac{\sqrt{12 d^2}}{3^3 \cdot 7}+ \quad \cdots
</math>
</math>
चूंकि सी =  {{pi}} इसे गणना करने के सूत्र के रूप में पुनः बनाया जा सकता है {{pi}} निम्नलिखित नुसार।
चूंकि c =  {{pi}} d इसे π की गणना करने के लिए एक सूत्र के रूप में निम्नानुसार सुधारा जा सकता है।


:<math>  
:<math>  
\pi = \sqrt{12}\left( 1 - \frac{1}{3\cdot3}+\frac{1}{3^2\cdot 5} -\frac{1}{3^3\cdot 7} +\quad \cdots\right)  
\pi = \sqrt{12}\left( 1 - \frac{1}{3\cdot3}+\frac{1}{3^2\cdot 5} -\frac{1}{3^3\cdot 7} +\quad \cdots\right)  
</math>
</math>
यह q = को प्रतिस्थापित करके प्राप्त किया जाता है <math>1/\sqrt{3}</math> (इसलिए θ = {{pi}} / 6) तन के लिए शक्ति श्रृंखला विस्तार में<sup>-1</sup> क्यू ऊपर।
यह q = <math>1/\sqrt{3}</math> को प्रतिस्थापित करके प्राप्त किया जाता है ऊपर tan−1 q के लिए घात श्रेणी विस्तार में (इसलिए θ = π / 6)


== के लिए विभिन्न अनंत श्रृंखलाओं के अभिसरण की तुलना {{pi}}==
== π के लिए विभिन्न अनंत श्रृंखलाओं के अभिसरण की तुलना==


<br />
<br />
Line 260: Line 259:


== यह भी देखें ==
== यह भी देखें ==
*संगमग्राम के माधव
*[[संगमग्राम के माधवमाधव की ज्या तालिकामाधव के संशोधन पदपाडे सन्निकटनटेलर श्रृंखला|संगमग्राम के माधव]]
* माधव की ज्या तालिका
* [[संगमग्राम के माधवमाधव की ज्या तालिकामाधव के संशोधन पदपाडे सन्निकटनटेलर श्रृंखला|माधव की ज्या तालिका]]
*माधव का संशोधन पद
*[[संगमग्राम के माधवमाधव की ज्या तालिकामाधव के संशोधन पदपाडे सन्निकटनटेलर श्रृंखला|माधव के संशोधन पद]]
*पाडे अनुमानित
*[[संगमग्राम के माधवमाधव की ज्या तालिकामाधव के संशोधन पदपाडे सन्निकटनटेलर श्रृंखला|पाडे सन्निकटन]]
* टेलर श्रृंखला
* [[संगमग्राम के माधवमाधव की ज्या तालिकामाधव के संशोधन पदपाडे सन्निकटनटेलर श्रृंखला|टेलर श्रृंखला]]
* [[लॉरेंट श्रृंखला]]
* [[लॉरेंट श्रृंखला]]
* [[प्यूसेक्स श्रृंखला]]
* [[प्यूसेक्स श्रृंखला]]
Line 299: Line 298:
{{Refend}}
{{Refend}}


{{DEFAULTSORT:Madhava Series}}[[Category: गणितीय श्रृंखला]] [[Category: गणित का इतिहास]] [[Category: केरल स्कूल ऑफ एस्ट्रोनॉमी एंड मैथमेटिक्स]] [[Category: श्रृंखला विस्तार]] [[Category: भारतीय गणित]]
{{DEFAULTSORT:Madhava Series}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with invalid date parameter in template|Madhava Series]]
[[Category:Created On 10/04/2023]]
[[Category:CS1|Madhava Series]]
[[Category:CS1 errors|Madhava Series]]
[[Category:CS1 français-language sources (fr)|Madhava Series]]
[[Category:Created On 10/04/2023|Madhava Series]]
[[Category:Lua-based templates|Madhava Series]]
[[Category:Machine Translated Page|Madhava Series]]
[[Category:Pages with script errors|Madhava Series]]
[[Category:Templates Vigyan Ready|Madhava Series]]
[[Category:Templates that add a tracking category|Madhava Series]]
[[Category:Templates that generate short descriptions|Madhava Series]]
[[Category:Templates using TemplateData|Madhava Series]]
[[Category:Use dmy dates from October 2019|Madhava Series]]
[[Category:केरल स्कूल ऑफ एस्ट्रोनॉमी एंड मैथमेटिक्स|Madhava Series]]
[[Category:गणित का इतिहास|Madhava Series]]
[[Category:गणितीय श्रृंखला|Madhava Series]]
[[Category:भारतीय गणित|Madhava Series]]
[[Category:श्रृंखला विस्तार|Madhava Series]]

Latest revision as of 11:30, 24 April 2023

गणित में, एक माधव श्रृंखला 14वीं या 15वीं शताब्दी में केरल में संगमग्राम के गणितज्ञ और खगोलशास्त्री माधव (सी. 1350 - सी. 1425) या उनके अनुयायियों द्वारा केरल स्कूल में खगोलिकी और अंक शास्त्र में खोजे गए ज्या, कोज्या और स्पर्शरेखा फलन के लिए तीन टेलर श्रृंखला विस्तारों में से एक है।[1] आधुनिक संकेतन का उपयोग करते हुए, ये श्रृंखलाएँ हैं:

तीनों श्रृंखलाओं को बाद में 17वीं सदी के यूरोप में स्वतंत्र रूप से खोजा गया। 1669 में आइजैक न्यूटन द्वारा ज्या और कोज्या की श्रृंखला को फिर से खोजा गया,[2] और चाप स्पर्शरेखा की श्रृंखला को 1671 में जेम्स ग्रेगरी और 1673 में गॉटफ्रीड लाइबनिज द्वारा फिर से खोजा गया था, [3] और इसे पारंपरिक रूप से ग्रेगरी की श्रृंखला कहा जाता है। विशिष्ट मान वृत्त नियतांक π की गणना करने के लिए किया जा सकता है, और 1 के लिए स्पर्शरेखा श्रृंखला को पारंपरिक रूप से लीबनिज़ की श्रृंखला कहा जाता है।

माधव की प्राथमिकता की मान्यता में, हाल ही की रचना में इन

श्रृंखलाओं को कभी-कभी माधव-न्यूटन श्रृंखला,[4] माधव-ग्रेगरी श्रृंखला[5] या माधव-लीबनिज श्रृंखला[6](अन्य समुच्चयों के बीच) कहा जाता है।[7] माधव की किसी भी विद्यमान रचना में उन व्यंजकों के बारे में स्पष्ट कथन नहीं हैं जिन्हें अब माधव श्रृंखला कहा जाता है। हालाँकि,बाद के केरल के गणितज्ञ नीलकण्ठ सोमयाजी और ज्येष्ठदेव के लेखन में माधव को इन श्रृंखलाओं के स्पष्ट गुण मिल सकते हैं। बाद के इन कार्यों में ऐसे प्रमाण और वृत्तविवरण भी सम्मिलित हैं जो बताते हैं कि श्रृंखला में माधव कैसे पहुंचे होंगे।

"माधव के अपने शब्द" में माधव श्रृंखला

माधव की कोई भी रचना, जिसमें उनके नाम से कोई भी श्रंखला व्यंजक सम्मिलित है, बची नहीं है। केरल स्कूल में माधव के अनुयायियों के लेखन में ये श्रृंखला व्यंजक पाए जाते हैं। कई स्थानों पर इन लेखकों ने स्पष्ट रूप से कहा है कि ये "माधव द्वारा बताए गए" हैं। इस प्रकार तंत्रसंग्रह और उसके वृत्तवर्णन में पाई जाने वाली विभिन्न श्रंखलाओं की व्याख्या "माधव के अपने शब्दों" में सुरक्षित रूप से मानी जा सकती है। शंकर वरियार (लगभग 1500 - 1560 CE) द्वारा तंत्रसंग्रह (जिसे तंत्रसंग्रह-व्याख्या के रूप में भी जाना जाता है) की युक्तिदीपिका टिप्पणी में दिए गए प्रासंगिक छंदों के अनुवाद नीचे पुन: प्रस्तुत किए गए हैं। इसके बाद इन्हें वर्तमान गणितीय अंकन में दर्शाया गया है।[8][9]

माधव की ज्या श्रंखला

माधव के अपने शब्दों में

माधव की ज्या श्रृंखला शंकर वरियार द्वारा युक्ति-दीपिका टिप्पणी (तंत्रसंग्रह-व्याख्या) में 2.440 और 2.441 छंदों में बताई गई है। छंद का अनुवाद इस प्रकार है।

चाप के वर्ग से चाप को गुणा करें, और इसे पुनरावर्ती का परिणाम लें (कितनी बार)। क्रमिक सम संख्याओं के वर्गों से विभाजित करें (जैसे कि वर्तमान को पिछले से गुणा किया जाता है) उस संख्या से बढ़ाकर और त्रिज्या के वर्ग से गुणा किया जाता है। चाप और क्रमिक परिणाम एक के नीचे एक रखें, और प्रत्येक को ऊपर वाले से घटाएं। ये एक साथ जीवा [ज्या] देते हैं, जैसा कि "विद्वान" आदि से शुरू होने वाले छंद में एक साथ एकत्र किया गया है।

आधुनिक अंकन में प्रतिपादन

मान लीजिए r वृत्त की त्रिज्या और s चाप-लंबाई को निरूपित करता है।

  • निम्नलिखित अंश (भिन्न के ऊपर का अंक) पहले रूपांकित हैं:
  • फिर इन्हें छंद में निर्दिष्ट मात्राओं से विभाजित किया जाता है।
  • चाप और क्रमिक परिणाम एक के नीचे एक रखें, और जीवा प्राप्त करने के लिए प्रत्येक को ऊपर वाले से घटाएं:


वर्तमान अंकन में परिवर्तन

मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब s = r θ और जीवा = r sin θ। इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरल करने पर हमें प्राप्त होता है

जो ज्या फलन की अनंत घात श्रृंखला विस्तार देता है।

संख्यात्मक गणना के लिए माधव का सुधार

छंद की अंतिम पंक्ति 'विदवान' आदि से शुरू होने वाले छंद में एक साथ एकत्र की गई है, माधव द्वारा प्रस्तुत श्रृंखला के एक सुधार का संदर्भ है, जो चाप और त्रिज्या के निर्दिष्ट मानो के लिए आसान गणना की सुविधा प्रदान करता है। इस तरह के सुधार के लिए, माधव एक वृत्त के एक चौथाई भाग पर विचार करते हैं, जिसकी माप 5400 मिनट (मान लीजिए C मिनट) है और ऐसे वृत्त के विभिन्न चापों के जीवाओं की आसान गणना के लिए एक पद्धति विकसित करते हैं। R वृत्त की त्रिज्या है, जिसका एक-चौथाई भाग C को मापता है। माधव ने π के लिए अपने श्रृंखला सूत्र का उपयोग करके π के मान की गणना पहले ही कर ली थी।[10] π के इस मान का उपयोग करते हुए, अर्थात् 3.1415926535922, त्रिज्या R की गणना निम्नानुसार की जाती है: तब

R = 2 × 5400 / π = 3437.74677078493925 = 3437 आर्कमिनट 44 आर्कसेकण्ड 48 आर्कसेकंड का साठवां भाग = 3437′ 44′′ 48′′′/

जीवा के लिए माधव के व्यंजक R त्रिज्या के किसी वृत्त के किसी भी चाप s के समतुल्य है:

माधव अब निम्नलिखित मानों की गणना करते हैं:

क्रमांक व्यंजक मान कटापैयाडी प्रणाली मे मान
   1       R × (π / 2)3 / 3!       2220′   39′′   40′′′       ni-rvi-ddhā-nga-na-rē-ndra-rung   
   2       R × (π / 2)5 / 5!       273′   57′′   47′′′       sa-rvā-rtha-śī-la-sthi-ro   
   3       R × (π / 2)7 / 7!       16′   05′′   41′′′       ka-vī-śa-ni-ca-ya   
   4       R × (π / 2)9 / 9!       33′′   06′′′       tu-nna-ba-la   
   5       R × (π / 2)11 / 11!       44′′′       vi-dvān   

जीवा की गणना अब निम्नलिखित पद्धति का उपयोग करके की जा सकती है:

जीवा = s − (s / C)3 [ (2220′ 39′′ 40′′′) − (s / C)2 [ (273′ 57′′ 47′′′) − (s / C)2 [ (16′ 05′′ 41′′′) − (s / C)2[ (33′′ 06′′′) − (s / C)2 (44′′′ ) ] ] ] ].

यह 11वें क्रम के टेलर बहुपद द्वारा जीवा का सन्निकटन देता है। इसमें केवल एक विभाजन, छह गुणन और पांच व्यवकलन सम्मिलित हैं। माधव ने संख्यात्मक रूप से कुशल अभिकलनी पद्धति को निम्नलिखित शब्दों में निर्धारित किया है (युक्ति-दीपिका में छंद 2.437 का अनुवाद):

vi-dvān, tu-nna-ba-la, ka-vī-śa-ni-ca-ya, sa-rvā-rtha-śī-la-sthi-ro, ni-rvi-ddhā-nga-na-rē-ndra-rung / परिधि के एक-चौथाई (5400') से विभाजित चाप के वर्ग द्वारा क्रमिक रूप से इन पांच संख्याओं को गुणा करें, और अगली संख्या से घटाएं। (प्राप्त परिणाम और अगली संख्या के साथ इस विधि को जारी रखें।) परिधि के एक चौथाई से विभाजित चाप के घन द्वारा अंतिम परिणाम को गुणा करें और चाप से घटाएं।

माधव की कोज्या श्रृंखला

माधव के अपने शब्दों में

माधव की कोज्या श्रंखला शंकर वरियार द्वारा युक्ति-दीपिका वृत्तवर्णन (तंत्रसंग्रह-व्याख्या) में 2.442 और 2.443 छंदों में बताई गई है। छंद का अनुवाद इस प्रकार है।

चाप के वर्ग को इकाई (यानी त्रिज्या) से गुणा करें और इसे पुनरावर्ती का परिणाम लें (कितनी बार)। क्रमिक सम संख्याओं के वर्ग से विभाजित करें (उपरोक्त अंशों में से प्रत्येक) उस संख्या से घटाकर और त्रिज्या के वर्ग से गुणा करें। लेकिन पहला पद (अब) (जो है) दो बार त्रिज्या से विभाजित है। इस प्रकार प्राप्त क्रमिक परिणामों को एक के नीचे एक रखें और प्रत्येक को ऊपर वाले से घटाएँ। ये मिलकर śara देते हैं जैसा कि स्टेना,स्ट्री आदि से शुरू होने वाले छंद में एक साथ एकत्र किया जाता है।

आधुनिक अंकन में प्रतिपादन

मान लीजिए r वृत्त की त्रिज्या और s चाप-लंबाई को निरूपित करता है।

  • निम्नलिखित अंश पहले रूपांकित हैं:
  • फिर इन्हें छंद में निर्दिष्ट मात्राओं से विभाजित किया जाता है।
  • चाप और क्रमिक परिणाम एक के नीचे एक रखें, और śara प्राप्त करने के लिए प्रत्येक को ऊपर वाले से घटाएं:


वर्तमान अंकन में परिवर्तन

मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब s = rθ और śara = r(1 - cos θ) है। इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरलीकृत करने पर हमें प्राप्त होता है

जो कोज्या फलन की अनंत घात श्रृंखला विस्तार देता है।

संख्यात्मक गणना के लिए माधव का सुधार

छंद की अंतिम पंक्ति 'स्टेना, स्ट्री, आदि से शुरू होने वाले छंद में एक साथ एकत्रित' माधव द्वारा स्वयं प्रस्तुत किए गए एक सुधार का संदर्भ है, जो चाप और त्रिज्या के निर्दिष्ट मानो के लिए श्रृंखला की आसान गणना की सुविधा प्रदान करता है। ज्या श्रृंखला की स्थिति में, माधव एक वृत्त पर विचार करते हैं जिसका एक चौथाई हिस्सा 5400 मिनट (मान लीजिए C मिनट) को मापता है और ऐसे वृत्त के विभिन्न चापों के śara की आसान गणना के लिए एक पद्धति विकसित करता है। मान लीजिए R एक वृत्त की त्रिज्या है जिसका एक चौथाई भाग C को मापता है। फिर, ज्या श्रृंखला की स्थिति में, माधव को R = 3437′ 44′ 48′′ प्राप्त होता है।

त्रिज्या R के एक वृत्त के किसी चाप s के संगत śara के लिए माधव के व्यंजक निम्नलिखित के समतुल्य है:

माधव अब निम्नलिखित मानों की गणना करते हैं:

क्रमांक व्यंजक मान कटापैयाडी प्रणाली मे मान
   1       R × (π / 2)2 / 2!       4241′   09′′   00′′′       u-na-dha-na-krt-bhu-re-va   
   2       R × (π / 2)4 / 4!       872′   03′′   05 ′′′       mī-nā-ngo-na-ra-sim-ha   
   3       R × (π / 2)6 / 6!       071′   43′′   24′′′       bha-drā-nga-bha-vyā-sa-na   
   4       R × (π / 2)8 / 8!       03′   09′′   37′′′       su-ga-ndhi-na-ga-nud   
   5       R × (π / 2)10 / 10!       05′′   12′′′       strī-pi-śu-na   
   6       R × (π / 2)12 / 12!       06′′′       ste-na   

śara की गणना अब निम्नलिखित पद्धति का उपयोग करके की जा सकती है:

śara = (s / C)2 [ (4241′ 09′′ 00′′′) − (s / C)2 [ (872′ 03′′ 05 ′′′) − (s / C)2 [ (071′ 43′′ 24′′′) − (s / C)2[ (03′ 09′′ 37′′′) − (s / C)2 [(05′′ 12′′′) − (s / C)2 (06′′′) ] ] ] ] ]

यह 12वें क्रम के टेलर बहुपद द्वारा śara का सन्निकटन देता है। इसमें एक विभाजन, छह गुणन और पांच व्यवकलन भी सम्मिलित हैं। माधव ने संख्यात्मक रूप से कुशल अभिकलनी पद्धति को निम्नलिखित शब्दों में निर्धारित किया है (युक्ति-दीपिका में छंद 2.438 का अनुवाद):

छ: चरण, स्ट्रीपिशुन, सुगंधिनगानुद, भद्रांगभव्यासन, मिनांगोनारसिम्हा, उन्धनकृतभुरेव। परिधि के एक-चौथाई से विभाजित चाप के वर्ग से गुणा करें और अगली संख्या से घटाएं। (परिणाम और अगली संख्या के साथ जारी रखें।) अंतिम परिणाम उत्क्रम-ज्य (आर छंद चिह्न) होगा।

माधव की चाप स्पर्शरेखा श्रृंखला

माधव के अपने शब्दों में

माधव की चापस्पर्शा श्रंखला को युक्ति-दीपिका विवरण (तंत्रसंग्रह-व्याख्या) में शंकर वरियार द्वारा 2.206 - 2.209 छंदों में कहा गया है। [11] ज्येष्ठदेव ने युक्तिभाषा में भी इस श्रृंखला का वर्णन किया है।[12][13][14]

अब, केवल उसी कोणांक से, वांछित ज्या के चाप का निर्धारण (बनाया) जा सकता है। वह इस प्रकार है: पहला परिणाम वांछित ज्या और चाप के कोज्या से विभाजित त्रिज्या का गुणनफल है। जब किसी ने ज्या के वर्ग को गुणक और कोज्या के वर्ग को भाजक बना दिया है, तो अब परिणामों का एक समूह पहले से शुरू होने वाले (पिछले) परिणामों से निर्धारित किया जाना है। जब इन्हें विषम संख्या 1, 3, और इसी तरह से क्रम में विभाजित किया जाता है,और जब किसी ने सम(-क्रमांकित) परिणामों के योग को विषम (इकाई) के योग से घटाया है, तो वह चाप होना चाहिए। यहाँ ज्या और कोज्या के छोटे को वांछित (ज्या) माना जाना आवश्यक है। अन्यथा, बार-बार (गणना) करने पर भी परिणामों की समाप्ति नहीं होगी।

इसी कोणांक के द्वारा परिधि की गणना दूसरे तरीके से भी की जा सकती है। वह इस प्रकार है (निम्नानुसार): पहले परिणाम को व्यास के वर्ग के वर्गमूल को बारह से गुणा करना चाहिए। तब से, परिणाम को प्रत्येक अनुक्रमी (स्थिति) में तीन (इन) से विभाजित किया जाना चाहिए। जब इन्हें 1 से शुरू होने वाली विषम संख्याओं के क्रम में विभाजित किया जाता है, और जब (सम) परिणाम को विषम संख्याओं के योग से घटाया जाता है, तो (वह) परिधि होनी चाहिए।

आधुनिक अंकन में प्रतिपादन

वांछित ज्या (ज्या या जीवा) y का चाप है। मान लीजिए कि r त्रिज्या है और x कोज्या (कोटिज्य) है।

  • पहला परिणाम है।
  • गुणक और भाजक बनाएँ
  • परिणामों का समूह बनाएं:
  • इन्हें संख्या 1, 3, आदि से विभाजित किया गया है:
  • विषम संख्या वाले परिणामों का योग:
  • सम संख्या वाले परिणामों का योग:
  • अब चाप द्वारा दिया गया है


वर्तमान अंकन में परिवर्तन

मान लीजिए θ वृत्त के केंद्र पर चाप s द्वारा बनाया गया कोण है। तब s = rθ, x = kotijya = r cos θ और y = jya = r sin θ / बाद में y / x = tan θ। इन्हें अंतिम व्यंजक में प्रतिस्थापित करने और सरलीकृत करने पर हमें प्राप्त होता है

  • .

माना tan θ = q हमारे पास अंततः है


एक वृत्त की परिधि के लिए एक अन्य सूत्र

उद्धृत सूत्र का दूसरा भाग व्यास d वाले वृत्त की परिधि c की गणना के लिए एक अन्य सूत्र निर्दिष्ट करता है। यह इस प्रकार है।

चूंकि c = π d इसे π की गणना करने के लिए एक सूत्र के रूप में निम्नानुसार सुधारा जा सकता है।

यह q = को प्रतिस्थापित करके प्राप्त किया जाता है ऊपर tan−1 q के लिए घात श्रेणी विस्तार में (इसलिए θ = π / 6)।

π के लिए विभिन्न अनंत श्रृंखलाओं के अभिसरण की तुलना


Comparison of the convergence of two Madhava series (the one with 12 in dark blue) and several historical infinite series for π. Sn is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times. (click for detail)

यह भी देखें

टिप्पणियाँ

  1. Gupta 1987; Katz 1995; Roy 2021, Ch. 1. Power Series in Fifteenth-Century Kerala, pp. 1–22
  2. Newton (1669) De analysi per aequationes numero terminorum infinitas was circulated as a manuscript but not published until 1711. For context, see:
    Roy 2021, Ch. 8. De Analysi per Aequationes Infinitas, pp. 165–185.
    Leibniz later included the series for sine and cosine in Leibniz (1676) De quadratura arithmetica circuli ellipseos et hyperbola cujus corollarium est trigonometria sine tabulis, which was only finally published in 1993. However, he had been sent Newton's sine and cosine series by Henry Oldenburg in 1675 and did not claim to have discovered them. See:
    Probst, Siegmund (2015). "Leibniz as reader and second inventor: The cases of Barrow and Mengoli". In Goethe, N.; Beeley, P.; Rabouin, D. (eds.). G.W. Leibniz, Interrelations between Mathematics and Philosophy. Springer. pp. 111–134. doi:10.1007/978-94-017-9664-4_6.
  3. Gregory received a letter from John Collins including Newton's sine and cosine series in late 1670. He discovered the general Taylor series and sent a now-famous letter back to Collins in 1671 including several specific series including the arctangent. See Roy 1990.
    Horvath, Miklos (1983). "On the Leibnizian quadrature of the circle" (PDF). Annales Universitatis Scientiarum Budapestiensis (Sectio Computatorica). 4: 75–83.
  4. For example:
    Plofker, Kim (2005). "Relations between approximations to the sine in Kerala mathematics". In Emch, Gérard G.; Sridharan, R.; Srinivas, M. D. (eds.). Contributions to the History of Indian Mathematics. Gurgaon: Hindustan Book Agency. pp. 135–152. doi:10.1007/978-93-86279-25-5_6.
    Filali, Mahmoud (2012). "Harmonic analysis and applications". Kybernetes. 41: 129–144. doi:10.1108/03684921211213160.
  5. For example: Gupta 1973; Joseph 2011, p. 428;
    Levrie, Paul (2011). "Lost and Found: An Unpublished ζ(2)-Proof". Mathematical Intelligencer. 33: 29–32. doi:10.1007/s00283-010-9179-y.
  6. For example: Gupta 1992;
    Pouvreau, David (2015). "Sur l'accélération de la convergence de la série de Madhava-Leibniz". Quadrature (in français). 97: 17–25.
    Young, Paul Thomas (2022). "From Madhava–Leibniz to Lehmer's Limit". American Mathematical Monthly. 129 (6): 524–538. doi:10.1080/00029890.2022.2051405.
  7. For example,
    Madhava–Gregory–Leibniz series: Benko, David; Molokach, John (2013). "The Basel Problem as a Rearrangement of Series". College Mathematics Journal. 44 (3): 171–176. doi:10.4169/college.math.j.44.3.171.
    Madhava–Leibniz–Gregory series: Danesi, Marcel (2021). "1. Discovery of π and Its Manifestations". Pi (π) in Nature, Art, and Culture. Brill. pp. 1–30. doi:10.1163/9789004433397_002.
    Nilakantha–Gregory series: Campbell, Paul J. (2004). "Borwein, Jonathan, and David Bailey, Mathematics by Experiment". Reviews. Mathematics Magazine. 77 (2): 163. doi:10.1080/0025570X.2004.11953245.
    Gregory–Leibniz–Nilakantha formula: Gawrońska, Natalia; Słota, Damian; Wituła, Roman; Zielonka, Adam (2013). "Some generalizations of Gregory's power series and their applications" (PDF). Journal of Applied Mathematics and Computational Mechanics. 12 (3).
  8. Bag 1976.
  9. Raju 2007, pp. 114–120.
  10. Raju 2007, p. 119.
  11. Raju 2007, p. 231.
  12. O'Connor, John J.; Robertson, Edmund F. (2000). "संगमग्राम के माधव". MacTutor History of Mathematics archive.
  13. Gupta 1973.
  14. Sarma 1972.


संदर्भ