दुरभिविन्यास: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Difference in orientation between two crystallites in a polycrystalline material}} सामग्री विज्ञान में, गलत अभ...")
 
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Difference in orientation between two crystallites in a polycrystalline material}}
{{Short description|Difference in orientation between two crystallites in a polycrystalline material}}


सामग्री विज्ञान में, गलत अभिविन्यास एक पॉली[[स्फटिक]]ाइन सामग्री में दो क्रिस्टलीय के बीच [[क्रिस्टलोग्राफी]] अभिविन्यास में अंतर है।
सामग्री विज्ञान में, दुरभिविन्यास एक पॉलीक्रिस्टलाइन सामग्री में दो क्रिस्टलीय के बीच [[क्रिस्टलोग्राफी|क्रिस्टलोग्राफिक]] अभिविन्यास में अंतर है।


क्रिस्टलीय सामग्रियों में, एक क्रिस्टलीय का अभिविन्यास एक नमूना [[संदर्भ फ्रेम]] (यानी एक रोलिंग (मेटल वर्किंग) या [[ बाहर निकालना ]] प्रक्रिया और दो [[ ओर्थोगोनल ]] दिशाओं की दिशा द्वारा परिभाषित) से [[क्रिस्टलीय जाली]] के स्थानीय संदर्भ फ्रेम में परिवर्तन द्वारा परिभाषित किया जाता है। [[यूनिट सेल]] के आधार पर परिभाषित किया गया है। इसी तरह, एक स्थानीय क्रिस्टल फ्रेम से दूसरे क्रिस्टल फ्रेम में जाने के लिए आवश्यक परिवर्तन को गलत तरीके से बदलना है। यही है, यह दो अलग-अलग अभिविन्यासों के बीच अभिविन्यास स्थान में दूरी है। यदि अभिविन्यास दिशा कोसाइन के [[रोटेशन मैट्रिक्स]] के संदर्भ में निर्दिष्ट हैं {{mvar|g{{sub|A}}}} और {{mvar|g{{sub|B}}}}, फिर मिसऑरिएंटेशन ऑपरेटर {{math|∆''g{{sub|AB}}''}} से जा रहे हैं {{mvar|A}} को {{mvar|B}} को इस प्रकार परिभाषित किया जा सकता है:
क्रिस्टलीय सामग्रियों में, एक क्रिस्टलीय का अभिविन्यास एक नमूना [[संदर्भ फ्रेम]] (अर्थात एक रोलिंग (मेटल वर्किंग) या [[ बाहर निकालना |बाहर निकालना]] प्रक्रिया और दो [[ ओर्थोगोनल |ओर्थोगोनल]] दिशाओं की दिशा द्वारा परिभाषित) से [[क्रिस्टलीय जाली]] के स्थानीय संदर्भ फ्रेम में परिवर्तन द्वारा परिभाषित किया जाता है। [[यूनिट सेल|इकाई कोशिका]] के आधार पर परिभाषित किया गया है। इसी तरह, एक स्थानीय क्रिस्टल फ्रेम से दूसरे क्रिस्टल फ्रेम में जाने के लिए आवश्यक परिवर्तन को गलत विधि से बदलना है। यही है, यह दो अलग-अलग अभिविन्यासों के बीच अभिविन्यास स्थान में दूरी है। यदि अभिविन्यास दिशा कोसाइन {{mvar|g{{sub|A}}}} और {{mvar|g{{sub|B}}}}, के [[रोटेशन मैट्रिक्स|आव्यूह]] के संदर्भ में निर्दिष्ट हैं तो A से B तक जाने वाले दुरभिविन्यास ऑपरेटर {{math|∆''g{{sub|AB}}''}} को निम्नानुसार परिभाषित किया जा सकता है:  


:<math>\begin{align}
:<math>\begin{align}
Line 9: Line 9:
& \Delta g_{AB} = g_B g_A^{-1}
& \Delta g_{AB} = g_B g_A^{-1}
\end{align}</math>
\end{align}</math>
जहां शब्द {{tmath|g_A^{-1} }} का उल्टा ऑपरेशन है {{mvar|g{{sub|A}}}}, यानी क्रिस्टल फ्रेम से परिवर्तन {{mvar|A}} नमूना फ्रेम पर वापस। यह पहले क्रिस्टल फ्रेम ({{mvar|A}}) वापस नमूना फ्रेम में और बाद में नए क्रिस्टल फ्रेम में ({{mvar|B}}).
जहां शब्द {{tmath|g_A^{-1} }} {{mvar|g{{sub|A}}}} का उत्क्रम ऑपरेशन है, अर्थात क्रिस्टल फ्रेम {{mvar|A}} से वापस नमूना फ्रेम में परिवर्तन है। यह पहले क्रिस्टल फ्रेम ({{mvar|A}}) वापस नमूना फ्रेम में और बाद में नए क्रिस्टल फ्रेम में ({{mvar|B}}).में बदलने के क्रमिक संचालन के रूप में गलत धारणा का एक वैकल्पिक विवरण प्रदान करता है


इस रूपांतरण प्रक्रिया को प्रदर्शित करने के लिए विभिन्न विधियों का उपयोग किया जा सकता है, जैसे: [[यूलर कोण]], रोड्रिग्स वैक्टर, अक्ष कोण|अक्ष/कोण (जहां अक्ष को क्रिस्टलोग्राफिक दिशा के रूप में निर्दिष्ट किया गया है), या क्वाटरनियन और स्थानिक रोटेशन।
इस रूपांतरण प्रक्रिया को प्रदर्शित करने के लिए विभिन्न विधियों का उपयोग किया जा सकता है, जैसे: [[यूलर कोण]], रोड्रिग्स वैक्टर, अक्ष कोण(जहां अक्ष को क्रिस्टलोग्राफिक दिशा के रूप में निर्दिष्ट किया गया है), या इकाई चतुष्कोण है।


== समरूपता और गलत धारणा ==
== समरूपता और गलत धारणा ==
गलत अभिविन्यास पर [[क्रिस्टल समरूपता]] का प्रभाव पूर्ण अभिविन्यास स्थान के अंश को कम करना है जो सभी संभावित गलत संबंधों को विशिष्ट रूप से प्रदर्शित करने के लिए आवश्यक है। उदाहरण के लिए, क्यूबिक क्रिस्टल (यानी एफसीसी) में 24 सममित रूप से संबंधित अभिविन्यास हैं। इनमें से प्रत्येक अभिविन्यास शारीरिक रूप से अप्रभेद्य है, हालांकि गणितीय रूप से भिन्न है। इसलिए, अभिविन्यास स्थान का आकार 24 के एक कारक से कम हो जाता है। यह घन समरूपता के लिए मूलभूत क्षेत्र (FZ) को परिभाषित करता है। दो घनीय स्फटिकों के बीच दुर्विन्यास के लिए, प्रत्येक के पास अपनी 24 अंतर्निहित समरूपताएँ होती हैं। इसके अलावा, एक स्विचिंग समरूपता मौजूद है, जिसे परिभाषित किया गया है:
दुरभिविन्यास पर [[क्रिस्टल समरूपता]] का प्रभाव पूर्ण अभिविन्यास स्थान के अंश को कम करना है जो सभी संभावित गलत संबंधों को विशिष्ट रूप से प्रदर्शित करने के लिए आवश्यक है। उदाहरण के लिए, घन क्रिस्टल (अर्थात एफसीसी) में 24 सममित रूप से संबंधित अभिविन्यास हैं। इनमें से प्रत्येक अभिविन्यास शारीरिक रूप से अप्रभेद्य है, किंतु गणितीय रूप से भिन्न है। इसलिए, अभिविन्यास स्थान का आकार 24 के एक कारक से कम हो जाता है। यह घन समरूपता के लिए मूलभूत क्षेत्र (FZ) को परिभाषित करता है। दो घनीय स्फटिकों के बीच दुर्विन्यास के लिए, प्रत्येक में 24 अंतर्निहित समरूपताएँ होती हैं। इसके अतिरिक्त , एक स्विचिंग समरूपता उपस्थित है, जिसे परिभाषित किया गया है:


:<math>\Delta g_{AB}=\Delta g_{BA}</math>
:<math>\Delta g_{AB}=\Delta g_{BA}</math>
जो दिशा के प्रति दुर्भिमुखता की निश्चरता को पहचानता है; ए → बी या बी → ए। गलत अभिविन्यास के लिए क्यूबिक-क्यूबिक मौलिक क्षेत्र में कुल अभिविन्यास स्थान का अंश इसके द्वारा दिया गया है:<br />
जो दिशा के प्रति दुर्भिमुखता की निश्चरता को पहचानता है; A→B or B→A। दुरभिविन्यास के लिए घन -घन मौलिक क्षेत्र में कुल अभिविन्यास स्थान का अंश इसके द्वारा दिया गया है:
:<math>\frac{1}{24\cdot24\cdot2}=\frac{1}{1152}</math>
:<math>\frac{1}{24\cdot24\cdot2}=\frac{1}{1152}</math>
या 1/48 घन मौलिक क्षेत्र का आयतन। यह अधिकतम अद्वितीय गलत अभिविन्यास कोण को 62.8°<br /> तक सीमित करने का प्रभाव भी रखता है
या 1/48 घन मौलिक क्षेत्र का आयतन। यह अधिकतम अद्वितीय दुरभिविन्यास कोण को 62.8°तक सीमित करने का प्रभाव भी रखता है
<br />
भटकाव FZ के भीतर आने वाले सभी सममित रूप से समतुल्य गलत अभिविन्यासों में से सबसे छोटे संभावित रोटेशन कोण के साथ गलत अभिविन्यास का वर्णन करता है (आमतौर पर क्यूबिक्स के लिए मानक स्टीरियोग्राफिक त्रिकोण में एक अक्ष होने के रूप में निर्दिष्ट)। इन वेरिएंट्स की गणना में गलत अभिविन्यास की गणना के दौरान प्रत्येक अभिविन्यास के लिए क्रिस्टल समरूपता ऑपरेटरों का अनुप्रयोग शामिल है।<br />
<math>\Delta g_{AB}=O_{B}^{crys}g_{B}(O_{A}^{crys}g_{A})^{-1}</math><br />
जहां ओ<sup>Crys</sup> सामग्री के लिए सममिति संचालकों में से एक को दर्शाता है।


== दुर्बलता वितरण ==
<br />विचलन FZ के अंदर आने वाले सभी सममित रूप से समतुल्य दुरभिविन्यास में से सबसे छोटे संभावित घूर्णन कोण के साथ दुरभिविन्यास का वर्णन करता है (सामान्यतः घन के लिए मानक त्रिविम त्रिकोण में एक अक्ष होने के रूप में निर्दिष्ट)। इन प्रकारों की गणना में दुरभिविन्यास की गणना के समय प्रत्येक अभिविन्यास के लिए क्रिस्टल समरूपता ऑपरेटरों का अनुप्रयोग सम्मिलित है।
[[Image:MDF rodrigues AA5083.jpg|thumb|alt=alt text|AA5083 प्लेट के नमूने के लिए रोड्रिग्स स्पेस में दिखाया गया उदाहरण MDF]]मिसऑरिएंटेशन डिस्ट्रीब्यूशन (एमडी) [[ अभिविन्यास वितरण समारोह ]] के अनुरूप है जिसका उपयोग बनावट को चित्रित करने में किया जाता है। एमडी एक श्रेणी में आने वाले किन्हीं भी दो अनाजों के बीच गलतफहमी की संभावना का वर्णन करता है <math>d \Delta g</math> एक दिए गए दुराग्रह के आसपास <math>\Delta g</math>. संभाव्यता घनत्व के समान होने पर, सामान्यीकरण के कारण एमडी गणितीय रूप से समान नहीं है। एक एमडी में तीव्रता समान रूप से वितरित गलत अभिविन्यास वाली सामग्री में अपेक्षित वितरण के संबंध में यादृच्छिक घनत्व (एमआरडी) के गुणकों के रूप में दी जाती है। एमडी की गणना या तो श्रृंखला विस्तार द्वारा की जा सकती है, आमतौर पर सामान्यीकृत [[गोलाकार हार्मोनिक्स]] का उपयोग करके, या असतत बिनिंग योजना द्वारा, जहां प्रत्येक डेटा बिंदु को एक बिन को सौंपा जाता है और संचित किया जाता है।
 
<br /><math>\Delta g_{AB}=O_{B}^{crys}g_{B}(O_{A}^{crys}g_{A})^{-1}</math><br />
 
जहां O<sup>crys</sup> सामग्री के लिए सममिति संचालकों में से एक को दर्शाता है।
 
== दुरभिविन्यास वितरण ==
[[Image:MDF rodrigues AA5083.jpg|thumb|alt=alt text|AA5083 प्लेट के नमूने के लिए रोड्रिग्स स्पेस में दिखाया गया उदाहरण MDF]]दुरभिविन्यास वितरण (एमडी) के अनुरूप है जिसका उपयोग बनावट को चित्रित करने में किया जाता है। एमडी दिए गए गलत वर्गीकरण <math>d \Delta g</math> के आस-पास <math>\Delta g</math> श्रेणी में आने वाले किन्हीं भी दो अनाजों के बीच गलत वर्गीकरण की संभावना का वर्णन करता है।,जबकि प्रायिकता घनत्व के समान एमडी गणितीय रूप से समान नहीं है। एक एमडी में तीव्रता समान रूप से वितरित दुरभिविन्यास वाली सामग्री में अपेक्षित वितरण के संबंध में यादृच्छिक घनत्व (एमआरडी) के गुणकों के रूप में दी जाती है। एमडी की गणना या तो श्रृंखला विस्तार द्वारा की जा सकती है, सामान्यतः सामान्यीकृत [[गोलाकार हार्मोनिक्स]] का उपयोग करके, या असतत बिनिंग योजना द्वारा, जहां प्रत्येक डेटा बिंदु को एक बिन को सौंपा जाता है और संचित किया जाता है।


== ग्राफिकल प्रतिनिधित्व ==
== ग्राफिकल प्रतिनिधित्व ==
[[Image:Mackenzie plot.jpg|thumb|alt=alt text|मैकेंज़ी (1958) से एक बेतरतीब ढंग से बनावट वाले पॉलीक्रिस्टल के लिए मिसऑरिएंटेशन एंगल्स का वितरण]]असतत गलत अभिविन्यास या गलत अभिविन्यास वितरण को यूलर कोण, अक्ष/कोण, या रोड्रिग्स वेक्टर अंतरिक्ष में भूखंडों के रूप में पूरी तरह से वर्णित किया जा सकता है। यूनिट चतुष्कोण, कम्प्यूटेशनल रूप से सुविधाजनक होते हुए, अपने चार-आयामी प्रकृति के कारण ग्राफिकल प्रतिनिधित्व के लिए खुद को उधार नहीं देते हैं। किसी भी अभ्यावेदन के लिए, भूखंडों को आमतौर पर मौलिक क्षेत्र के माध्यम से वर्गों के रूप में बनाया जाता है; φ के साथ<sub>2</sub> यूलर कोणों में, अक्ष/कोण के लिए घूर्णन कोण की वृद्धि पर, और स्थिर ρ पर<sub>3</sub> (<001> के समानांतर) रोड्रिग्स के लिए। घन-घन FZ के अनियमित आकार के कारण, भूखंडों को आम तौर पर घन FZ के माध्यम से अधिक प्रतिबंधात्मक सीमाओं के साथ वर्गों के रूप में दिया जाता है।<br />
[[Image:Mackenzie plot.jpg|thumb|alt=alt text|मैकेंज़ी (1958) से एक बेतरतीब ढंग से बनावट वाले पॉलीक्रिस्टल के लिए मिसऑरिएंटेशन एंगल्स का वितरण]]असतत दुरभिविन्यास या दुरभिविन्यास वितरण को यूलर कोण, अक्ष/कोण, या रोड्रिग्स सदिश अंतरिक्ष में भूखंडों के रूप में पूरी तरह से वर्णित किया जा सकता है। इकाई चतुष्कोण, कम्प्यूटेशनल रूप से सुविधाजनक होते हुए, अपने चार-आयामी प्रकृति के कारण ग्राफिकल प्रतिनिधित्व के लिए खुद को उधार नहीं देते हैं। किसी भी अभ्यावेदन के लिए, भूखंडों को सामान्यतः मौलिक क्षेत्र के माध्यम से वर्गों के रूप में बनाया जाता है; अक्ष/कोण के लिए घूर्णन कोण की वृद्धि पर यूलर कोणों में,φ<sub>2</sub> के साथ और रोड्रिग्स के लिए स्थिर ρ<sub>3</sub> पर (<001> के समानांतर) घन-घन FZ के अनियमित आकार के कारण, भूखंडों को सामान्यतः घन FZ के माध्यम से अधिक प्रतिबंधात्मक सीमाओं के साथ वर्गों के रूप में दिया जाता है।
<br />
मैकेंज़ी भूखंड एमडी के एक आयामी प्रतिनिधित्व हैं, जो अक्ष के बावजूद, दुर्बलता कोण की सापेक्ष आवृत्ति की साजिश रचते हैं। मैकेंज़ी ने एक यादृच्छिक बनावट के साथ क्यूबिक नमूने के लिए गलत वर्गीकरण वितरण निर्धारित किया।


== दुर्बलता की गणना का उदाहरण ==
<br />मैकेंज़ी भूखंड एमडी के एक आयामी प्रतिनिधित्व हैं, जो अक्ष के अतिरिक्त , दुरभिविन्यास कोण की सापेक्ष आवृत्ति की अंकन करता हैं। मैकेंज़ी ने एक यादृच्छिक बनावट के साथ घन नमूने के लिए दुरभिविन्यास वितरण निर्धारित किया।
यूलर कोणों के रूप में दिए गए दो बनावट घटकों के बीच गलतफहमी के धुरी/कोण प्रतिनिधित्व को निर्धारित करने के लिए निम्नलिखित एल्गोरिदम का एक उदाहरण है:
== दुरभिविन्यास की गणना का उदाहरण ==
यूलर कोणों के रूप में दिए गए दो बनावट घटकों के बीच दुरभिविन्यास के धुरी/कोण प्रतिनिधित्व को निर्धारित करने के लिए निम्नलिखित एल्गोरिदम का एक उदाहरण है:
: कॉपर [90,35,45]
: कॉपर [90,35,45]
:S3 [59,37,63]
:S3 [59,37,63]
पहला चरण यूलर कोण प्रतिनिधित्व को परिवर्तित कर रहा है, {{tmath|[\phi_1, \phi_2, \phi_3],}} [[ अभिविन्यास मैट्रिक्स ]] के लिए {{mvar|g}} द्वारा:
पहला चरण यूलर कोण प्रतिनिधित्व {{tmath|[\phi_1, \phi_2, \phi_3],}} [[ अभिविन्यास मैट्रिक्स |अभिविन्यास आव्यूह]] {{mvar|g}} में परिवर्तित कर रहा है,


<math>\begin{bmatrix}
<math>\begin{bmatrix}
Line 44: Line 45:
s_1s_3 & -c_1s_3 & c_3  
s_1s_3 & -c_1s_3 & c_3  
\end{bmatrix}</math>
\end{bmatrix}</math>
कहाँ {{tmath|c_n}} और {{tmath|s_n}} प्रतिनिधित्व करना {{tmath|\cos\phi_n}} और {{tmath|\sin\phi_n,}} क्रमश। यह निम्नलिखित ओरिएंटेशन मैट्रिक्स उत्पन्न करता है:
 
जहाँ {{tmath|c_n}} और {{tmath|s_n}} क्रमशः {{tmath|\cos\phi_n}} और {{tmath|\sin\phi_n,}} को दर्शाते हैं। यह निम्नलिखित अभिविन्यास आव्यूह उत्पन्न करता है:


:<math>g_{copper}=\begin{bmatrix}
:<math>g_{copper}=\begin{bmatrix}
Line 56: Line 58:
0.516 & -0.310 & 0.799 \\
0.516 & -0.310 & 0.799 \\
\end{bmatrix}</math>
\end{bmatrix}</math>
दुस्साहस तब होता है:
दुरभिविन्यास तब होता है:


:<math>\Delta g_{AB}=g_{copper}g_{S3}^{-1}=\begin{bmatrix}
:<math>\Delta g_{AB}=g_{copper}g_{S3}^{-1}=\begin{bmatrix}
Line 63: Line 65:
0.224 & -0.218 & 0.950 \\
0.224 & -0.218 & 0.950 \\
\end{bmatrix}</math>
\end{bmatrix}</math>
अक्ष/कोण विवरण (एक इकाई सदिश के रूप में अक्ष के साथ) गलत अभिविन्यास मैट्रिक्स से संबंधित है:
अक्ष/कोण विवरण (एक इकाई सदिश के रूप में अक्ष के साथ) दुरभिविन्यास आव्यूह से संबंधित है:


:<math>\begin{align}
:<math>\begin{align}
Line 71: Line 73:
& r_3 = \frac{g_{12} - g_{21} }{2\sin\Theta}
& r_3 = \frac{g_{12} - g_{21} }{2\sin\Theta}
\end{align}</math>
\end{align}</math>
(रैंडल और एंग्लर द्वारा पुस्तक में दिए गए 'आर' के घटकों के समान सूत्रों में त्रुटियां हैं (संदर्भ देखें), जिन्हें उनकी पुस्तक के अगले संस्करण में ठीक किया जाएगा। उपरोक्त सही संस्करण हैं, ध्यान दें यदि Θ = 180 डिग्री है तो इन समीकरणों के लिए भिन्न रूप का उपयोग करना होगा।)
(रैंडल और एंग्लर द्वारा पुस्तक में दिए गए 'r' के घटकों के समान सूत्रों में त्रुटियां हैं (संदर्भ देखें), जिन्हें उनकी पुस्तक के अगले संस्करण में ठीक किया जाएगा। उपरोक्त सही संस्करण हैं,एक अलग रूप नोट करते हैं। इन समीकरणों के लिए यदि Θ = 180 डिग्री का उपयोग किया जाना है।)


तांबे के लिए- एस<sub>3</sub> द्वारा दिया गया दुराग्रह {{math|Δ''g<sub>AB</sub>''}}, अक्ष/कोण विवरण 19.5° लगभग [0.689,0.623,0.369] है, जो कि <221> से केवल 2.3° है। यह परिणाम केवल 1152 सममित रूप से संबंधित संभावनाओं में से एक है, लेकिन गलत दिशा को निर्दिष्ट करता है। अभिविन्यास समरूपता (स्विचिंग समरूपता सहित) के सभी संभावित संयोजनों पर विचार करके इसे सत्यापित किया जा सकता है।
तांबे के लिए-{{math|Δ''g<sub>AB</sub>''}} द्वारा दिया गया S<sub>3</sub>, दुरभिविन्यास अक्ष/कोण विवरण [0.689,0.623,0.369] के बारे में 19.5° है जो कि <221> से केवल 2.3° है। यह परिणाम केवल 1152 सममित रूप से संबंधित संभावनाओं में से एक है, किंतु दुरभिविन्यास को निर्दिष्ट करता है। अभिविन्यास समरूपता (स्विचिंग समरूपता सहित) के सभी संभावित संयोजनों पर विचार करके इसे सत्यापित किया जा सकता है।


== संदर्भ ==
== संदर्भ ==
Line 82: Line 84:
*Sutton, A.P. and R.W. Balluffi (1995). ''Interfaces in Crystalline Materials'', Clarendon Press.
*Sutton, A.P. and R.W. Balluffi (1995). ''Interfaces in Crystalline Materials'', Clarendon Press.
*G. Zhu, W. Mao and Y. Yu (1997). "Calculation of misorientation distribution between recrystallized grains and deformed matrix", Scripta mater. 42(2000) 37-41.
*G. Zhu, W. Mao and Y. Yu (1997). "Calculation of misorientation distribution between recrystallized grains and deformed matrix", Scripta mater. 42(2000) 37-41.
[[Category: समरूपता]]


[[Category: Machine Translated Page]]
[[Category:Created On 03/04/2023]]
[[Category:Created On 03/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:समरूपता]]

Latest revision as of 11:49, 24 April 2023

सामग्री विज्ञान में, दुरभिविन्यास एक पॉलीक्रिस्टलाइन सामग्री में दो क्रिस्टलीय के बीच क्रिस्टलोग्राफिक अभिविन्यास में अंतर है।

क्रिस्टलीय सामग्रियों में, एक क्रिस्टलीय का अभिविन्यास एक नमूना संदर्भ फ्रेम (अर्थात एक रोलिंग (मेटल वर्किंग) या बाहर निकालना प्रक्रिया और दो ओर्थोगोनल दिशाओं की दिशा द्वारा परिभाषित) से क्रिस्टलीय जाली के स्थानीय संदर्भ फ्रेम में परिवर्तन द्वारा परिभाषित किया जाता है। इकाई कोशिका के आधार पर परिभाषित किया गया है। इसी तरह, एक स्थानीय क्रिस्टल फ्रेम से दूसरे क्रिस्टल फ्रेम में जाने के लिए आवश्यक परिवर्तन को गलत विधि से बदलना है। यही है, यह दो अलग-अलग अभिविन्यासों के बीच अभिविन्यास स्थान में दूरी है। यदि अभिविन्यास दिशा कोसाइन gA और gB, के आव्यूह के संदर्भ में निर्दिष्ट हैं तो A से B तक जाने वाले दुरभिविन्यास ऑपरेटर gAB को निम्नानुसार परिभाषित किया जा सकता है:

जहां शब्द gA का उत्क्रम ऑपरेशन है, अर्थात क्रिस्टल फ्रेम A से वापस नमूना फ्रेम में परिवर्तन है। यह पहले क्रिस्टल फ्रेम (A) वापस नमूना फ्रेम में और बाद में नए क्रिस्टल फ्रेम में (B).में बदलने के क्रमिक संचालन के रूप में गलत धारणा का एक वैकल्पिक विवरण प्रदान करता है

इस रूपांतरण प्रक्रिया को प्रदर्शित करने के लिए विभिन्न विधियों का उपयोग किया जा सकता है, जैसे: यूलर कोण, रोड्रिग्स वैक्टर, अक्ष कोण(जहां अक्ष को क्रिस्टलोग्राफिक दिशा के रूप में निर्दिष्ट किया गया है), या इकाई चतुष्कोण है।

समरूपता और गलत धारणा

दुरभिविन्यास पर क्रिस्टल समरूपता का प्रभाव पूर्ण अभिविन्यास स्थान के अंश को कम करना है जो सभी संभावित गलत संबंधों को विशिष्ट रूप से प्रदर्शित करने के लिए आवश्यक है। उदाहरण के लिए, घन क्रिस्टल (अर्थात एफसीसी) में 24 सममित रूप से संबंधित अभिविन्यास हैं। इनमें से प्रत्येक अभिविन्यास शारीरिक रूप से अप्रभेद्य है, किंतु गणितीय रूप से भिन्न है। इसलिए, अभिविन्यास स्थान का आकार 24 के एक कारक से कम हो जाता है। यह घन समरूपता के लिए मूलभूत क्षेत्र (FZ) को परिभाषित करता है। दो घनीय स्फटिकों के बीच दुर्विन्यास के लिए, प्रत्येक में 24 अंतर्निहित समरूपताएँ होती हैं। इसके अतिरिक्त , एक स्विचिंग समरूपता उपस्थित है, जिसे परिभाषित किया गया है:

जो दिशा के प्रति दुर्भिमुखता की निश्चरता को पहचानता है; A→B or B→A। दुरभिविन्यास के लिए घन -घन मौलिक क्षेत्र में कुल अभिविन्यास स्थान का अंश इसके द्वारा दिया गया है:

या 1/48 घन मौलिक क्षेत्र का आयतन। यह अधिकतम अद्वितीय दुरभिविन्यास कोण को 62.8°तक सीमित करने का प्रभाव भी रखता है


विचलन FZ के अंदर आने वाले सभी सममित रूप से समतुल्य दुरभिविन्यास में से सबसे छोटे संभावित घूर्णन कोण के साथ दुरभिविन्यास का वर्णन करता है (सामान्यतः घन के लिए मानक त्रिविम त्रिकोण में एक अक्ष होने के रूप में निर्दिष्ट)। इन प्रकारों की गणना में दुरभिविन्यास की गणना के समय प्रत्येक अभिविन्यास के लिए क्रिस्टल समरूपता ऑपरेटरों का अनुप्रयोग सम्मिलित है।



जहां Ocrys सामग्री के लिए सममिति संचालकों में से एक को दर्शाता है।

दुरभिविन्यास वितरण

alt text
AA5083 प्लेट के नमूने के लिए रोड्रिग्स स्पेस में दिखाया गया उदाहरण MDF

दुरभिविन्यास वितरण (एमडी) के अनुरूप है जिसका उपयोग बनावट को चित्रित करने में किया जाता है। एमडी दिए गए गलत वर्गीकरण के आस-पास श्रेणी में आने वाले किन्हीं भी दो अनाजों के बीच गलत वर्गीकरण की संभावना का वर्णन करता है।,जबकि प्रायिकता घनत्व के समान एमडी गणितीय रूप से समान नहीं है। एक एमडी में तीव्रता समान रूप से वितरित दुरभिविन्यास वाली सामग्री में अपेक्षित वितरण के संबंध में यादृच्छिक घनत्व (एमआरडी) के गुणकों के रूप में दी जाती है। एमडी की गणना या तो श्रृंखला विस्तार द्वारा की जा सकती है, सामान्यतः सामान्यीकृत गोलाकार हार्मोनिक्स का उपयोग करके, या असतत बिनिंग योजना द्वारा, जहां प्रत्येक डेटा बिंदु को एक बिन को सौंपा जाता है और संचित किया जाता है।

ग्राफिकल प्रतिनिधित्व

alt text
मैकेंज़ी (1958) से एक बेतरतीब ढंग से बनावट वाले पॉलीक्रिस्टल के लिए मिसऑरिएंटेशन एंगल्स का वितरण

असतत दुरभिविन्यास या दुरभिविन्यास वितरण को यूलर कोण, अक्ष/कोण, या रोड्रिग्स सदिश अंतरिक्ष में भूखंडों के रूप में पूरी तरह से वर्णित किया जा सकता है। इकाई चतुष्कोण, कम्प्यूटेशनल रूप से सुविधाजनक होते हुए, अपने चार-आयामी प्रकृति के कारण ग्राफिकल प्रतिनिधित्व के लिए खुद को उधार नहीं देते हैं। किसी भी अभ्यावेदन के लिए, भूखंडों को सामान्यतः मौलिक क्षेत्र के माध्यम से वर्गों के रूप में बनाया जाता है; अक्ष/कोण के लिए घूर्णन कोण की वृद्धि पर यूलर कोणों में,φ2 के साथ और रोड्रिग्स के लिए स्थिर ρ3 पर (<001> के समानांतर) घन-घन FZ के अनियमित आकार के कारण, भूखंडों को सामान्यतः घन FZ के माध्यम से अधिक प्रतिबंधात्मक सीमाओं के साथ वर्गों के रूप में दिया जाता है।


मैकेंज़ी भूखंड एमडी के एक आयामी प्रतिनिधित्व हैं, जो अक्ष के अतिरिक्त , दुरभिविन्यास कोण की सापेक्ष आवृत्ति की अंकन करता हैं। मैकेंज़ी ने एक यादृच्छिक बनावट के साथ घन नमूने के लिए दुरभिविन्यास वितरण निर्धारित किया।

दुरभिविन्यास की गणना का उदाहरण

यूलर कोणों के रूप में दिए गए दो बनावट घटकों के बीच दुरभिविन्यास के धुरी/कोण प्रतिनिधित्व को निर्धारित करने के लिए निम्नलिखित एल्गोरिदम का एक उदाहरण है:

कॉपर [90,35,45]
S3 [59,37,63]

पहला चरण यूलर कोण प्रतिनिधित्व अभिविन्यास आव्यूह g में परिवर्तित कर रहा है,

जहाँ और क्रमशः और को दर्शाते हैं। यह निम्नलिखित अभिविन्यास आव्यूह उत्पन्न करता है:

दुरभिविन्यास तब होता है:

अक्ष/कोण विवरण (एक इकाई सदिश के रूप में अक्ष के साथ) दुरभिविन्यास आव्यूह से संबंधित है:

(रैंडल और एंग्लर द्वारा पुस्तक में दिए गए 'r' के घटकों के समान सूत्रों में त्रुटियां हैं (संदर्भ देखें), जिन्हें उनकी पुस्तक के अगले संस्करण में ठीक किया जाएगा। उपरोक्त सही संस्करण हैं,एक अलग रूप नोट करते हैं। इन समीकरणों के लिए यदि Θ = 180 डिग्री का उपयोग किया जाना है।)

तांबे के लिए-ΔgAB द्वारा दिया गया S3, दुरभिविन्यास अक्ष/कोण विवरण [0.689,0.623,0.369] के बारे में 19.5° है जो कि <221> से केवल 2.3° है। यह परिणाम केवल 1152 सममित रूप से संबंधित संभावनाओं में से एक है, किंतु दुरभिविन्यास को निर्दिष्ट करता है। अभिविन्यास समरूपता (स्विचिंग समरूपता सहित) के सभी संभावित संयोजनों पर विचार करके इसे सत्यापित किया जा सकता है।

संदर्भ

  • Kocks, U.F., C.N. Tomé, and H.-R. Wenk (1998). Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties, Cambridge University Press.
  • Mackenzie, J.K. (1958). Second Paper on the Statistics Associated with the Random Disorientation of Cubes, Biometrika 45,229.
  • Randle, Valerie and Olaf Engler (2000). Introduction to Texture Analysis: Macrotexture, Microtexture & Orientation Mapping, CRC Press.
  • Reed-Hill, Robert E. and Reza Abbaschian (1994). Physical Metallurgy Principles (Third Edition), PWS.
  • Sutton, A.P. and R.W. Balluffi (1995). Interfaces in Crystalline Materials, Clarendon Press.
  • G. Zhu, W. Mao and Y. Yu (1997). "Calculation of misorientation distribution between recrystallized grains and deformed matrix", Scripta mater. 42(2000) 37-41.