न्यूट्रॉन इमेजिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[File:HD.6D.717 (12366098744).jpg|thumb|ओक रिज नेशनल लेबोरेटरी की न्यूट्रॉन रेडियोग्राफी सुविधा द्वारा निर्मित छवि।]][[न्यूट्रॉन]] इमेजिंग न्यूट्रॉन के साथ एक छवि बनाने की प्रक्रिया है। परिणामी छवि इमेज की गई वस्तु के न्यूट्रॉन क्षीणन गुणों पर आधारित है। परिणामी छवियां औद्योगिक [[एक्स-रे]] छवियों के साथ बहुत आम हैं, लेकिन चूंकि छवि एक्स-रे क्षीणन गुणों के बजाय न्यूट्रॉन क्षीणन गुणों पर आधारित है, न्यूट्रॉन इमेजिंग के साथ आसानी से दिखाई देने वाली कुछ चीजें एक्स- के साथ देखना बहुत चुनौतीपूर्ण या असंभव हो सकती हैं। रे इमेजिंग तकनीक (और इसके विपरीत)।
[[File:HD.6D.717 (12366098744).jpg|thumb|ओक रिज नेशनल लेबोरेटरी की न्यूट्रॉन रेडियोग्राफी सुविधा द्वारा निर्मित छवि।]][[न्यूट्रॉन]] छवियाँ न्यूट्रॉन के साथ एक छवि बनाने की प्रक्रिया है। परिणामी छवि की गई वस्तु के न्यूट्रॉन क्षीणन गुणों पर आधारित है। परिणामी छवियां औद्योगिक [[एक्स-रे]] छवियों के साथ बहुत सामान्य हैं, किन्तु चूंकि छवि एक्स-रे क्षीणन गुणों के बजाय न्यूट्रॉन क्षीणन गुणों पर आधारित है, न्यूट्रॉन छवियाँ के साथ आसानी से दिखाई देने वाली कुछ चीजें छवियाँ विधि (और इसके विपरीत) एक्स- के साथ देखना बहुत चुनौतीपूर्ण या असंभव हो सकती हैं।


सामग्री के घनत्व के आधार पर एक्स-रे को क्षीण किया जाता है। सघन सामग्री अधिक एक्स-रे रोक देगी। न्यूट्रॉन के साथ, न्यूट्रॉन के क्षीणन की सामग्री की संभावना इसके घनत्व से संबंधित नहीं है। बोरॉन जैसे कुछ प्रकाश पदार्थ न्यूट्रॉन को अवशोषित करेंगे जबकि [[हाइड्रोजन]] आम तौर पर न्यूट्रॉन को बिखेर देगा, और आमतौर पर इस्तेमाल होने वाली कई धातुएं अधिकांश न्यूट्रॉन को अपने से गुजरने देती हैं। यह एक्स-रे इमेजिंग की तुलना में कई उदाहरणों में न्यूट्रॉन इमेजिंग को बेहतर बना सकता है; उदाहरण के लिए, [[ O-अंगूठी ]] स्थिति और धातु घटकों के अंदर अखंडता को देखते हुए, जैसे [[ठोस रॉकेट बूस्टर]] के सेगमेंट जोड़।
सामग्री के घनत्व के आधार पर एक्स-रे को क्षीण किया जाता है। सघन सामग्री अधिक एक्स-रे रोक देगी। न्यूट्रॉन के साथ, न्यूट्रॉन के क्षीणन की सामग्री की संभावना इसके घनत्व से संबंधित नहीं है। बोरॉन जैसे कुछ प्रकाश पदार्थ न्यूट्रॉन को अवशोषित करेंगे जबकि [[हाइड्रोजन]] सामान्यतः न्यूट्रॉन को अलग कर देगा, और सामान्यतः उपयोग होने वाली कई धातुएं अधिकांश न्यूट्रॉन को अपने से गुजरने देती हैं। यह एक्स-रे छवियाँ की तुलना में कई उदाहरणों में न्यूट्रॉन छवियाँ को उत्तम बना सकता है; उदाहरण के लिए, [[ O-अंगूठी |O-अंगूठी]] स्थिति और धातु घटकों के अंदर अखंडता को देखते हुए, जैसे [[ठोस रॉकेट बूस्टर]] के सेगमेंट जोड़ है।


== इतिहास ==
== इतिहास ==
1932 में [[ जेम्स चाडविक ]] द्वारा न्यूट्रॉन की खोज की गई थी। न्यूट्रॉन रेडियोग्राफी का पहला प्रदर्शन [[हर्टमट कल्मन]] और ई. कुह्न द्वारा 1930 के दशक के अंत में किया गया था। उन्होंने पाया कि न्यूट्रॉन के साथ बमबारी पर, कुछ सामग्री [[विकिरण]] उत्सर्जित करती हैं जो [[ पतली परत ]] को उजागर कर सकती हैं। खोज 1946 तक एक जिज्ञासा बनी रही जब पीटर्स द्वारा निम्न गुणवत्ता वाले रेडियोग्राफ बनाए गए। 1955 में जे. थेविस (यूके) द्वारा उचित गुणवत्ता के पहले न्यूट्रॉन रेडियोग्राफ बनाए गए थे।
1932 में [[ जेम्स चाडविक |जेम्स चाडविक]] द्वारा न्यूट्रॉन की खोज की गई थी। न्यूट्रॉन रेडियोग्राफी का पहला प्रदर्शन [[हर्टमट कल्मन]] और ई. कुह्न द्वारा 1930 के दशक के अंत में किया गया था। उन्होंने पाया कि न्यूट्रॉन के साथ बमबारी पर, कुछ सामग्री [[विकिरण]] उत्सर्जित करती हैं जो [[ पतली परत |पतली परत]] को उजागर कर सकती हैं। खोज 1946 तक एक जिज्ञासा बनी रही जब पीटर्स द्वारा निम्न गुणवत्ता वाले रेडियोग्राफ बनाए गए थे। 1955 में जे. थेविस (यूके) द्वारा उचित गुणवत्ता के पहले न्यूट्रॉन रेडियोग्राफ बनाए गए थे।


लगभग 1960, [[हेरोल्ड बर्जर]] ([[ हम ]]) और जॉन पी. बार्टन (यूके) ने विकिरणित रिएक्टर ईंधन की जांच के लिए न्यूट्रॉन का मूल्यांकन शुरू किया। इसके बाद, कई शोध सुविधाएं विकसित की गईं। पहली व्यावसायिक सुविधाएं 1960 के दशक के अंत में, ज्यादातर संयुक्त राज्य अमेरिका और फ्रांस में और अंततः कनाडा, जापान, [[दक्षिण अफ्रीका]], जर्मनी और स्विट्जरलैंड सहित अन्य देशों में ऑनलाइन आईं।
लगभग 1960, [[हेरोल्ड बर्जर]] ([[ हम ]]) और जॉन पी. बार्टन (यूके) ने विकिरणित रिएक्टर ईंधन की जांच के लिए न्यूट्रॉन का मूल्यांकन प्रारंभू किया। इसके बाद, कई शोध सुविधाएं विकसित की गईं। पहली व्यावसायिक सुविधाएं 1960 के दशक के अंत में, अधिकतर संयुक्त राज्य अमेरिका और फ्रांस में और अंततः कनाडा, जापान, [[दक्षिण अफ्रीका]], जर्मनी और स्विट्जरलैंड सहित अन्य देशों में ऑनलाइन आईं है।


== प्रक्रिया ==
== प्रक्रिया ==
एक न्यूट्रॉन छवि का उत्पादन करने के लिए, न्यूट्रॉन का एक स्रोत, उत्सर्जित न्यूट्रॉन को काफी मोनो-डायरेक्शनल बीम में आकार देने के लिए एक कोलिमेटर, इमेज की जाने वाली वस्तु और छवि को रिकॉर्ड करने की कुछ विधि की आवश्यकता होती है।
एक न्यूट्रॉन छवि का उत्पादन करने के लिए, न्यूट्रॉन का एक स्रोत, उत्सर्जित न्यूट्रॉन को अधिक मोनो-डायरेक्शनल बीम में आकार देने के लिए एक कोलिमेटर, छवि की जाने वाली वस्तु और छवि को अभिलेख करने की कुछ विधि की आवश्यकता होती है।


=== न्यूट्रॉन स्रोत ===
=== न्यूट्रॉन स्रोत ===
आम तौर पर न्यूट्रॉन स्रोत एक शोध रिएक्टर है,<ref>{{Cite web|url=https://www.isnr.de/index.php/facilities|title=ISNR {{!}}Neutron Imaging Facilities around the World|website=ISNR {{!}} International Society for Neutron Radiography and IAEA|language=en-US|access-date=2020-02-08}}</ref>
सामान्यतः न्यूट्रॉन स्रोत एक शोध रिएक्टर है,<ref>{{Cite web|url=https://www.isnr.de/index.php/facilities|title=ISNR {{!}}Neutron Imaging Facilities around the World|website=ISNR {{!}} International Society for Neutron Radiography and IAEA|language=en-US|access-date=2020-02-08}}</ref>  
<ref>{{Cite journal | doi=10.1016/j.nima.2005.01.009|title = FRM II में न्यूट्रॉन रेडियोग्राफी और टोमोग्राफी सुविधा ANTARES का निर्माण और संयोजन| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=542| pages=38–44|year = 2005|last1 = Calzada|first1 = Elbio| last2=Schillinger| first2=Burkhard| last3=Grünauer| first3=Florian| issue=1–3 | bibcode=2005NIMPA.542...38C }}</ref> जहां प्रति इकाई क्षेत्र (फ्लक्स) में बड़ी संख्या में [[न्यूट्रॉन]] उपलब्ध हैं। न्यूट्रॉन के [[आइसोटोप]] स्रोतों के साथ कुछ काम पूरा हो चुका है ([[कैलिफ़ोर्निया -252]] -252 के बड़े पैमाने पर सहज [[परमाणु विखंडन]],<ref>{{Cite journal | doi=10.1016/j.nima.2016.07.044|title = ऑर्गेनिक सिंटिलेशन डिटेक्टरों में रीयल-टाइम पल्स-शेप भेदभाव के साथ फास्ट न्यूट्रॉन टोमोग्राफी| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=834| pages=36–45|year = 2016|last1 = Joyce|first1 = Malcolm J.| last2=Agar| first2=Stewart| last3=Aspinall| first3=Michael D.| last4=Beaumont| first4=Jonathan S.| last5=Colley| first5=Edmund| last6=Colling| first6=Miriam| last7=Dykes| first7=Joseph| last8=Kardasopoulos| first8=Phoevos| last9=Mitton| first9=Katie| bibcode=2016NIMPA.834...36J | doi-access=free}}</ref> बल्कि अमेरिकाियम-[[ फीरोज़ा ]] आइसोटोप स्रोत, और अन्य)। ये प्रस्ताव पूंजी लागत में कमी और गतिशीलता में वृद्धि करते हैं, लेकिन बहुत कम न्यूट्रॉन तीव्रता और काफी कम छवि गुणवत्ता की कीमत पर। इसके अतिरिक्त, [[ स्पेलेशन ]] लक्ष्यों के साथ बड़े त्वरक सहित न्यूट्रॉन के त्वरक स्रोतों की उपलब्धता में वृद्धि हुई है<ref>{{Cite journal | doi=10.1016/0168-9002(96)00106-4|title = स्पैलेशन स्रोत SINQ पर न्यूट्रॉन रेडियोग्राफी सुविधा का डिज़ाइन| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=377| pages=11–15|year = 1996|last1 = Lehmann|first1 = Eberhard| last2=Pleinert| first2=Helena| last3=Wiezel| first3=Luzius| issue=1 | bibcode=1996NIMPA.377...11L }}</ref> और ये न्यूट्रॉन इमेजिंग के लिए उपयुक्त स्रोत हो सकते हैं। [[ड्यूटेरियम]]-ड्यूटेरियम या ड्यूटेरियम-[[ट्रिटियम]] की [[परमाणु संलयन]] प्रतिक्रियाओं का उत्पादन करने वाले न्यूट्रॉन का उपयोग करने वाले पोर्टेबल त्वरक आधारित न्यूट्रॉन जनरेटर।<ref>{{Cite journal | doi=10.1016/j.nima.2014.04.052|title = FANTOM मोबाइल फास्ट-न्यूट्रॉन रेडियोग्राफी और टोमोग्राफी सिस्टम का डिज़ाइन और प्रारंभिक 1D रेडियोग्राफी परीक्षण| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=756| pages=82–93|year = 2014|last1 = Andersson|first1 = P.| last2=Valldor-Blücher| first2=J.| last3=Andersson Sundén| first3=E.| last4=Sjöstrand| first4=H.| last5=Jacobsson-Svärd| first5=S.| bibcode=2014NIMPA.756...82A }}</ref>


'''यह चर्चा थर्मल न्यूट्रॉन इमेजिंग पर केंद्रित है, हालांकि इनमें से अधिकतर जानकारी ठंड और एपिथर्मल इमेजिंग पर भी लागू होती है। फास्ट न्यूट्रॉन इमेजिंग मातृभूमि सुरक्षा अनुप्रयोगों के लिए रुचि का <br />'''
<ref>{{Cite journal | doi=10.1016/j.nima.2005.01.009|title = FRM II में न्यूट्रॉन रेडियोग्राफी और टोमोग्राफी सुविधा ANTARES का निर्माण और संयोजन| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=542| pages=38–44|year = 2005|last1 = Calzada|first1 = Elbio| last2=Schillinger| first2=Burkhard| last3=Grünauer| first3=Florian| issue=1–3 | bibcode=2005NIMPA.542...38C }}</ref> जहां प्रति इकाई क्षेत्र (फ्लक्स) में बड़ी संख्या में [[न्यूट्रॉन]] उपलब्ध हैं। न्यूट्रॉन के [[आइसोटोप|समस्थानिक]] स्रोतों के साथ कुछ काम पूरा हो चुका है ([[कैलिफ़ोर्निया -252]] -252 के बड़े पैमाने पर सहज [[परमाणु विखंडन]],<ref>{{Cite journal | doi=10.1016/j.nima.2016.07.044|title = ऑर्गेनिक सिंटिलेशन डिटेक्टरों में रीयल-टाइम पल्स-शेप भेदभाव के साथ फास्ट न्यूट्रॉन टोमोग्राफी| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=834| pages=36–45|year = 2016|last1 = Joyce|first1 = Malcolm J.| last2=Agar| first2=Stewart| last3=Aspinall| first3=Michael D.| last4=Beaumont| first4=Jonathan S.| last5=Colley| first5=Edmund| last6=Colling| first6=Miriam| last7=Dykes| first7=Joseph| last8=Kardasopoulos| first8=Phoevos| last9=Mitton| first9=Katie| bibcode=2016NIMPA.834...36J | doi-access=free}}</ref> किंतु अमेरिकाियम-[[ फीरोज़ा | फीरोज़ा]] समस्थानिक स्रोत, और अन्य)। ये प्रस्ताव पूंजी निवेश में कमी और गतिशीलता में वृद्धि करते हैं, किन्तु बहुत कम न्यूट्रॉन तीव्रता और अधिक कम छवि गुणवत्ता की कीमत पर होती है। इसके अतिरिक्त, [[ स्पेलेशन |स्पेलेशन]] लक्ष्यों के साथ बड़े त्वरक सहित न्यूट्रॉन के त्वरक स्रोतों की उपलब्धता में वृद्धि हुई है <ref>{{Cite journal | doi=10.1016/0168-9002(96)00106-4|title = स्पैलेशन स्रोत SINQ पर न्यूट्रॉन रेडियोग्राफी सुविधा का डिज़ाइन| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=377| pages=11–15|year = 1996|last1 = Lehmann|first1 = Eberhard| last2=Pleinert| first2=Helena| last3=Wiezel| first3=Luzius| issue=1 | bibcode=1996NIMPA.377...11L }}</ref> और ये न्यूट्रॉन छवियाँ के लिए उपयुक्त स्रोत हो सकते हैं। [[ड्यूटेरियम]]-ड्यूटेरियम या ड्यूटेरियम-[[ट्रिटियम]] की [[परमाणु संलयन]] प्रतिक्रियाओं का उत्पादन करने वाले न्यूट्रॉन का उपयोग करने वाले पोर्टेबल त्वरक आधारित न्यूट्रॉन जनित्र है । <ref>{{Cite journal | doi=10.1016/j.nima.2014.04.052|title = FANTOM मोबाइल फास्ट-न्यूट्रॉन रेडियोग्राफी और टोमोग्राफी सिस्टम का डिज़ाइन और प्रारंभिक 1D रेडियोग्राफी परीक्षण| journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment| volume=756| pages=82–93|year = 2014|last1 = Andersson|first1 = P.| last2=Valldor-Blücher| first2=J.| last3=Andersson Sundén| first3=E.| last4=Sjöstrand| first4=H.| last5=Jacobsson-Svärd| first5=S.| bibcode=2014NIMPA.756...82A }}</ref>
=== मॉडरेशन ===
=== मॉडरेशन ===
न्यूट्रॉन के उत्पादन के बाद, उन्हें इमेजिंग के लिए वांछित गति तक धीमा करने ([[गतिज ऊर्जा]] में कमी) की आवश्यकता होती है। यह [[थर्मल न्यूट्रॉन]] का उत्पादन करने के लिए कमरे के तापमान पर कुछ लंबाई के पानी, पॉलीथीन या ग्रेफाइट का रूप ले सकता है। मॉडरेटर में न्यूट्रॉन परमाणुओं के नाभिक से टकराते हैं और इस तरह धीमे हो जाते हैं। आखिरकार इन न्यूट्रॉन की गति मॉडरेटर के तापमान (गतिज ऊर्जा की मात्रा) के आधार पर कुछ वितरण प्राप्त करेगी। यदि उच्च ऊर्जा न्यूट्रॉन वांछित हैं, तो उच्च ऊर्जा के न्यूट्रॉन (एपिथर्मल न्यूट्रॉन कहा जाता है) का उत्पादन करने के लिए ग्रेफाइट मॉडरेटर को गर्म किया जा सकता है। कम ऊर्जा न्यूट्रॉन के लिए, ठंडा मॉडरेटर जैसे तरल ड्यूटेरियम (हाइड्रोजन का आइसोटोप), कम ऊर्जा न्यूट्रॉन (ठंडा न्यूट्रॉन) का उत्पादन करने के लिए इस्तेमाल किया जा सकता है। यदि कोई या कम मंदक मौजूद नहीं है, तो उच्च ऊर्जा न्यूट्रॉन (तीव्र न्यूट्रॉन कहा जाता है) का उत्पादन किया जा सकता है। मॉडरेटर का तापमान जितना अधिक होगा, न्यूट्रॉन की परिणामी गतिज ऊर्जा उतनी ही अधिक होगी और न्यूट्रॉन उतनी ही तेजी से यात्रा करेंगे। आम तौर पर, [[तेज न्यूट्रॉन]] अधिक मर्मज्ञ होंगे, लेकिन इस प्रवृत्ति से कुछ दिलचस्प विचलन मौजूद हैं और कभी-कभी न्यूट्रॉन इमेजिंग में उपयोग किए जा सकते हैं। आम तौर पर इमेजिंग सिस्टम को न्यूट्रॉन की केवल एक ही ऊर्जा का उत्पादन करने के लिए डिज़ाइन और स्थापित किया जाता है, जिसमें अधिकांश इमेजिंग सिस्टम थर्मल या ठंडे न्यूट्रॉन का उत्पादन करते हैं।
न्यूट्रॉन के उत्पादन के बाद, उन्हें छवियाँ के लिए वांछित गति तक धीमा करने ([[गतिज ऊर्जा]] में कमी) की आवश्यकता होती है। यह [[थर्मल न्यूट्रॉन]] का उत्पादन करने के लिए कमरे के तापमान पर कुछ लंबाई के पानी, पॉलीथीन या ग्रेफाइट का रूप ले सकता है। मंदक में न्यूट्रॉन परमाणुओं के नाभिक से टकराते हैं और इस तरह धीमे हो जाते हैं। आखिरकार इन न्यूट्रॉन की गति मंदक के तापमान (गतिज ऊर्जा की मात्रा) के आधार पर कुछ वितरण प्राप्त होती है। यदि उच्च ऊर्जा न्यूट्रॉन वांछित हैं, तो उच्च ऊर्जा के न्यूट्रॉन (एपिथर्मल न्यूट्रॉन कहा जाता है) का उत्पादन करने के लिए ग्रेफाइट मंदक को गर्म किया जा सकता है। कम ऊर्जा न्यूट्रॉन के लिए, ठंडा मंदक जैसे तरल ड्यूटेरियम (हाइड्रोजन का समस्थानिक), कम ऊर्जा न्यूट्रॉन (ठंडा न्यूट्रॉन) का उत्पादन करने के लिए उपयोग किया जा सकता है। यदि कोई या कम मंदक उपस्थित नहीं है, तो उच्च ऊर्जा न्यूट्रॉन (तीव्र न्यूट्रॉन कहा जाता है) का उत्पादन किया जा सकता है। मंदक का तापमान जितना अधिक होगा, न्यूट्रॉन की परिणामी गतिज ऊर्जा उतनी ही अधिक होगी और न्यूट्रॉन उतनी ही तेजी से यात्रा करते है। सामान्यतः, [[तेज न्यूट्रॉन]] अधिक मर्मज्ञ होंगे, किन्तु इस प्रवृत्ति से कुछ रोचक विचलन उपस्थित हैं और कभी-कभी न्यूट्रॉन छवियाँ में उपयोग किए जा सकते हैं। सामान्यतः छवियाँ प्रणाली को न्यूट्रॉन की केवल एक ही ऊर्जा का उत्पादन करने के लिए डिज़ाइन और स्थापित किया जाता है, जिसमें अधिकांश छवियाँ प्रणाली थर्मल या ठंडे न्यूट्रॉन का उत्पादन करते हैं।


कुछ स्थितियों में, न्यूट्रॉन की केवल एक विशिष्ट ऊर्जा का चयन वांछित हो सकता है। न्यूट्रॉन की एक विशिष्ट ऊर्जा को अलग करने के लिए, क्रिस्टल से न्यूट्रॉन का प्रकीर्णन या न्यूट्रॉन बीम को काटकर न्यूट्रॉन को उनकी गति के आधार पर अलग करना विकल्प हैं, लेकिन यह आमतौर पर बहुत कम न्यूट्रॉन तीव्रता पैदा करता है और बहुत लंबे जोखिम की ओर जाता है। आम तौर पर यह केवल अनुसंधान अनुप्रयोगों के लिए किया जाता है।
कुछ स्थितियों में, न्यूट्रॉन की केवल एक विशिष्ट ऊर्जा का चयन वांछित हो सकता है। न्यूट्रॉन की एक विशिष्ट ऊर्जा को अलग करने के लिए, क्रिस्टल से न्यूट्रॉन का प्रकीर्णन या न्यूट्रॉन बीम को काटकर न्यूट्रॉन को उनकी गति के आधार पर अलग करना विकल्प हैं, किन्तु यह सामान्यतः बहुत कम न्यूट्रॉन तीव्रता उत्पन्न करता है और बहुत लंबे कठिन परिस्थिति की ओर जाता है। सामान्यतः यह केवल अनुसंधान अनुप्रयोगों के लिए किया जाता है।


यह चर्चा थर्मल न्यूट्रॉन इमेजिंग पर केंद्रित है, हालांकि इनमें से अधिकतर जानकारी ठंड और एपिथर्मल इमेजिंग पर भी लागू होती है। फास्ट न्यूट्रॉन इमेजिंग मातृभूमि सुरक्षा अनुप्रयोगों के लिए रुचि का क्षेत्र है, लेकिन वर्तमान में व्यावसायिक रूप से उपलब्ध नहीं है और आमतौर पर यहां वर्णित नहीं है।
यह चर्चा थर्मल न्यूट्रॉन छवियाँ पर केंद्रित है, चूंकि इनमें से अधिकतर जानकारी ठंड और एपिथर्मल छवियाँ पर भी प्रयुक्त होती है। तीव्र न्यूट्रॉन छवियाँ मातृभूमि सुरक्षा अनुप्रयोगों के लिए रुचि का क्षेत्र है, किन्तु वर्तमान में व्यावसायिक रूप से उपलब्ध नहीं है और सामान्यतः यहां वर्णित नहीं है।


=== कोलिमेशन ===
=== कोलिमेशन ===
मॉडरेटर में, न्यूट्रॉन कई अलग-अलग दिशाओं में यात्रा कर रहे होंगे। एक अच्छी छवि बनाने के लिए, न्यूट्रॉन को काफी समान दिशा (आमतौर पर थोड़ा अलग) में यात्रा करने की आवश्यकता होती है। इसे पूरा करने के लिए, एक एपर्चर (एक उद्घाटन जो न्यूट्रॉन को न्यूट्रॉन अवशोषित सामग्री से घिरे हुए इसके माध्यम से पारित करने की अनुमति देगा), न्यूट्रॉन को समापक में प्रवेश करने की अनुमति देता है। न्यूट्रॉन अवशोषण सामग्री (जैसे बोरॉन) के साथ कोलिमेटर की कुछ लंबाई तब न्यूट्रॉन को अवशोषित करती है जो वांछित दिशा में कोलिमेटर की लंबाई की यात्रा नहीं कर रहे हैं। छवि गुणवत्ता और एक्सपोज़र समय के बीच ट्रेडऑफ़ मौजूद है। एक छोटा कोलिमेशन सिस्टम या बड़ा एपर्चर अधिक तीव्र न्यूट्रॉन बीम का उत्पादन करेगा, लेकिन न्यूट्रॉन व्यापक कोणों पर यात्रा करेंगे, जबकि एक लंबा कोलिमेटर या एक छोटा एपर्चर न्यूट्रॉन की यात्रा की दिशा में अधिक एकरूपता पैदा करेगा, लेकिन महत्वपूर्ण रूप से कम न्यूट्रॉन मौजूद होंगे और लंबे समय तक एक्सपोजर का परिणाम होगा।
मंदक में, न्यूट्रॉन कई अलग-अलग दिशाओं में यात्रा कर रहे होंगे। एक अच्छी छवि बनाने के लिए, न्यूट्रॉन को अधिक समान दिशा (सामान्यतः थोड़ा अलग) में यात्रा करने की आवश्यकता होती है। इसे पूरा करने के लिए, एक एपर्चर (एक उद्घाटन जो न्यूट्रॉन को न्यूट्रॉन अवशोषित सामग्री से घिरे हुए इसके माध्यम से पारित करने की अनुमति देगा), न्यूट्रॉन को समापक में प्रवेश करने की अनुमति देता है। न्यूट्रॉन अवशोषण सामग्री (जैसे बोरॉन) के साथ कोलिमेटर की कुछ लंबाई तब न्यूट्रॉन को अवशोषित करती है जो वांछित दिशा में कोलिमेटर की लंबाई की यात्रा नहीं कर रहे हैं। छवि गुणवत्ता और एक्सपोज़र समय के बीच ट्रेडऑफ़ उपस्थित है। एक छोटा कोलिमेशन प्रणाली या बड़ा एपर्चर अधिक तीव्र न्यूट्रॉन बीम का उत्पादन करेगा, किन्तु न्यूट्रॉन व्यापक कोणों पर यात्रा करेंगे, जबकि एक लंबा कोलिमेटर या एक छोटा एपर्चर न्यूट्रॉन की यात्रा की दिशा में अधिक एकरूपता उत्पन्न करेगा, किन्तु महत्वपूर्ण रूप से कम न्यूट्रॉन उपस्थित होंगे और लंबे समय तक अनावरण का परिणाम होगा।


=== वस्तु ===
=== वस्तु ===
वस्तु को न्यूट्रॉन बीम में रखा गया है। एक्स-रे सिस्टम के साथ पाए जाने वालों से बढ़ी हुई ज्यामितीय अनिश्चितता को देखते हुए, वस्तु को आम तौर पर यथासंभव छवि रिकॉर्डिंग डिवाइस के करीब स्थित करने की आवश्यकता होती है।
वस्तु को न्यूट्रॉन बीम में रखा गया है। एक्स-रे प्रणाली के साथ पाए जाने वालों से बढ़ी हुई ज्यामितीय अनिश्चितता को देखते हुए, वस्तु को सामान्यतः यथासंभव छवि अभिलेख उपकरण के करीब स्थित करने की आवश्यकता होती है।


=== रूपांतरण ===
=== रूपांतरण ===
हालांकि कई अलग-अलग छवि रिकॉर्डिंग विधियां मौजूद हैं, न्यूट्रॉन को आम तौर पर आसानी से मापा नहीं जाता है और इसे किसी अन्य प्रकार के विकिरण में परिवर्तित करने की आवश्यकता होती है जो अधिक आसानी से पता लगाया जाता है। रूपांतरण स्क्रीन के कुछ रूप आम तौर पर इस कार्य को करने के लिए नियोजित होते हैं, हालांकि कुछ छवि कैप्चर विधियों में रूपांतरण सामग्री को सीधे छवि रिकॉर्डर में शामिल किया जाता है। अक्सर यह [[गैडोलीनियम]] की पतली परत का रूप ले लेता है, जो थर्मल न्यूट्रॉन के लिए एक बहुत मजबूत अवशोषक है। गैडोलीनियम की 25 माइक्रोमीटर परत उस पर आपतित होने वाले तापीय न्यूट्रॉन के 90% को अवशोषित करने के लिए पर्याप्त है। कुछ स्थितियों में, बोरॉन, [[ ईण्डीयुम ]], [[सोना]], या [[डिस्प्रोसियम]] जैसे अन्य तत्वों का उपयोग किया जा सकता है या सिंटिलेटर # न्यूट्रॉन जैसी सामग्री का उपयोग किया जा सकता है जहां रूपांतरण स्क्रीन न्यूट्रॉन को अवशोषित करती है और दृश्य प्रकाश का उत्सर्जन करती है।
चूंकि कई अलग-अलग छवि अभिलेख विधियां उपस्थित हैं, न्यूट्रॉन को सामान्यतः आसानी से मापा नहीं जाता है और इसे किसी अन्य प्रकार के विकिरण में परिवर्तित करने की आवश्यकता होती है जो अधिक आसानी से पता लगाया जाता है। रूपांतरण आवरण के कुछ रूप सामान्यतः इस कार्य को करने के लिए नियोजित होते हैं, चूंकि कुछ छवि कैप्चर विधियों में रूपांतरण सामग्री को सीधे छवि अभिलेख में सम्मिलित किया जाता है। अधिकांशतः यह [[गैडोलीनियम]] की पतली परत का रूप ले लेता है, जो थर्मल न्यूट्रॉन के लिए एक बहुत शक्तिशाली अवशोषक है। गैडोलीनियम की 25 सूक्ष्म मीटर परत उस पर आपतित होने वाले तापीय न्यूट्रॉन के 90% को अवशोषित करने के लिए पर्याप्त है। कुछ स्थितियों में, बोरॉन, [[ ईण्डीयुम |ईण्डीयुम]] , [[सोना]], या [[डिस्प्रोसियम]] जैसे अन्य तत्वों का उपयोग किया जा सकता है या सिंटिलेटर न्यूट्रॉन जैसी सामग्री का उपयोग किया जा सकता है जहां रूपांतरण आवरण न्यूट्रॉन को अवशोषित करती है और दृश्य प्रकाश का उत्सर्जन करती है।


=== छवि रिकॉर्डिंग ===
=== छवि अभिलेख ===
न्यूट्रॉन के साथ छवियों का उत्पादन करने के लिए आमतौर पर कई तरह के तरीकों का इस्तेमाल किया जाता है। कुछ समय पहले तक, न्यूट्रॉन इमेजिंग आमतौर पर एक्स-रे फिल्म पर रिकॉर्ड की जाती थी, लेकिन अब कई तरह की डिजिटल विधियाँ उपलब्ध हैं।
न्यूट्रॉन के साथ छवियों का उत्पादन करने के लिए सामान्यतः कई तरह के विधियों का उपयोग किया जाता है। कुछ समय पहले तक, न्यूट्रॉन छवियाँ सामान्यतः एक्स-रे पतली परत पर अभिलेख की जाती थी, किन्तु अब कई तरह की डिजिटल विधियाँ उपलब्ध हैं।


== न्यूट्रॉन रेडियोग्राफी (फिल्म) ==
== न्यूट्रॉन रेडियोग्राफी (पतली परत) ==
न्यूट्रॉन रेडियोग्राफी एक न्यूट्रॉन छवि बनाने की प्रक्रिया है जिसे फिल्म पर रिकॉर्ड किया जाता है। यह आमतौर पर न्यूट्रॉन इमेजिंग का उच्चतम रिज़ॉल्यूशन रूप है, हालांकि आदर्श सेटअप वाले डिजिटल तरीके हाल ही में तुलनात्मक परिणाम प्राप्त कर रहे हैं। सबसे अधिक इस्तेमाल किया जाने वाला दृष्टिकोण न्यूट्रॉन को उच्च ऊर्जा इलेक्ट्रॉनों में परिवर्तित करने के लिए गैडोलीनियम रूपांतरण स्क्रीन का उपयोग करता है, जो एकल इमल्शन एक्स-रे फिल्म को उजागर करता है।
न्यूट्रॉन रेडियोग्राफी एक न्यूट्रॉन छवि बनाने की प्रक्रिया है जिसे पतली परत पर अभिलेख किया जाता है। यह सामान्यतः न्यूट्रॉन छवियाँ का उच्चतम पतली परत रूप है, चूंकि आदर्श समुच्चयअप वाले डिजिटल विधिया हाल ही में तुलनात्मक परिणाम प्राप्त कर रहे हैं। सबसे अधिक उपयोग किया जाने वाला दृष्टिकोण न्यूट्रॉन को उच्च ऊर्जा इलेक्ट्रॉनों में परिवर्तित करने के लिए गैडोलीनियम रूपांतरण आवरण का उपयोग करता है, जो एकल इमल्शन एक्स-रे पतली परत को उजागर करता है।


बीमलाइन में मौजूद फिल्म के साथ प्रत्यक्ष विधि का प्रदर्शन किया जाता है, इसलिए रूपांतरण स्क्रीन द्वारा न्यूट्रॉन को अवशोषित किया जाता है जो फिल्म को उजागर करने वाले विकिरण के कुछ रूप को तुरंत उत्सर्जित करता है। अप्रत्यक्ष विधि में सीधे बीमलाइन में फिल्म नहीं होती है। रूपांतरण स्क्रीन न्यूट्रॉन को अवशोषित करती है लेकिन विकिरण जारी होने से पहले कुछ समय की देरी होती है। रूपांतरण स्क्रीन पर छवि रिकॉर्ड करने के बाद, फिल्म पर छवि बनाने के लिए रूपांतरण स्क्रीन को एक फिल्म के साथ निकट संपर्क में रखा जाता है (आमतौर पर घंटे)। रेडियोधर्मी वस्तुओं, या उच्च गामा संदूषण के साथ इमेजिंग सिस्टम से निपटने के दौरान अप्रत्यक्ष विधि के महत्वपूर्ण फायदे हैं, अन्यथा प्रत्यक्ष विधि को आम तौर पर प्राथमिकता दी जाती है।
बीमलाइन में उपस्थित पतली परत के साथ प्रत्यक्ष विधि का प्रदर्शन किया जाता है, इसलिए रूपांतरण आवरण द्वारा न्यूट्रॉन को अवशोषित किया जाता है जो पतली परत को उजागर करने वाले विकिरण के कुछ रूप को तुरंत उत्सर्जित करता है। अप्रत्यक्ष विधि में सीधे बीमलाइन में पतली परत नहीं होती है। रूपांतरण आवरण न्यूट्रॉन को अवशोषित करती है किन्तु विकिरण जारी होने से पहले कुछ समय की देरी होती है। रूपांतरण आवरण पर छवि अभिलेख करने के बाद, पतली परत पर छवि बनाने के लिए रूपांतरण आवरण को एक पतली परत के साथ निकट संपर्क में रखा जाता है (सामान्यतः घंटे)। रेडियोधर्मी वस्तुओं, या उच्च गामा संदूषण के साथ छवियाँ प्रणाली से निपटने के समय अप्रत्यक्ष विधि के महत्वपूर्ण फायदे हैं, अन्यथा प्रत्यक्ष विधि को सामान्यतः प्राथमिकता दी जाती है।


न्यूट्रॉन रेडियोग्राफी व्यावसायिक रूप से उपलब्ध सेवा है, जिसका व्यापक रूप से एयरोस्पेस उद्योग में हवाई जहाज के इंजनों के लिए टरबाइन ब्लेड, अंतरिक्ष कार्यक्रमों के लिए घटकों, उच्च विश्वसनीयता वाले विस्फोटकों के परीक्षण के लिए और कुछ हद तक अन्य उद्योग में उत्पाद विकास चक्रों के दौरान समस्याओं की पहचान करने के लिए उपयोग किया जाता है।
न्यूट्रॉन रेडियोग्राफी व्यावसायिक रूप से उपलब्ध सेवा है, जिसका व्यापक रूप से एयरोस्पेस उद्योग में हवाई जहाज के इंजनों के लिए टरबाइन ब्लेड, अंतरिक्ष कार्यक्रमों के लिए घटकों, उच्च विश्वसनीयता वाले विस्फोटकों के परीक्षण के लिए और कुछ हद तक अन्य उद्योग में उत्पाद विकास चक्रों के समय समस्याओं की पहचान करने के लिए उपयोग किया जाता है।


न्यूट्रॉन रेडियोग्राफी शब्द का अक्सर सभी न्यूट्रॉन इमेजिंग विधियों के संदर्भ में गलत उपयोग किया जाता है।
न्यूट्रॉन रेडियोग्राफी शब्द का अधिकांशतः सभी न्यूट्रॉन छवियाँ विधियों के संदर्भ में गलत उपयोग किया जाता है।


=== ट्रैक नक़्क़ाशी ===
=== ट्रैक नक़्क़ाशी ===
[[आयन ट्रैक]] नक़्क़ाशी काफी हद तक अप्रचलित विधि है। रूपांतरण स्क्रीन न्यूट्रॉन को अल्फा कणों में परिवर्तित करती है जो सेल्युलोज के एक टुकड़े में क्षति ट्रैक उत्पन्न करते हैं। एक एसिड बाथ का उपयोग तब सेल्युलोज को उकेरने के लिए किया जाता है, सेल्युलोज के एक टुकड़े का उत्पादन करने के लिए जिसकी मोटाई न्यूट्रॉन एक्सपोजर के साथ बदलती है।
[[आयन ट्रैक|ट्रैक नक़्क़ाशी]] अधिक हद तक अप्रचलित विधि है। रूपांतरण आवरण न्यूट्रॉन को अल्फा कणों में परिवर्तित करती है जो सेल्युलोज के एक टुकड़े में क्षति ट्रैक उत्पन्न करते हैं। एक एसिड बाथ का उपयोग तब सेल्युलोज को उकेरने के लिए किया जाता है, सेल्युलोज के एक टुकड़े का उत्पादन करने के लिए जिसकी मोटाई न्यूट्रॉन अनावरण के साथ बदलती है।


=== डिजिटल न्यूट्रॉन इमेजिंग ===
=== डिजिटल न्यूट्रॉन छवियाँ ===
थर्मल न्यूट्रॉन के साथ डिजिटल न्यूट्रॉन छवियों को लेने की कई प्रक्रियाएँ मौजूद हैं जिनके अलग-अलग फायदे और नुकसान हैं। इन इमेजिंग विधियों का व्यापक रूप से शैक्षणिक हलकों में उपयोग किया जाता है, क्योंकि वे फिल्म प्रोसेसर और डार्क रूम की आवश्यकता से बचते हैं और साथ ही कई तरह के फायदे भी देते हैं। इसके अतिरिक्त ट्रांसमिशन स्कैनर के उपयोग के माध्यम से फिल्म छवियों को डिजिटाइज़ किया जा सकता है।
थर्मल न्यूट्रॉन के साथ डिजिटल न्यूट्रॉन छवियों को लेने की कई प्रक्रियाएँ उपस्थित हैं जिनके अलग-अलग फायदे और हानि हैं। इन छवियाँ विधियों का व्यापक रूप से शैक्षणिक हलकों में उपयोग किया जाता है, क्योंकि वे पतली परत प्रोसेसर और डार्क रूम की आवश्यकता से बचते हैं और साथ ही कई तरह के फायदे भी देते हैं। इसके अतिरिक्त संचरण स्कैनर के उपयोग के माध्यम से पतली परत छवियों को डिजिटाइज़ किया जा सकता है।


=== न्यूट्रॉन कैमरा (DR सिस्टम) ===
=== न्यूट्रॉन कैमरा (डीआर प्रणाली) ===
एक न्यूट्रॉन कैमरा एक इमेजिंग सिस्टम है जो एक डिजिटल कैमरा या इसी तरह के डिटेक्टर ऐरे पर आधारित होता है। न्यूट्रॉन वस्तु के माध्यम से छवि के माध्यम से गुजरते हैं, फिर जगमगाहट स्क्रीन न्यूट्रॉन को दृश्य प्रकाश में परिवर्तित करती है। यह प्रकाश तब कुछ प्रकाशिकी से गुजरता है (आयनीकरण विकिरण के लिए कैमरे के जोखिम को कम करने के उद्देश्य से), फिर छवि को सीसीडी कैमरे द्वारा कब्जा कर लिया जाता है (कई अन्य कैमरा प्रकार भी मौजूद हैं, जिनमें सीएमओएस और सीआईडी ​​शामिल हैं, समान परिणाम उत्पन्न करते हैं)।
एक न्यूट्रॉन कैमरा एक छवियाँ प्रणाली है जो एक डिजिटल कैमरा या इसी तरह के डिटेक्टर ऐरे पर आधारित होता है। न्यूट्रॉन वस्तु के माध्यम से छवि के माध्यम से गुजरते हैं, फिर विद्दुत आवरण न्यूट्रॉन को दृश्य प्रकाश में परिवर्तित करती है। यह प्रकाश तब कुछ प्रकाशिकी से गुजरता है (आयनीकरण विकिरण के लिए कैमरे के कठिन परिस्थिति को कम करने के उद्देश्य से), फिर छवि को सीसीडी कैमरे द्वारा कब्जा कर लिया जाता है (कई अन्य कैमरा प्रकार भी उपस्थित हैं, जिनमें सीएमओएस और सीआईडी ​​सम्मिलित हैं, समान परिणाम उत्पन्न करते हैं)।


न्यूट्रॉन कैमरे वास्तविक समय की छवियों (आमतौर पर कम रिज़ॉल्यूशन के साथ) की अनुमति देते हैं, जो अपारदर्शी पाइपों में दो चरण द्रव प्रवाह, ईंधन कोशिकाओं में हाइड्रोजन बुलबुला गठन और इंजनों में स्नेहक आंदोलन के अध्ययन के लिए उपयोगी साबित हुए हैं। यह इमेजिंग सिस्टम रोटरी टेबल के संयोजन के साथ, विभिन्न कोणों पर बड़ी संख्या में छवियां ले सकता है जिन्हें त्रि-आयामी छवि (न्यूट्रॉन टोमोग्राफी) में पुनर्निर्मित किया जा सकता है।
न्यूट्रॉन कैमरे वास्तविक समय की छवियों (सामान्यतः कम रिज़ॉल्यूशन के साथ) की अनुमति देते हैं, जो अपारदर्शी पाइपों में दो चरण द्रव प्रवाह, ईंधन सेल में हाइड्रोजन बुलबुला गठन और इंजनों में स्नेहक आंदोलन के अध्ययन के लिए उपयोगी सिद्ध हुए हैं। यह छवियाँ प्रणाली रोटरी टेबल के संयोजन के साथ, विभिन्न कोणों पर बड़ी संख्या में छवियां ले सकता है जिन्हें त्रि-आयामी छवि (न्यूट्रॉन टोमोग्राफी) में पुनर्निर्मित किया जा सकता है।


जब एक पतली जगमगाहट स्क्रीन और अच्छे प्रकाशिकी के साथ मिलकर ये प्रणालियां फिल्म इमेजिंग के समान जोखिम समय के साथ उच्च रिज़ॉल्यूशन की छवियां उत्पन्न कर सकती हैं, हालांकि उपलब्ध सीसीडी कैमरा चिप्स पर पिक्सेल की संख्या को देखते हुए इमेजिंग विमान आमतौर पर छोटा होना चाहिए।
जब एक पतली विद्दुत आवरण और अच्छे प्रकाशिकी के साथ मिलकर ये प्रणालियां पतली परत छवियाँ के समान कठिन परिस्थिति समय के साथ उच्च रिज़ॉल्यूशन की छवियां उत्पन्न कर सकती हैं, चूंकि उपलब्ध सीसीडी कैमरा चिप्स पर पिक्सेल की संख्या को देखते हुए छवियाँ सामान्यतः छोटा होना चाहिए।


हालांकि ये प्रणालियां कुछ महत्वपूर्ण लाभ प्रदान करती हैं (अनुसंधान अनुप्रयोग के लिए वास्तविक समय इमेजिंग, सरलता और सापेक्ष कम लागत, संभावित रूप से उच्च रिज़ॉल्यूशन, त्वरित छवि देखने की क्षमता), कैमरे पर मृत पिक्सेल सहित महत्वपूर्ण नुकसान मौजूद हैं (जो विकिरण जोखिम से उत्पन्न होते हैं) ), जगमगाहट स्क्रीन की गामा संवेदनशीलता (इमेजिंग कलाकृतियां बनाना जिन्हें हटाने के लिए आमतौर पर माध्यिका फ़िल्टरिंग की आवश्यकता होती है), देखने का सीमित क्षेत्र और उच्च विकिरण वातावरण में कैमरों का सीमित जीवनकाल।
चूंकि ये प्रणालियां कुछ महत्वपूर्ण लाभ प्रदान करती हैं (अनुसंधान अनुप्रयोग के लिए वास्तविक समय छवियाँ, सरलता और सापेक्ष कम निवेश, संभावित रूप से उच्च रिज़ॉल्यूशन, त्वरित छवि देखने की क्षमता), कैमरे पर मृत पिक्सेल सहित महत्वपूर्ण हानि उपस्थित हैं (जो विकिरण कठिन परिस्थिति से उत्पन्न होते हैं) ), विद्दुत आवरण की गामा संवेदनशीलता (छवियाँ कलाकृतियां बनाना जिन्हें हटाने के लिए सामान्यतः माध्यिका फ़िल्टरिंग की आवश्यकता होती है), देखने का सीमित क्षेत्र और उच्च विकिरण वातावरण में कैमरों का सीमित जीवनकाल होना चाहिए।


=== छवि प्लेटें (सीआर सिस्टम) ===
=== छवि प्लेटें (सीआर प्रणाली) ===
एक्स-रे इमेज प्लेट्स का उपयोग प्लेट [[न्यूट्रॉन स्कैनर]] के संयोजन के साथ न्यूट्रॉन इमेज बनाने के लिए किया जा सकता है, क्योंकि सिस्टम के साथ एक्स-रे इमेज तैयार की जाती हैं। छवि प्लेट द्वारा कैप्चर किए जाने के लिए न्यूट्रॉन को अभी भी विकिरण के किसी अन्य रूप में परिवर्तित करने की आवश्यकता है। थोड़े समय के लिए, फ़ूजी ने न्यूट्रॉन संवेदनशील छवि प्लेट्स का उत्पादन किया जिसमें प्लेट में कनवर्टर सामग्री शामिल थी और बाहरी रूपांतरण सामग्री के मुकाबले बेहतर संकल्प की पेशकश की। छवि प्लेटें एक ऐसी प्रक्रिया प्रदान करती हैं जो फिल्म इमेजिंग के समान है, लेकिन छवि को पुन: प्रयोज्य छवि प्लेट पर रिकॉर्ड किया जाता है जिसे इमेजिंग के बाद पढ़ा और साफ़ किया जाता है। ये प्रणालियाँ केवल स्थिर छवियाँ (स्थैतिक) उत्पन्न करती हैं। रूपांतरण स्क्रीन और एक्स-रे इमेज प्लेट का उपयोग करके, फिल्म इमेजिंग की तुलना में कम रिज़ॉल्यूशन वाली छवि बनाने के लिए तुलनीय एक्सपोज़र समय की आवश्यकता होती है। अन्तर्निहित रूपांतरण सामग्री वाली छवि प्लेट बाहरी रूपांतरण की तुलना में बेहतर छवियां उत्पन्न करती हैं, लेकिन वर्तमान में फिल्म के रूप में अच्छी छवियों का उत्पादन नहीं करती हैं।
एक्स-रे छवि प्लेट्स का उपयोग प्लेट [[न्यूट्रॉन स्कैनर]] के संयोजन के साथ न्यूट्रॉन छवि बनाने के लिए किया जा सकता है, क्योंकि प्रणाली के साथ एक्स-रे छवि तैयार की जाती हैं। छवि प्लेट द्वारा कैप्चर किए जाने के लिए न्यूट्रॉन को अभी भी विकिरण के किसी अन्य रूप में परिवर्तित करने की आवश्यकता है। थोड़े समय के लिए, फ़ूजी ने न्यूट्रॉन संवेदनशील छवि प्लेट्स का उत्पादन किया जिसमें प्लेट में कनवर्टर सामग्री सम्मिलित थी और बाहरी रूपांतरण सामग्री के मुकाबले उत्तम संकल्प की प्रस्तुत की। छवि प्लेटें एक ऐसी प्रक्रिया प्रदान करती हैं जो पतली परत छवियाँ के समान है, किन्तु छवि को पुन: प्रयोज्य छवि प्लेट पर अभिलेख किया जाता है जिसे छवियाँ के बाद पढ़ा और साफ़ किया जाता है। ये प्रणालियाँ केवल स्थिर छवियाँ (स्थैतिक) उत्पन्न करती हैं। रूपांतरण आवरण और एक्स-रे छवि प्लेट का उपयोग करके, पतली परत छवियाँ की तुलना में कम रिज़ॉल्यूशन वाली छवि बनाने के लिए तुलनीय एक्सपोज़र समय की आवश्यकता होती है। अन्तर्निहित रूपांतरण सामग्री वाली छवि प्लेट बाहरी रूपांतरण की तुलना में उत्तम छवियां उत्पन्न करती हैं, किन्तु वर्तमान में पतली परत के रूप में अच्छी छवियों का उत्पादन नहीं करती हैं।


=== फ्लैट पैनल सिलिकॉन डिटेक्टर (डीआर सिस्टम) ===
=== फ्लैट पैनल सिलिकॉन डिटेक्टर (डीआर प्रणाली) ===
सीसीडी इमेजिंग के समान एक डिजिटल तकनीक है। न्यूट्रॉन एक्सपोजर से डिटेक्टरों का जीवनकाल छोटा हो जाता है जिसके परिणामस्वरूप अन्य डिजिटल तकनीकें पसंदीदा दृष्टिकोण बन जाती हैं।
सीसीडी छवियाँ के समान एक डिजिटल विधि है। न्यूट्रॉन अनावरण से डिटेक्टरों का जीवनकाल छोटा हो जाता है जिसके परिणामस्वरूप अन्य डिजिटल विधिें पसंदीदा दृष्टिकोण बन जाती हैं।


=== माइक्रो चैनल प्लेट्स (DR सिस्टम) ===
=== सूक्ष्म चैनल प्लेट्स (डीआर प्रणाली) ===
एक उभरती हुई विधि जो बहुत छोटे पिक्सेल आकार के साथ एक डिजिटल डिटेक्टर सरणी बनाती है। डिवाइस के माध्यम से छोटे (माइक्रोमीटर) चैनल होते हैं, स्रोत पक्ष न्यूट्रॉन अवशोषित सामग्री (आमतौर पर गैडोलीनियम या बोरॉन) के साथ लेपित होता है। न्यूट्रॉन अवशोषित सामग्री न्यूट्रॉन को अवशोषित करती है और उन्हें आयनकारी विकिरण में परिवर्तित करती है जो इलेक्ट्रॉनों को मुक्त करती है। पूरे उपकरण में एक बड़ा वोल्टेज लगाया जाता है, जिससे मुक्त इलेक्ट्रॉनों को प्रवर्धित किया जाता है क्योंकि वे छोटे चैनलों के माध्यम से त्वरित होते हैं, फिर एक डिजिटल डिटेक्टर सरणी द्वारा पता लगाया जाता है।
एक उभरती हुई विधि जो बहुत छोटे पिक्सेल आकार के साथ एक डिजिटल डिटेक्टर सरणी बनाती है। उपकरण के माध्यम से छोटे (सूक्ष्म मीटर) चैनल होते हैं, स्रोत पक्ष न्यूट्रॉन अवशोषित सामग्री (सामान्यतः गैडोलीनियम या बोरॉन) के साथ लेपित होता है। न्यूट्रॉन अवशोषित सामग्री न्यूट्रॉन को अवशोषित करती है और उन्हें आयनकारी विकिरण में परिवर्तित करती है जो इलेक्ट्रॉनों को मुक्त करती है। पूरे उपकरण में एक बड़ा वोल्टेज लगाया जाता है, जिससे मुक्त इलेक्ट्रॉनों को प्रवर्धित किया जाता है क्योंकि वे छोटे चैनलों के माध्यम से त्वरित होते हैं, फिर एक डिजिटल डिटेक्टर सरणी द्वारा पता लगाया जाता है।


==संदर्भ==
==संदर्भ==
{{Portal|Technology}}
{{Portal|Technology}}
{{reflist}}
{{reflist}}
* Practical applications of neutron radiography and gaging; Berger, Harold, ASTM
* Practical applications of neutron radiography and gaging; Berger, Harold, ASTM
[[Category: इमेजिंग | न्यूट्रॉन]] [[Category: न्यूट्रॉन | इमेजिंग]]


 
[[Category:CS1 English-language sources (en)]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 28/03/2023]]
[[Category:Created On 28/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Templates Vigyan Ready]]
[[Category:इमेजिंग| न्यूट्रॉन]]
[[Category:न्यूट्रॉन| इमेजिंग]]

Latest revision as of 11:55, 24 April 2023

ओक रिज नेशनल लेबोरेटरी की न्यूट्रॉन रेडियोग्राफी सुविधा द्वारा निर्मित छवि।

न्यूट्रॉन छवियाँ न्यूट्रॉन के साथ एक छवि बनाने की प्रक्रिया है। परिणामी छवि की गई वस्तु के न्यूट्रॉन क्षीणन गुणों पर आधारित है। परिणामी छवियां औद्योगिक एक्स-रे छवियों के साथ बहुत सामान्य हैं, किन्तु चूंकि छवि एक्स-रे क्षीणन गुणों के बजाय न्यूट्रॉन क्षीणन गुणों पर आधारित है, न्यूट्रॉन छवियाँ के साथ आसानी से दिखाई देने वाली कुछ चीजें छवियाँ विधि (और इसके विपरीत) एक्स- के साथ देखना बहुत चुनौतीपूर्ण या असंभव हो सकती हैं।

सामग्री के घनत्व के आधार पर एक्स-रे को क्षीण किया जाता है। सघन सामग्री अधिक एक्स-रे रोक देगी। न्यूट्रॉन के साथ, न्यूट्रॉन के क्षीणन की सामग्री की संभावना इसके घनत्व से संबंधित नहीं है। बोरॉन जैसे कुछ प्रकाश पदार्थ न्यूट्रॉन को अवशोषित करेंगे जबकि हाइड्रोजन सामान्यतः न्यूट्रॉन को अलग कर देगा, और सामान्यतः उपयोग होने वाली कई धातुएं अधिकांश न्यूट्रॉन को अपने से गुजरने देती हैं। यह एक्स-रे छवियाँ की तुलना में कई उदाहरणों में न्यूट्रॉन छवियाँ को उत्तम बना सकता है; उदाहरण के लिए, O-अंगूठी स्थिति और धातु घटकों के अंदर अखंडता को देखते हुए, जैसे ठोस रॉकेट बूस्टर के सेगमेंट जोड़ है।

इतिहास

1932 में जेम्स चाडविक द्वारा न्यूट्रॉन की खोज की गई थी। न्यूट्रॉन रेडियोग्राफी का पहला प्रदर्शन हर्टमट कल्मन और ई. कुह्न द्वारा 1930 के दशक के अंत में किया गया था। उन्होंने पाया कि न्यूट्रॉन के साथ बमबारी पर, कुछ सामग्री विकिरण उत्सर्जित करती हैं जो पतली परत को उजागर कर सकती हैं। खोज 1946 तक एक जिज्ञासा बनी रही जब पीटर्स द्वारा निम्न गुणवत्ता वाले रेडियोग्राफ बनाए गए थे। 1955 में जे. थेविस (यूके) द्वारा उचित गुणवत्ता के पहले न्यूट्रॉन रेडियोग्राफ बनाए गए थे।

लगभग 1960, हेरोल्ड बर्जर (हम ) और जॉन पी. बार्टन (यूके) ने विकिरणित रिएक्टर ईंधन की जांच के लिए न्यूट्रॉन का मूल्यांकन प्रारंभू किया। इसके बाद, कई शोध सुविधाएं विकसित की गईं। पहली व्यावसायिक सुविधाएं 1960 के दशक के अंत में, अधिकतर संयुक्त राज्य अमेरिका और फ्रांस में और अंततः कनाडा, जापान, दक्षिण अफ्रीका, जर्मनी और स्विट्जरलैंड सहित अन्य देशों में ऑनलाइन आईं है।

प्रक्रिया

एक न्यूट्रॉन छवि का उत्पादन करने के लिए, न्यूट्रॉन का एक स्रोत, उत्सर्जित न्यूट्रॉन को अधिक मोनो-डायरेक्शनल बीम में आकार देने के लिए एक कोलिमेटर, छवि की जाने वाली वस्तु और छवि को अभिलेख करने की कुछ विधि की आवश्यकता होती है।

न्यूट्रॉन स्रोत

सामान्यतः न्यूट्रॉन स्रोत एक शोध रिएक्टर है,[1]

[2] जहां प्रति इकाई क्षेत्र (फ्लक्स) में बड़ी संख्या में न्यूट्रॉन उपलब्ध हैं। न्यूट्रॉन के समस्थानिक स्रोतों के साथ कुछ काम पूरा हो चुका है (कैलिफ़ोर्निया -252 -252 के बड़े पैमाने पर सहज परमाणु विखंडन,[3] किंतु अमेरिकाियम- फीरोज़ा समस्थानिक स्रोत, और अन्य)। ये प्रस्ताव पूंजी निवेश में कमी और गतिशीलता में वृद्धि करते हैं, किन्तु बहुत कम न्यूट्रॉन तीव्रता और अधिक कम छवि गुणवत्ता की कीमत पर होती है। इसके अतिरिक्त, स्पेलेशन लक्ष्यों के साथ बड़े त्वरक सहित न्यूट्रॉन के त्वरक स्रोतों की उपलब्धता में वृद्धि हुई है [4] और ये न्यूट्रॉन छवियाँ के लिए उपयुक्त स्रोत हो सकते हैं। ड्यूटेरियम-ड्यूटेरियम या ड्यूटेरियम-ट्रिटियम की परमाणु संलयन प्रतिक्रियाओं का उत्पादन करने वाले न्यूट्रॉन का उपयोग करने वाले पोर्टेबल त्वरक आधारित न्यूट्रॉन जनित्र है । [5]

मॉडरेशन

न्यूट्रॉन के उत्पादन के बाद, उन्हें छवियाँ के लिए वांछित गति तक धीमा करने (गतिज ऊर्जा में कमी) की आवश्यकता होती है। यह थर्मल न्यूट्रॉन का उत्पादन करने के लिए कमरे के तापमान पर कुछ लंबाई के पानी, पॉलीथीन या ग्रेफाइट का रूप ले सकता है। मंदक में न्यूट्रॉन परमाणुओं के नाभिक से टकराते हैं और इस तरह धीमे हो जाते हैं। आखिरकार इन न्यूट्रॉन की गति मंदक के तापमान (गतिज ऊर्जा की मात्रा) के आधार पर कुछ वितरण प्राप्त होती है। यदि उच्च ऊर्जा न्यूट्रॉन वांछित हैं, तो उच्च ऊर्जा के न्यूट्रॉन (एपिथर्मल न्यूट्रॉन कहा जाता है) का उत्पादन करने के लिए ग्रेफाइट मंदक को गर्म किया जा सकता है। कम ऊर्जा न्यूट्रॉन के लिए, ठंडा मंदक जैसे तरल ड्यूटेरियम (हाइड्रोजन का समस्थानिक), कम ऊर्जा न्यूट्रॉन (ठंडा न्यूट्रॉन) का उत्पादन करने के लिए उपयोग किया जा सकता है। यदि कोई या कम मंदक उपस्थित नहीं है, तो उच्च ऊर्जा न्यूट्रॉन (तीव्र न्यूट्रॉन कहा जाता है) का उत्पादन किया जा सकता है। मंदक का तापमान जितना अधिक होगा, न्यूट्रॉन की परिणामी गतिज ऊर्जा उतनी ही अधिक होगी और न्यूट्रॉन उतनी ही तेजी से यात्रा करते है। सामान्यतः, तेज न्यूट्रॉन अधिक मर्मज्ञ होंगे, किन्तु इस प्रवृत्ति से कुछ रोचक विचलन उपस्थित हैं और कभी-कभी न्यूट्रॉन छवियाँ में उपयोग किए जा सकते हैं। सामान्यतः छवियाँ प्रणाली को न्यूट्रॉन की केवल एक ही ऊर्जा का उत्पादन करने के लिए डिज़ाइन और स्थापित किया जाता है, जिसमें अधिकांश छवियाँ प्रणाली थर्मल या ठंडे न्यूट्रॉन का उत्पादन करते हैं।

कुछ स्थितियों में, न्यूट्रॉन की केवल एक विशिष्ट ऊर्जा का चयन वांछित हो सकता है। न्यूट्रॉन की एक विशिष्ट ऊर्जा को अलग करने के लिए, क्रिस्टल से न्यूट्रॉन का प्रकीर्णन या न्यूट्रॉन बीम को काटकर न्यूट्रॉन को उनकी गति के आधार पर अलग करना विकल्प हैं, किन्तु यह सामान्यतः बहुत कम न्यूट्रॉन तीव्रता उत्पन्न करता है और बहुत लंबे कठिन परिस्थिति की ओर जाता है। सामान्यतः यह केवल अनुसंधान अनुप्रयोगों के लिए किया जाता है।

यह चर्चा थर्मल न्यूट्रॉन छवियाँ पर केंद्रित है, चूंकि इनमें से अधिकतर जानकारी ठंड और एपिथर्मल छवियाँ पर भी प्रयुक्त होती है। तीव्र न्यूट्रॉन छवियाँ मातृभूमि सुरक्षा अनुप्रयोगों के लिए रुचि का क्षेत्र है, किन्तु वर्तमान में व्यावसायिक रूप से उपलब्ध नहीं है और सामान्यतः यहां वर्णित नहीं है।

कोलिमेशन

मंदक में, न्यूट्रॉन कई अलग-अलग दिशाओं में यात्रा कर रहे होंगे। एक अच्छी छवि बनाने के लिए, न्यूट्रॉन को अधिक समान दिशा (सामान्यतः थोड़ा अलग) में यात्रा करने की आवश्यकता होती है। इसे पूरा करने के लिए, एक एपर्चर (एक उद्घाटन जो न्यूट्रॉन को न्यूट्रॉन अवशोषित सामग्री से घिरे हुए इसके माध्यम से पारित करने की अनुमति देगा), न्यूट्रॉन को समापक में प्रवेश करने की अनुमति देता है। न्यूट्रॉन अवशोषण सामग्री (जैसे बोरॉन) के साथ कोलिमेटर की कुछ लंबाई तब न्यूट्रॉन को अवशोषित करती है जो वांछित दिशा में कोलिमेटर की लंबाई की यात्रा नहीं कर रहे हैं। छवि गुणवत्ता और एक्सपोज़र समय के बीच ट्रेडऑफ़ उपस्थित है। एक छोटा कोलिमेशन प्रणाली या बड़ा एपर्चर अधिक तीव्र न्यूट्रॉन बीम का उत्पादन करेगा, किन्तु न्यूट्रॉन व्यापक कोणों पर यात्रा करेंगे, जबकि एक लंबा कोलिमेटर या एक छोटा एपर्चर न्यूट्रॉन की यात्रा की दिशा में अधिक एकरूपता उत्पन्न करेगा, किन्तु महत्वपूर्ण रूप से कम न्यूट्रॉन उपस्थित होंगे और लंबे समय तक अनावरण का परिणाम होगा।

वस्तु

वस्तु को न्यूट्रॉन बीम में रखा गया है। एक्स-रे प्रणाली के साथ पाए जाने वालों से बढ़ी हुई ज्यामितीय अनिश्चितता को देखते हुए, वस्तु को सामान्यतः यथासंभव छवि अभिलेख उपकरण के करीब स्थित करने की आवश्यकता होती है।

रूपांतरण

चूंकि कई अलग-अलग छवि अभिलेख विधियां उपस्थित हैं, न्यूट्रॉन को सामान्यतः आसानी से मापा नहीं जाता है और इसे किसी अन्य प्रकार के विकिरण में परिवर्तित करने की आवश्यकता होती है जो अधिक आसानी से पता लगाया जाता है। रूपांतरण आवरण के कुछ रूप सामान्यतः इस कार्य को करने के लिए नियोजित होते हैं, चूंकि कुछ छवि कैप्चर विधियों में रूपांतरण सामग्री को सीधे छवि अभिलेख में सम्मिलित किया जाता है। अधिकांशतः यह गैडोलीनियम की पतली परत का रूप ले लेता है, जो थर्मल न्यूट्रॉन के लिए एक बहुत शक्तिशाली अवशोषक है। गैडोलीनियम की 25 सूक्ष्म मीटर परत उस पर आपतित होने वाले तापीय न्यूट्रॉन के 90% को अवशोषित करने के लिए पर्याप्त है। कुछ स्थितियों में, बोरॉन, ईण्डीयुम , सोना, या डिस्प्रोसियम जैसे अन्य तत्वों का उपयोग किया जा सकता है या सिंटिलेटर न्यूट्रॉन जैसी सामग्री का उपयोग किया जा सकता है जहां रूपांतरण आवरण न्यूट्रॉन को अवशोषित करती है और दृश्य प्रकाश का उत्सर्जन करती है।

छवि अभिलेख

न्यूट्रॉन के साथ छवियों का उत्पादन करने के लिए सामान्यतः कई तरह के विधियों का उपयोग किया जाता है। कुछ समय पहले तक, न्यूट्रॉन छवियाँ सामान्यतः एक्स-रे पतली परत पर अभिलेख की जाती थी, किन्तु अब कई तरह की डिजिटल विधियाँ उपलब्ध हैं।

न्यूट्रॉन रेडियोग्राफी (पतली परत)

न्यूट्रॉन रेडियोग्राफी एक न्यूट्रॉन छवि बनाने की प्रक्रिया है जिसे पतली परत पर अभिलेख किया जाता है। यह सामान्यतः न्यूट्रॉन छवियाँ का उच्चतम पतली परत रूप है, चूंकि आदर्श समुच्चयअप वाले डिजिटल विधिया हाल ही में तुलनात्मक परिणाम प्राप्त कर रहे हैं। सबसे अधिक उपयोग किया जाने वाला दृष्टिकोण न्यूट्रॉन को उच्च ऊर्जा इलेक्ट्रॉनों में परिवर्तित करने के लिए गैडोलीनियम रूपांतरण आवरण का उपयोग करता है, जो एकल इमल्शन एक्स-रे पतली परत को उजागर करता है।

बीमलाइन में उपस्थित पतली परत के साथ प्रत्यक्ष विधि का प्रदर्शन किया जाता है, इसलिए रूपांतरण आवरण द्वारा न्यूट्रॉन को अवशोषित किया जाता है जो पतली परत को उजागर करने वाले विकिरण के कुछ रूप को तुरंत उत्सर्जित करता है। अप्रत्यक्ष विधि में सीधे बीमलाइन में पतली परत नहीं होती है। रूपांतरण आवरण न्यूट्रॉन को अवशोषित करती है किन्तु विकिरण जारी होने से पहले कुछ समय की देरी होती है। रूपांतरण आवरण पर छवि अभिलेख करने के बाद, पतली परत पर छवि बनाने के लिए रूपांतरण आवरण को एक पतली परत के साथ निकट संपर्क में रखा जाता है (सामान्यतः घंटे)। रेडियोधर्मी वस्तुओं, या उच्च गामा संदूषण के साथ छवियाँ प्रणाली से निपटने के समय अप्रत्यक्ष विधि के महत्वपूर्ण फायदे हैं, अन्यथा प्रत्यक्ष विधि को सामान्यतः प्राथमिकता दी जाती है।

न्यूट्रॉन रेडियोग्राफी व्यावसायिक रूप से उपलब्ध सेवा है, जिसका व्यापक रूप से एयरोस्पेस उद्योग में हवाई जहाज के इंजनों के लिए टरबाइन ब्लेड, अंतरिक्ष कार्यक्रमों के लिए घटकों, उच्च विश्वसनीयता वाले विस्फोटकों के परीक्षण के लिए और कुछ हद तक अन्य उद्योग में उत्पाद विकास चक्रों के समय समस्याओं की पहचान करने के लिए उपयोग किया जाता है।

न्यूट्रॉन रेडियोग्राफी शब्द का अधिकांशतः सभी न्यूट्रॉन छवियाँ विधियों के संदर्भ में गलत उपयोग किया जाता है।

ट्रैक नक़्क़ाशी

ट्रैक नक़्क़ाशी अधिक हद तक अप्रचलित विधि है। रूपांतरण आवरण न्यूट्रॉन को अल्फा कणों में परिवर्तित करती है जो सेल्युलोज के एक टुकड़े में क्षति ट्रैक उत्पन्न करते हैं। एक एसिड बाथ का उपयोग तब सेल्युलोज को उकेरने के लिए किया जाता है, सेल्युलोज के एक टुकड़े का उत्पादन करने के लिए जिसकी मोटाई न्यूट्रॉन अनावरण के साथ बदलती है।

डिजिटल न्यूट्रॉन छवियाँ

थर्मल न्यूट्रॉन के साथ डिजिटल न्यूट्रॉन छवियों को लेने की कई प्रक्रियाएँ उपस्थित हैं जिनके अलग-अलग फायदे और हानि हैं। इन छवियाँ विधियों का व्यापक रूप से शैक्षणिक हलकों में उपयोग किया जाता है, क्योंकि वे पतली परत प्रोसेसर और डार्क रूम की आवश्यकता से बचते हैं और साथ ही कई तरह के फायदे भी देते हैं। इसके अतिरिक्त संचरण स्कैनर के उपयोग के माध्यम से पतली परत छवियों को डिजिटाइज़ किया जा सकता है।

न्यूट्रॉन कैमरा (डीआर प्रणाली)

एक न्यूट्रॉन कैमरा एक छवियाँ प्रणाली है जो एक डिजिटल कैमरा या इसी तरह के डिटेक्टर ऐरे पर आधारित होता है। न्यूट्रॉन वस्तु के माध्यम से छवि के माध्यम से गुजरते हैं, फिर विद्दुत आवरण न्यूट्रॉन को दृश्य प्रकाश में परिवर्तित करती है। यह प्रकाश तब कुछ प्रकाशिकी से गुजरता है (आयनीकरण विकिरण के लिए कैमरे के कठिन परिस्थिति को कम करने के उद्देश्य से), फिर छवि को सीसीडी कैमरे द्वारा कब्जा कर लिया जाता है (कई अन्य कैमरा प्रकार भी उपस्थित हैं, जिनमें सीएमओएस और सीआईडी ​​सम्मिलित हैं, समान परिणाम उत्पन्न करते हैं)।

न्यूट्रॉन कैमरे वास्तविक समय की छवियों (सामान्यतः कम रिज़ॉल्यूशन के साथ) की अनुमति देते हैं, जो अपारदर्शी पाइपों में दो चरण द्रव प्रवाह, ईंधन सेल में हाइड्रोजन बुलबुला गठन और इंजनों में स्नेहक आंदोलन के अध्ययन के लिए उपयोगी सिद्ध हुए हैं। यह छवियाँ प्रणाली रोटरी टेबल के संयोजन के साथ, विभिन्न कोणों पर बड़ी संख्या में छवियां ले सकता है जिन्हें त्रि-आयामी छवि (न्यूट्रॉन टोमोग्राफी) में पुनर्निर्मित किया जा सकता है।

जब एक पतली विद्दुत आवरण और अच्छे प्रकाशिकी के साथ मिलकर ये प्रणालियां पतली परत छवियाँ के समान कठिन परिस्थिति समय के साथ उच्च रिज़ॉल्यूशन की छवियां उत्पन्न कर सकती हैं, चूंकि उपलब्ध सीसीडी कैमरा चिप्स पर पिक्सेल की संख्या को देखते हुए छवियाँ सामान्यतः छोटा होना चाहिए।

चूंकि ये प्रणालियां कुछ महत्वपूर्ण लाभ प्रदान करती हैं (अनुसंधान अनुप्रयोग के लिए वास्तविक समय छवियाँ, सरलता और सापेक्ष कम निवेश, संभावित रूप से उच्च रिज़ॉल्यूशन, त्वरित छवि देखने की क्षमता), कैमरे पर मृत पिक्सेल सहित महत्वपूर्ण हानि उपस्थित हैं (जो विकिरण कठिन परिस्थिति से उत्पन्न होते हैं) ), विद्दुत आवरण की गामा संवेदनशीलता (छवियाँ कलाकृतियां बनाना जिन्हें हटाने के लिए सामान्यतः माध्यिका फ़िल्टरिंग की आवश्यकता होती है), देखने का सीमित क्षेत्र और उच्च विकिरण वातावरण में कैमरों का सीमित जीवनकाल होना चाहिए।

छवि प्लेटें (सीआर प्रणाली)

एक्स-रे छवि प्लेट्स का उपयोग प्लेट न्यूट्रॉन स्कैनर के संयोजन के साथ न्यूट्रॉन छवि बनाने के लिए किया जा सकता है, क्योंकि प्रणाली के साथ एक्स-रे छवि तैयार की जाती हैं। छवि प्लेट द्वारा कैप्चर किए जाने के लिए न्यूट्रॉन को अभी भी विकिरण के किसी अन्य रूप में परिवर्तित करने की आवश्यकता है। थोड़े समय के लिए, फ़ूजी ने न्यूट्रॉन संवेदनशील छवि प्लेट्स का उत्पादन किया जिसमें प्लेट में कनवर्टर सामग्री सम्मिलित थी और बाहरी रूपांतरण सामग्री के मुकाबले उत्तम संकल्प की प्रस्तुत की। छवि प्लेटें एक ऐसी प्रक्रिया प्रदान करती हैं जो पतली परत छवियाँ के समान है, किन्तु छवि को पुन: प्रयोज्य छवि प्लेट पर अभिलेख किया जाता है जिसे छवियाँ के बाद पढ़ा और साफ़ किया जाता है। ये प्रणालियाँ केवल स्थिर छवियाँ (स्थैतिक) उत्पन्न करती हैं। रूपांतरण आवरण और एक्स-रे छवि प्लेट का उपयोग करके, पतली परत छवियाँ की तुलना में कम रिज़ॉल्यूशन वाली छवि बनाने के लिए तुलनीय एक्सपोज़र समय की आवश्यकता होती है। अन्तर्निहित रूपांतरण सामग्री वाली छवि प्लेट बाहरी रूपांतरण की तुलना में उत्तम छवियां उत्पन्न करती हैं, किन्तु वर्तमान में पतली परत के रूप में अच्छी छवियों का उत्पादन नहीं करती हैं।

फ्लैट पैनल सिलिकॉन डिटेक्टर (डीआर प्रणाली)

सीसीडी छवियाँ के समान एक डिजिटल विधि है। न्यूट्रॉन अनावरण से डिटेक्टरों का जीवनकाल छोटा हो जाता है जिसके परिणामस्वरूप अन्य डिजिटल विधिें पसंदीदा दृष्टिकोण बन जाती हैं।

सूक्ष्म चैनल प्लेट्स (डीआर प्रणाली)

एक उभरती हुई विधि जो बहुत छोटे पिक्सेल आकार के साथ एक डिजिटल डिटेक्टर सरणी बनाती है। उपकरण के माध्यम से छोटे (सूक्ष्म मीटर) चैनल होते हैं, स्रोत पक्ष न्यूट्रॉन अवशोषित सामग्री (सामान्यतः गैडोलीनियम या बोरॉन) के साथ लेपित होता है। न्यूट्रॉन अवशोषित सामग्री न्यूट्रॉन को अवशोषित करती है और उन्हें आयनकारी विकिरण में परिवर्तित करती है जो इलेक्ट्रॉनों को मुक्त करती है। पूरे उपकरण में एक बड़ा वोल्टेज लगाया जाता है, जिससे मुक्त इलेक्ट्रॉनों को प्रवर्धित किया जाता है क्योंकि वे छोटे चैनलों के माध्यम से त्वरित होते हैं, फिर एक डिजिटल डिटेक्टर सरणी द्वारा पता लगाया जाता है।

संदर्भ

  1. "ISNR |Neutron Imaging Facilities around the World". ISNR | International Society for Neutron Radiography and IAEA (in English). Retrieved 2020-02-08.
  2. Calzada, Elbio; Schillinger, Burkhard; Grünauer, Florian (2005). "FRM II में न्यूट्रॉन रेडियोग्राफी और टोमोग्राफी सुविधा ANTARES का निर्माण और संयोजन". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 542 (1–3): 38–44. Bibcode:2005NIMPA.542...38C. doi:10.1016/j.nima.2005.01.009.
  3. Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie (2016). "ऑर्गेनिक सिंटिलेशन डिटेक्टरों में रीयल-टाइम पल्स-शेप भेदभाव के साथ फास्ट न्यूट्रॉन टोमोग्राफी". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 834: 36–45. Bibcode:2016NIMPA.834...36J. doi:10.1016/j.nima.2016.07.044.
  4. Lehmann, Eberhard; Pleinert, Helena; Wiezel, Luzius (1996). "स्पैलेशन स्रोत SINQ पर न्यूट्रॉन रेडियोग्राफी सुविधा का डिज़ाइन". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 377 (1): 11–15. Bibcode:1996NIMPA.377...11L. doi:10.1016/0168-9002(96)00106-4.
  5. Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S. (2014). "FANTOM मोबाइल फास्ट-न्यूट्रॉन रेडियोग्राफी और टोमोग्राफी सिस्टम का डिज़ाइन और प्रारंभिक 1D रेडियोग्राफी परीक्षण". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 756: 82–93. Bibcode:2014NIMPA.756...82A. doi:10.1016/j.nima.2014.04.052.
  • Practical applications of neutron radiography and gaging; Berger, Harold, ASTM