किकुची रेखाएँ (भौतिकी): Difference between revisions
(Created page with "{{short description|Patterns formed by scattering}} Image:SapphireKikuchi.png|thumb|326px|right|हेक्सागोनल सफायर (Al<sub>2</sub>O<sub>3</sub>),...") |
No edit summary |
||
(33 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Patterns formed by scattering}} | {{short description|Patterns formed by scattering}} | ||
[[Image:SapphireKikuchi.png|thumb|326px|right|हेक्सागोनल सफायर (Al<sub>2</sub>O<sub>3</sub>), कुछ | [[Image:SapphireKikuchi.png|thumb|326px|right|हेक्सागोनल सफायर (Al<sub>2</sub>O<sub>3</sub>), कुछ प्रतिच्छेदन को लेबल किया गया है।]]किकुची रेखाएँ प्रसारित होने से बनने वाले इलेक्ट्रॉनों का प्रतिरूप हैं। वे एकल क्रिस्टल प्रतिरूपों से [[इलेक्ट्रॉन विवर्तन]] में बैंड बनाने के लिए जोड़ी बनाते हैं, सूक्ष्मदर्शी के लिए अभिविन्यास-स्थान में मार्गों के रूप में सेवा करने के लिए वे जो देख रहे हैं वह अनिश्चित हैं। संचरण इलेक्ट्रॉन सूक्ष्मदर्शी में, सरलता से प्रतिरूप के क्षेत्रों से विवर्तन में देखे जा सकते हैं जो बहुविध प्रकीर्णन के लिए पर्याप्त मोटे होते हैं।<ref>{{cite book|author1=David B. Williams|author2=C. Barry Carter|date=1996|title=Transmission electron microscopy: A textbook for materials science|publisher=Plenum Press, NY|isbn=978-0-306-45324-3|url-access=registration|url=https://archive.org/details/transmissionelec0002will}}</ref> विवर्तन धब्बों के विपरीत, जो [[क्रिस्टल]] को झुकाने पर झपकाते और बंद होते हैं, किकुची बैंड उचित प्रकार से परिभाषित प्रतिच्छेदन (जोन या ध्रुव कहा जाता है) के साथ-साथ जोड़ने वाले मार्गों के साथ अभिविन्यास स्थान को चिह्नित करते हैं। | ||
किकुची बैंड ज्यामिति के प्रायोगिक और सैद्धांतिक मानचित्र, साथ ही साथ उनके प्रत्यक्ष-अंतरिक्ष एनालॉग | किकुची बैंड ज्यामिति के प्रायोगिक और सैद्धांतिक मानचित्र, साथ ही साथ उनके प्रत्यक्ष-अंतरिक्ष एनालॉग में होते हैं। उदा, मोड़ आकृति, इलेक्ट्रॉन चैनलिंग प्रतिरूप, और फ्रिंज दृश्यता मानचित्र क्रिस्टलीय और [[ nanocrystal |नैनोक्रिस्टलाइन]] सामग्री की इलेक्ट्रॉन माइक्रोस्कोपी में तीव्रता उपयोगी उपकरण हैं।<ref>{{cite journal|author1=K. Saruwatari |author2=J. Akai |author3=Y. Fukumori |author4=N. Ozaki |author5=H. Nagasawa |author6=T. Kogure |date=2008|title=टीईएम में किकुची पैटर्न का उपयोग करके बायोमिनरल का क्रिस्टल ओरिएंटेशन विश्लेषण|journal=J. Mineral. Petrol. Sci.|volume=103|pages=16–22|doi=10.2465/jmps.070611 |doi-access=free }}</ref> क्योंकि प्रत्येक किकुची रेखा जाली विमानों के समूह की ओर से [[ब्रैग विवर्तन]] से जुड़ी होती है, इन पंक्तियों को [[ मिलर सूचकांक |मिलर सूचकांक]] या [[पारस्परिक जाली]] के साथ लेबल किया जा सकता है। दूसरी ओर किकुची बैंड प्रतिच्छेदन, या क्षेत्रों को प्रत्यक्ष-जाली सूचकांकों के साथ अनुक्रमित किया जाता है, अर्थात सूचकांक जो जाली आधार सदिश '''a''', '''b''' और '''c''' के पूर्णांक गुणकों का प्रतिनिधित्व करते हैं। | ||
किकुची रेखाएँ विसरित रूप से | किकुची रेखाएँ विसरित रूप से प्रकीर्णन इलेक्ट्रॉनों द्वारा विवर्तन प्रतिरूप में बनती हैं, उदा, थर्मल परमाणु कंपन के परिणामस्वरूप हैं।<ref>{{Cite book|author=Earl J. Kirkland|date=1998|title=इलेक्ट्रॉन माइक्रोस्कोपी में उन्नत कंप्यूटिंग|publisher=Plenum Press, NY|isbn=978-0-306-45936-8|page=151}}</ref> जो ज्यामिति की मुख्य विशेषताओं को 1928 में [[स्थिर किकुची]] द्वारा प्रस्तावित सरल लोचदार तंत्र से निकाली जा सकती हैं,<ref>{{cite journal|author=S. Kikuchi|date=1928|title=अभ्रक द्वारा कैथोड किरणों का विवर्तन|journal=Japanese Journal of Physics|volume=5|issue=3061|pages=83–96|bibcode=1928Natur.121.1019N|doi=10.1038/1211019a0}}</ref> चूँकि उन्हें मात्रात्मक रूप से अध्ययन करने के लिए डिफ्यूज़ [[बेलोचदार बिखराव|इनलेस्टिक स्कैटरिंग]] के गतिशील सिद्धांत की आवश्यकता होती है।<ref>{{Cite book|author1=P. Hirsch |author2=A. Howie |author3=R. Nicholson |author4=D. W. Pashley |author5=M. J. Whelan |date=1977|title=पतले क्रिस्टल की इलेक्ट्रॉन माइक्रोस्कोपी|publisher=Butterworths/Krieger, London/Malabar FL|isbn=978-0-88275-376-8}}</ref> | ||
एक्स-रे प्रकीर्णन में, इन रेखाओं को कोसेल रेखाएँ ([[वाल्थर कोसल]] के नाम पर) कहा जाता है।<ref>{{cite book|author= R. W. James |title=एक्स-रे के विवर्तन के ऑप्टिकल सिद्धांत'|publisher= Ox Bow Press, Woodbridge, Connecticut|date=1982|chapter=Chapter VIII|isbn= 978-0-918024-23-7}}</ref> | |||
== रिकॉर्डिंग प्रयोगात्मक किकुची प्रतिरूप और मानचित्र == | |||
[[Image:KikuchiLines2.png|thumb|256px|left|300 keV इलेक्ट्रॉन बीम के साथ लिए गए एकल क्रिस्टल सिलिकॉन के अभिसारी बीम विवर्तन प्रतिरूप में किकुची रेखाएँ]]बाईं ओर का आंकड़ा किकुची रेखाओं को [[सिलिकॉन]] [100] ज़ोन की ओर ले जाता है, जो कि (004) किकुची बैंड के साथ ज़ोन से लगभग 7.9 ° दूर बीम दिशा के साथ लिया गया है। छवि में गतिशील श्रेणी इतनी बड़ी है कि फिल्म के भाग ही [[एक्सपोजर (फोटोग्राफी)|अत्यधिक उजागर]] नहीं होते हैं। कागज़ या फिल्म पर बिना हिले-डुले चित्र बनाने की तुलना में [[फ्लोरोसेंट]] चित्रपट पर अंधेरे-अनुकूलित आंखों के साथ किकुची रेखाओं का पालन करना अधिक सरल होता है, भले ही मानव आंखें और [[ फ़ोटोग्राफिक फिल्म |फ़ोटोग्राफिक मीडिया]] दोनों में रोशनी की तीव्रता के लिए सामान्यतः लॉगरिदमिक प्रतिक्रिया होती है। इस प्रकार के विवर्तन सुविधाओं पर प्रत्येक प्रकार से मात्रात्मक कार्य इसलिए सीसीडी डिटेक्टरों की बड़ी रैखिक गतिशील श्रेणी द्वारा सहायता प्रदान की जाती है।<ref>{{Cite book|author=[[John C. H. Spence|J. C. H. Spence]] and J. Zuo|date=1992|title=इलेक्ट्रॉन सूक्ष्म विवर्तन|publisher=Plenum, New York|isbn=978-0-306-44262-9|chapter=Ch. 9}}</ref> | |||
यह छवि 10° से अधिक की कोणीय सीमा को घटाती है और सामान्य कैमरे की लंबाई L से अल्प का उपयोग आवश्यक है। किकुची बैंड की चौड़ाई स्वयं (सामान्यतः λL/d जहां λ/d संबंधित विमान के लिए ब्रैग के नियम से लगभग दोगुनी है) उचित प्रकार से 1° नीचे हैं, क्योंकि इलेक्ट्रॉनों की तरंगदैर्घ्य λ (इस स्थिति में लगभग 1.97 पिकोमीटर) जालक तल d-अंतराल से अधिक अल्प है। सिलिकॉन (022) के लिए डी-स्पेसिंग लगभग 192 पिकोमीटर है जबकि सिलिकॉन (004) के लिए डी-स्पेसिंग लगभग 136 पिकोमेट्रेस है। | |||
छवि को क्रिस्टल के क्षेत्र से लिया गया था जो कि [[बेलोचदार मतलब मुक्त पथ|इनलेस्टिक मीन फ्री पाथ]] (लगभग 200 नैनोमीटर) से अधिक मोटा है, जिससे कि सुसंगत प्रकीर्णन वाली विशेषताओं (विवर्तन धब्बे) की तुलना में प्रकीर्णन वाली विशेषताएं (किकुची रेखाएँ) दृढ़ होंगी। तथ्य यह है कि बचे हुए विवर्तन धब्बे उज्ज्वल किकुची रेखाओं द्वारा प्रतिच्छेदित डिस्क के रूप में दिखाई देती हैं, इसका तात्पर्य है कि विवर्तन प्रतिरूप अभिसरण इलेक्ट्रॉन बीम के साथ लिया गया था। व्यवहार में, किकुची रेखाएँ या तो [[चयनित क्षेत्र विवर्तन]] या अभिसरण बीम इलेक्ट्रॉन विवर्तन प्रतिरूप के मोटे क्षेत्रों में सरलता से देखी जाती हैं, किन्तु आकार में 100 एनएम से अधिक अल्प क्रिस्टल से विवर्तन में देखना कठिन होता है (जहाँ जाली-फ्रिंज दृश्यता प्रभाव इसके अतिरिक्त महत्वपूर्ण हो जाते हैं)। यह छवि अभिसरण बीम में अंकित की गई थी, क्योंकि वह भी फिल्म पर रिकॉर्ड किए जाने वाले विरोधाभासों की सीमा को अल्प कर देता है। | |||
[[ steradian |स्टेरेडियन]] से अधिक कवर करने वाले किकुची मानचित्रों को संकलित करने के लिए आवश्यक है कि झुकाव पर अनेक छवियों को केवल वृद्धिशील रूप से परिवर्तित किया जाए (उदाहरण के लिए प्रत्येक दिशा में 2 डिग्री)। यह कठिन कार्य हो सकता है, किन्तु अज्ञात संरचना वाले क्रिस्टल का परीक्षण करते समय उपयोगी हो सकता है क्योंकि यह तीन आयामों में जाली समरूपता को स्पष्ट रूप से प्रकट कर सकता है।<ref>{{cite journal|author1=E. Levine |author2=W. L. Bell |author3=G. Thomas |date=1966|title=Further applications of Kikuchi diffraction patterns; Kikuchi maps|journal=Journal of Applied Physics|volume=37|issue=5 |pages=2141–2148|doi=10.1063/1.1708749|bibcode = 1966JAP....37.2141L }}</ref> | |||
== किकुची रेखा मानचित्र और उनका त्रिविम प्रक्षेपण == | == किकुची रेखा मानचित्र और उनका त्रिविम प्रक्षेपण == | ||
[[Image:Diamondkikuchi.png|thumb|256px|left|[001] डायमंड फेस-सेंटर्ड क्यूबिक क्रिस्टल के लिए जोन स्टीरियोग्राफिक किकुची मैप]] | [[Image:Diamondkikuchi.png|thumb|256px|left|[001] डायमंड फेस-सेंटर्ड क्यूबिक क्रिस्टल के लिए जोन स्टीरियोग्राफिक किकुची मैप]] | ||
[[Image:Sfsp111.gif|thumb|128px|right| | [[Image:Sfsp111.gif|thumb|128px|right|एफसीसी क्रिस्टल में आठ <111> क्षेत्रों में से चार के मध्य टिल्ट ट्रैवर्स का एनिमेशन]]सिलिकॉन के अभिविन्यास स्थान के बड़े भाग के लिए बाएँ प्लॉट किकुची रेखाओं पर चित्र है। नीचे बड़े [011] और [001] क्षेत्रों के मध्य अंतरित कोण सिलिकॉन के लिए 45° है। ध्यान दें कि नीचे दाईं ओर चार-गुना क्षेत्र (यहाँ [001] लेबल किया गया है) में समान समरूपता और अभिविन्यास है जो ऊपर दिए गए प्रायोगिक प्रतिरूप में [100] लेबल वाले ज़ोन के रूप में है, चूँकि वह प्रायोगिक प्रतिरूप केवल 10 ° घटाता है। | ||
यह भी ध्यान दें कि बाईं ओर का आंकड़ा उस [001] क्षेत्र पर केंद्रित | यह भी ध्यान दें कि बाईं ओर का आंकड़ा उस [001] क्षेत्र पर केंद्रित [[त्रिविम प्रक्षेपण]] से लिया गया है। इस प्रकार के अनुरूप प्रक्षेपण किसी स्थानीय कोणों को संरक्षित करते हुए गोलाकार सतह के भाग को समतल पर मानचित्र करने की अनुमति देते हैं, और इसलिए ज़ोन समरूपता होते है। ऐसे मानचित्रों को प्लॉट करने के लिए यह आवश्यक है कि व्यक्ति वक्रता के अधिक बड़े त्रिज्या वाले वृत्तों के चापों को खींचने में सक्षम हो। उदाहरण के लिए, बाईं ओर का आंकड़ा कंप्यूटर के आगमन से पूर्व खींचा गया था और इसलिए [[ बीम कम्पास |बीम कम्पास]] के उपयोग की आवश्यकता थी। वर्तमान में बीम कंपास का शोध करना अधिक कठिन हो सकता है, क्योंकि कंप्यूटर की सहायता से बड़े वक्रता त्रिज्या (दो या तीन आयामों में) वाले वक्र बनाना अधिक सरल है। | ||
स्टीरियोग्राफिक प्लॉट्स का कोण-संरक्षण प्रभाव दाईं ओर की आकृति में और भी अधिक स्पष्ट है, जो | स्टीरियोग्राफिक प्लॉट्स का कोण-संरक्षण प्रभाव दाईं ओर की आकृति में और भी अधिक स्पष्ट है, जो फेस-केंद्रित या क्यूबिक क्लोज्ड पैक्ड क्रिस्टल के अभिविन्यास स्थान के पूर्ण 180 ° को घटाता है। जैसे सोना या एल्युमिनियम हैं। एनिमेशन <111> ज़ोन के मध्य उस फ़ेस-केंद्रित क्यूबिक क्रिस्टल के {220} फ्रिंज-विज़िबिलिटी बैंड का अनुसरण करता है, जिस बिंदु पर 60° का रोटेशन मूल अनुक्रम के दोहराव के माध्यम से अगले <111> ज़ोन की यात्रा करता है। फ्रिंज-विजिबिलिटी बैंड्स की वैसी ही वैश्विक ज्यामिति होती है जैसी किकुची बैंड्स की होती है, किन्तु पतले प्रतिरूपों के लिए उनकी चौड़ाई डी-स्पेसिंग के समानुपातिक (व्युत्क्रमानुपाती के) होती है। चूँकि कोणीय क्षेत्र की चौड़ाई (और झुकाव सीमा) किकुची बैंड के साथ प्रयोगात्मक रूप से प्राप्त करने योग्य है, सामान्यतः अधिक छोटा है, एनीमेशन विस्तृत-कोण दृश्य प्रदान करता है कि कैसे किकुची बैंड सूचित क्रिस्टलोग्राफरों को एकल क्रिस्टल प्रतिरूप के अभिविन्यास स्थान के मध्य अपना मार्ग परीक्षण में सहायता करते हैं। | ||
== | == वास्तविक अंतरिक्ष एनालॉग्स == | ||
[[Image:CagedSpider.png|thumb|306px|right|लगभग 500 नैनोमीटर चौड़े अण्डाकार क्षेत्र में फंसी | [[Image:CagedSpider.png|thumb|306px|right|लगभग 500 नैनोमीटर चौड़े अण्डाकार क्षेत्र में फंसी सिलिकॉन [100] बेंड कंटूर स्पाइडर]]किकुची रेखाएँ मोटे प्रतिरूपों की विवर्तन छवियों में जाली विमानों पर किनारे को उजागर करने का कार्य करती हैं। क्योंकि उच्च ऊर्जा वाले इलेक्ट्रॉनों के विवर्तन में ब्रैग कोण अधिक छोटे (~{{frac|1|4}} डिग्री 300 केवी के लिए), किकुची बैंड पारस्परिक स्थान में अधिक संकीर्ण होते हैं। इसका अर्थ यह भी है कि वास्तविक अंतरिक्ष छवियों में, जालीदार विमानों को किनारों पर विस्तारित होने वाली सुविधाओं से नहीं जबकि सुसंगत प्रकीर्णन से जुड़े विपरीत द्वारा सजाया जाता है। इन सुसंगत प्रकीर्णन विशेषताओं में अतिरिक्त विवर्तन (घुमावदार पन्नी में मोड़ आकृति के लिए उत्तरदायी), अधिक इलेक्ट्रॉन पैठ (जो क्रिस्टल सतहों की इलेक्ट्रॉन छवियों को स्कैन करने में इलेक्ट्रॉन चैनलिंग प्रतिरूप को उत्पन्न करता है), और जाली फ्रिंज कंट्रास्ट (जिसके परिणामस्वरूप जाली फ्रिंज की निर्भरता होती है) सम्मिलित हैं। बीम ओरिएंटेशन पर तीव्रता जो प्रतिरूप मोटाई से जुड़ा हुआ है)। चूँकि इसके विपरीत विवरण भिन्न-भिन्न होते हैं, इन सुविधाओं और किकुची मानचित्रों की जाली विमान ट्रेस ज्यामिति के समान हैं। | ||
=== आकृति | === आकृति का घूर्णन === | ||
[[Image:Rockingcurve2.png|thumb|256px|left| | [[Image:Rockingcurve2.png|thumb|256px|left|प्रतिरूप मोटाई और बीम झुकाव के फंक्शन के रूप में बेंड समुच्चय और जाली फ्रिंज दृश्यता]]रॉकिंग वक्र<ref>{{cite journal|author1=H. Hashimoto |title=Anomalous Electron Absorption Effects in Metal Foils: Theory and Comparison with Experiment |author2=A. Howie |author3=M. J. Whelan |date=1962|journal=[[Proceedings of the Royal Society A]]|volume= 269|issue=1336 |page=80|bibcode = 1962RSPSA.269...80H |doi = 10.1098/rspa.1962.0164 |s2cid=97942498 }}</ref> (बाएं) प्रसारित इलेक्ट्रॉन तीव्रता के भूखंड हैं, घटना इलेक्ट्रॉन बीम और प्रतिरूप में जाली विमानों के समूह के सामान्य के मध्य के कोण के फंक्शन के रूप में होते है। जैसा कि यह कोण किनारे से किसी भी दिशा में परिवर्तित होता है (जिस पर अभिविन्यास इलेक्ट्रॉन बीम जाली विमानों के समानांतर चलता है और उनके सामान्य लंबवत होता है), बीम ब्रैग विवर्तनिक स्थिति में चला जाता है और अधिक इलेक्ट्रॉनों को माइक्रोस्कोप के [[बैक फोकल प्लेन]] एपर्चर के बाहर विवर्तित किया जाता है। दाईं ओर की छवि में दिखाई गई बेंट सिलिकॉन फ़ॉइल की छवि में दिखाई देने वाली डार्क-लाइन जोड़े (बैंड) को उत्पन्न करती है। | ||
सिलिकॉन के | सिलिकॉन के क्षेत्र में इस छवि को [100] बेंड कंटूर स्पाइडर, जो माइक्रोमीटर से कम आकार के अंडाकार वॉचग्लास के आकार की थी, 300 केवी इलेक्ट्रॉनों के साथ चित्रित की गई थी। यदि आप क्रिस्टल को झुकाते हैं, तो मकड़ी अंडाकार के किनारों की ओर बढ़ती है जैसे कि वह बाहर निकलने की प्रयास कर रही हो। उदाहरण के लिए, इस छवि में मकड़ी का [100] प्रतिच्छेदन दीर्घवृत्त के दाईं ओर चला गया है क्योंकि प्रतिरूप बाईं ओर झुका हुआ था। | ||
मकड़ी के पैरों और उनके | मकड़ी के पैरों और उनके प्रतिच्छेदन को उचित उसी प्रकार से अनुक्रमित किया जा सकता है जैसा ऊपर प्रयोगात्मक किकुची प्रतिरूप पर अनुभाग में [100] के निकट किकुची प्रतिरूप के रूप में दिखाया गया है। सिद्धांत रूप में, इसलिए अंडाकार के सभी बिंदुओं पर पन्नी के वेक्टर झुकाव ([[milliradian|मिलीरेडियन]] त्रुटिहीनता के साथ) को प्रतिरूप के लिए समुच्चय का उपयोग किया जा सकता है। | ||
=== जाली फ्रिंज दृश्यता मानचित्र === | === जाली फ्रिंज दृश्यता मानचित्र === | ||
जैसा कि आप ऊपर रॉकिंग कर्व से देख सकते हैं, | जैसा कि आप ऊपर रॉकिंग कर्व से देख सकते हैं, प्रतिरूप मोटाई 10 नैनोमीटर और छोटी श्रेणी में चलती है (उदाहरण के लिए 300 केवी इलेक्ट्रॉनों और 0.23 एनएम के पास जाली स्पेसिंग के लिए) झुकाव की कोणीय सीमा जो विवर्तन या जाली-फ्रिंज को उत्पन्न करती है कंट्रास्ट प्रतिरूप मोटाई के व्युत्क्रमानुपाती हो जाता है। जालक-किनारे दृश्यता की ज्यामिति इसलिए नैनो सामग्री के इलेक्ट्रॉन सूक्ष्मदर्शी अध्ययन में उपयोगी हो जाती है,<ref>{{cite journal|author1=P. Fraundorf |author2=Wentao Qin |author3=P. Moeck |author4=Eric Mandell |date=2005|title=नैनोक्रिस्टल जाली फ्रिंज की समझ बनाना|journal=Journal of Applied Physics|volume=98|issue=11 |pages=114308–114308–10 |doi=10.1063/1.2135414|bibcode=2005JAP....98k4308F|arxiv = cond-mat/0212281 |s2cid=13681236 }}</ref><ref>{{cite journal|author1=P. Wang |author2=A. L. Bleloch |author3=U. Falke |author4=P. J. Goodhew |date=2006|title=HAADF STEM का उपयोग करते हुए नैनोक्रिस्टलाइन सामग्री में लैटिस कंट्रास्ट दृश्यता के ज्यामितीय पहलू|journal=Ultramicroscopy|volume=106|issue=4–5 |pages=277–283|doi=10.1016/j.ultramic.2005.09.005}}</ref> ठीक वैसे ही जो वक्र रेखाएँ और किकुची रेखाएँ एकल क्रिस्टल प्रतिरूपों के अध्ययन में उपयोगी होती हैं (उदाहरण के लिए दसवीं-माइक्रोमीटर श्रेणी में मोटाई के साथ धातु और अर्धचालक प्रतिरूप)। उदाहरण के लिए नैनोस्ट्रक्चर के अनुप्रयोगों में सम्मिलित हैं: (i) भिन्न-भिन्न झुकावों पर ली गई छवियों से भिन्न-भिन्न नैनोकणों के 3डी लैटिस पैरामीटर का निर्धारण करना ,<ref>{{cite journal|author1=Wentao Qin |author2=P. Fraundorf |date=2003|title=दो झुकावों पर प्रत्यक्ष-अंतरिक्ष छवियों से जाली पैरामीटर|journal=Ultramicroscopy|volume=94|pages=245–262|doi=10.1016/S0304-3991(02)00335-2|pmid=12524195|issue=3–4|arxiv=cond-mat/0001139|s2cid=10524417 }}</ref> (ii) अव्यवस्थित रूप से उन्मुख नैनोकण संग्रह की फ्रिंज फिंगरप्रिंटिंग करना, (iii) झुकाव के अंतर्गत फ्रिंज कंट्रास्ट परिवर्तन के आधार पर कण मोटाई मानचित्र करना, (iv) यादृच्छिक रूप से उन्मुख नैनोकण की जाली छवि से आईकोसाहेड्रल ट्विनिंग ज्ञात करना, और (v) अभिविन्यास संबंधों का विश्लेषण नैनोकणों और बेलनाकार समर्थन के मध्य होता है। | ||
===इलेक्ट्रॉन चैनलिंग | ===इलेक्ट्रॉन चैनलिंग प्रतिरूप === | ||
[[File:Brillouin-zone construction by 300keV electrons.jpg|right|thumb|300px|300keV इलेक्ट्रॉनों द्वारा ब्रिलौइन-ज़ोन निर्माण]]उपरोक्त सभी | [[File:Brillouin-zone construction by 300keV electrons.jpg|right|thumb|300px|300keV इलेक्ट्रॉनों द्वारा ब्रिलौइन-ज़ोन निर्माण]]उपरोक्त सभी प्रौद्योगिकी में उन इलेक्ट्रॉनों को ज्ञात करना सम्मिलित है जो पतले प्रतिरूप से निकलते हैं, सामान्यतः संचरण इलेक्ट्रॉन माइक्रोस्कोप में होते है। दूसरी ओर, स्कैनिंग इलेक्ट्रॉन सूक्ष्मदर्शी, सामान्यतः इलेक्ट्रॉनों को "किक अप" करते हैं, जब मोटे प्रतिरूप में फ़ोकस किए गए इलेक्ट्रॉन बीम को रेखापुंज करता है। जो इलेक्ट्रॉन चैनलिंग प्रतिरूप एज-ऑन जाली विमानों से जुड़े विपरीत को प्रभवित करते हैं जो इलेक्ट्रॉन माइक्रोस्कोप माध्यमिक या बैकस्कैटरेड इलेक्ट्रॉन छवियों को स्कैन करने में दिखाई देते हैं। | ||
इसके विपरीत | इसके विपरीत पूर्व बेंड कंटूर के समान होते हैं, अर्थात इलेक्ट्रॉन जो विवर्तनिक परिस्थितियों में क्रिस्टलीय सतह में प्रवेश करते हैं, वे चैनल (ऊर्जा विलुप्त किये बिना प्रतिरूप में गहराई से प्रवेश करते हैं) और इस प्रकार ज्ञात करने के लिए प्रवेश सतह के निकट अल्प इलेक्ट्रॉनों को किक करते हैं। इसलिए अब परिचित किकुची लाइन ज्यामिति के साथ, बीम/जाली अभिविन्यास के आधार पर बैंड बनते हैं। | ||
प्रथम [[स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप]] (एसईएम) छवि [[विद्युत स्टील]] में इलेक्ट्रॉन चैनलिंग कंट्रास्ट की छवि थी।<ref name=knoll>{{cite journal|author=Knoll M.|date=1935|title=Aufladepotentiel und sekundäremission elektronenbestrahlter körper (Static potential and secondary emission of bodies under electron irradiation)|journal=Z. Tech. Phys.|volume=11|pages=467–475}}</ref> चूँकि, प्रौद्योगिकी के लिए व्यावहारिक उपयोग सीमित हैं क्योंकि घर्षण क्षति या अनाकार कोटिंग की केवल पतली परत सामान्यतः कंट्रास्ट को अस्पष्ट करने के लिए पर्याप्त होती है।<ref>{{Cite book|author1=J. I. Goldstein |author2=D. E. Newbury |author3=P. Echlin |author4=D. C. Joy |author5=A. D. Romig Jr. |author6=C. E. Lyman |author7=C. Fiori |author8=E. Lifshin |date=1992|title=स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी और एक्स-रे माइक्रोएनालिसिस|publisher=Plenum Press, NY|isbn=978-0-306-44175-2}}</ref> यदि प्रतिरूप को आवेशित करने से रोकने के लिए परीक्षा से पूर्व प्रवाहकीय कोटिंग दी जानी थी, तो यह भी कंट्रास्ट को अस्पष्ट कर सकता है। दरार वाली सतहों पर, और परमाणु स्तर पर स्व-एकत्र सतहों पर, इलेक्ट्रॉन चैनलिंग प्रतिरूप आने वाले वर्षों में आधुनिक सूक्ष्मदर्शी के साथ बढ़ते हुए अनुप्रयोग को देखने की संभावना है। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 57: | Line 56: | ||
*Some interactive [http://www.umsl.edu/~fraundorfp/nanowrld/live3Dmodels/vmapframe.htm 3D maps] at [[University of Missouri–St. Louis|UM Saint Louis]]. | *Some interactive [http://www.umsl.edu/~fraundorfp/nanowrld/live3Dmodels/vmapframe.htm 3D maps] at [[University of Missouri–St. Louis|UM Saint Louis]]. | ||
*Calculate Kikuchi map or patterns with free software PTCLab [https://sourceforge.net/projects/tclab]. | *Calculate Kikuchi map or patterns with free software PTCLab [https://sourceforge.net/projects/tclab]. | ||
[[Category:Created On 03/04/2023]] | [[Category:Created On 03/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:इलेक्ट्रॉन माइक्रोस्कोपी]] | |||
[[Category:विवर्तन]] |
Latest revision as of 14:33, 24 April 2023
किकुची रेखाएँ प्रसारित होने से बनने वाले इलेक्ट्रॉनों का प्रतिरूप हैं। वे एकल क्रिस्टल प्रतिरूपों से इलेक्ट्रॉन विवर्तन में बैंड बनाने के लिए जोड़ी बनाते हैं, सूक्ष्मदर्शी के लिए अभिविन्यास-स्थान में मार्गों के रूप में सेवा करने के लिए वे जो देख रहे हैं वह अनिश्चित हैं। संचरण इलेक्ट्रॉन सूक्ष्मदर्शी में, सरलता से प्रतिरूप के क्षेत्रों से विवर्तन में देखे जा सकते हैं जो बहुविध प्रकीर्णन के लिए पर्याप्त मोटे होते हैं।[1] विवर्तन धब्बों के विपरीत, जो क्रिस्टल को झुकाने पर झपकाते और बंद होते हैं, किकुची बैंड उचित प्रकार से परिभाषित प्रतिच्छेदन (जोन या ध्रुव कहा जाता है) के साथ-साथ जोड़ने वाले मार्गों के साथ अभिविन्यास स्थान को चिह्नित करते हैं।
किकुची बैंड ज्यामिति के प्रायोगिक और सैद्धांतिक मानचित्र, साथ ही साथ उनके प्रत्यक्ष-अंतरिक्ष एनालॉग में होते हैं। उदा, मोड़ आकृति, इलेक्ट्रॉन चैनलिंग प्रतिरूप, और फ्रिंज दृश्यता मानचित्र क्रिस्टलीय और नैनोक्रिस्टलाइन सामग्री की इलेक्ट्रॉन माइक्रोस्कोपी में तीव्रता उपयोगी उपकरण हैं।[2] क्योंकि प्रत्येक किकुची रेखा जाली विमानों के समूह की ओर से ब्रैग विवर्तन से जुड़ी होती है, इन पंक्तियों को मिलर सूचकांक या पारस्परिक जाली के साथ लेबल किया जा सकता है। दूसरी ओर किकुची बैंड प्रतिच्छेदन, या क्षेत्रों को प्रत्यक्ष-जाली सूचकांकों के साथ अनुक्रमित किया जाता है, अर्थात सूचकांक जो जाली आधार सदिश a, b और c के पूर्णांक गुणकों का प्रतिनिधित्व करते हैं।
किकुची रेखाएँ विसरित रूप से प्रकीर्णन इलेक्ट्रॉनों द्वारा विवर्तन प्रतिरूप में बनती हैं, उदा, थर्मल परमाणु कंपन के परिणामस्वरूप हैं।[3] जो ज्यामिति की मुख्य विशेषताओं को 1928 में स्थिर किकुची द्वारा प्रस्तावित सरल लोचदार तंत्र से निकाली जा सकती हैं,[4] चूँकि उन्हें मात्रात्मक रूप से अध्ययन करने के लिए डिफ्यूज़ इनलेस्टिक स्कैटरिंग के गतिशील सिद्धांत की आवश्यकता होती है।[5]
एक्स-रे प्रकीर्णन में, इन रेखाओं को कोसेल रेखाएँ (वाल्थर कोसल के नाम पर) कहा जाता है।[6]
रिकॉर्डिंग प्रयोगात्मक किकुची प्रतिरूप और मानचित्र
बाईं ओर का आंकड़ा किकुची रेखाओं को सिलिकॉन [100] ज़ोन की ओर ले जाता है, जो कि (004) किकुची बैंड के साथ ज़ोन से लगभग 7.9 ° दूर बीम दिशा के साथ लिया गया है। छवि में गतिशील श्रेणी इतनी बड़ी है कि फिल्म के भाग ही अत्यधिक उजागर नहीं होते हैं। कागज़ या फिल्म पर बिना हिले-डुले चित्र बनाने की तुलना में फ्लोरोसेंट चित्रपट पर अंधेरे-अनुकूलित आंखों के साथ किकुची रेखाओं का पालन करना अधिक सरल होता है, भले ही मानव आंखें और फ़ोटोग्राफिक मीडिया दोनों में रोशनी की तीव्रता के लिए सामान्यतः लॉगरिदमिक प्रतिक्रिया होती है। इस प्रकार के विवर्तन सुविधाओं पर प्रत्येक प्रकार से मात्रात्मक कार्य इसलिए सीसीडी डिटेक्टरों की बड़ी रैखिक गतिशील श्रेणी द्वारा सहायता प्रदान की जाती है।[7]
यह छवि 10° से अधिक की कोणीय सीमा को घटाती है और सामान्य कैमरे की लंबाई L से अल्प का उपयोग आवश्यक है। किकुची बैंड की चौड़ाई स्वयं (सामान्यतः λL/d जहां λ/d संबंधित विमान के लिए ब्रैग के नियम से लगभग दोगुनी है) उचित प्रकार से 1° नीचे हैं, क्योंकि इलेक्ट्रॉनों की तरंगदैर्घ्य λ (इस स्थिति में लगभग 1.97 पिकोमीटर) जालक तल d-अंतराल से अधिक अल्प है। सिलिकॉन (022) के लिए डी-स्पेसिंग लगभग 192 पिकोमीटर है जबकि सिलिकॉन (004) के लिए डी-स्पेसिंग लगभग 136 पिकोमेट्रेस है।
छवि को क्रिस्टल के क्षेत्र से लिया गया था जो कि इनलेस्टिक मीन फ्री पाथ (लगभग 200 नैनोमीटर) से अधिक मोटा है, जिससे कि सुसंगत प्रकीर्णन वाली विशेषताओं (विवर्तन धब्बे) की तुलना में प्रकीर्णन वाली विशेषताएं (किकुची रेखाएँ) दृढ़ होंगी। तथ्य यह है कि बचे हुए विवर्तन धब्बे उज्ज्वल किकुची रेखाओं द्वारा प्रतिच्छेदित डिस्क के रूप में दिखाई देती हैं, इसका तात्पर्य है कि विवर्तन प्रतिरूप अभिसरण इलेक्ट्रॉन बीम के साथ लिया गया था। व्यवहार में, किकुची रेखाएँ या तो चयनित क्षेत्र विवर्तन या अभिसरण बीम इलेक्ट्रॉन विवर्तन प्रतिरूप के मोटे क्षेत्रों में सरलता से देखी जाती हैं, किन्तु आकार में 100 एनएम से अधिक अल्प क्रिस्टल से विवर्तन में देखना कठिन होता है (जहाँ जाली-फ्रिंज दृश्यता प्रभाव इसके अतिरिक्त महत्वपूर्ण हो जाते हैं)। यह छवि अभिसरण बीम में अंकित की गई थी, क्योंकि वह भी फिल्म पर रिकॉर्ड किए जाने वाले विरोधाभासों की सीमा को अल्प कर देता है।
स्टेरेडियन से अधिक कवर करने वाले किकुची मानचित्रों को संकलित करने के लिए आवश्यक है कि झुकाव पर अनेक छवियों को केवल वृद्धिशील रूप से परिवर्तित किया जाए (उदाहरण के लिए प्रत्येक दिशा में 2 डिग्री)। यह कठिन कार्य हो सकता है, किन्तु अज्ञात संरचना वाले क्रिस्टल का परीक्षण करते समय उपयोगी हो सकता है क्योंकि यह तीन आयामों में जाली समरूपता को स्पष्ट रूप से प्रकट कर सकता है।[8]
किकुची रेखा मानचित्र और उनका त्रिविम प्रक्षेपण
सिलिकॉन के अभिविन्यास स्थान के बड़े भाग के लिए बाएँ प्लॉट किकुची रेखाओं पर चित्र है। नीचे बड़े [011] और [001] क्षेत्रों के मध्य अंतरित कोण सिलिकॉन के लिए 45° है। ध्यान दें कि नीचे दाईं ओर चार-गुना क्षेत्र (यहाँ [001] लेबल किया गया है) में समान समरूपता और अभिविन्यास है जो ऊपर दिए गए प्रायोगिक प्रतिरूप में [100] लेबल वाले ज़ोन के रूप में है, चूँकि वह प्रायोगिक प्रतिरूप केवल 10 ° घटाता है।
यह भी ध्यान दें कि बाईं ओर का आंकड़ा उस [001] क्षेत्र पर केंद्रित त्रिविम प्रक्षेपण से लिया गया है। इस प्रकार के अनुरूप प्रक्षेपण किसी स्थानीय कोणों को संरक्षित करते हुए गोलाकार सतह के भाग को समतल पर मानचित्र करने की अनुमति देते हैं, और इसलिए ज़ोन समरूपता होते है। ऐसे मानचित्रों को प्लॉट करने के लिए यह आवश्यक है कि व्यक्ति वक्रता के अधिक बड़े त्रिज्या वाले वृत्तों के चापों को खींचने में सक्षम हो। उदाहरण के लिए, बाईं ओर का आंकड़ा कंप्यूटर के आगमन से पूर्व खींचा गया था और इसलिए बीम कम्पास के उपयोग की आवश्यकता थी। वर्तमान में बीम कंपास का शोध करना अधिक कठिन हो सकता है, क्योंकि कंप्यूटर की सहायता से बड़े वक्रता त्रिज्या (दो या तीन आयामों में) वाले वक्र बनाना अधिक सरल है।
स्टीरियोग्राफिक प्लॉट्स का कोण-संरक्षण प्रभाव दाईं ओर की आकृति में और भी अधिक स्पष्ट है, जो फेस-केंद्रित या क्यूबिक क्लोज्ड पैक्ड क्रिस्टल के अभिविन्यास स्थान के पूर्ण 180 ° को घटाता है। जैसे सोना या एल्युमिनियम हैं। एनिमेशन <111> ज़ोन के मध्य उस फ़ेस-केंद्रित क्यूबिक क्रिस्टल के {220} फ्रिंज-विज़िबिलिटी बैंड का अनुसरण करता है, जिस बिंदु पर 60° का रोटेशन मूल अनुक्रम के दोहराव के माध्यम से अगले <111> ज़ोन की यात्रा करता है। फ्रिंज-विजिबिलिटी बैंड्स की वैसी ही वैश्विक ज्यामिति होती है जैसी किकुची बैंड्स की होती है, किन्तु पतले प्रतिरूपों के लिए उनकी चौड़ाई डी-स्पेसिंग के समानुपातिक (व्युत्क्रमानुपाती के) होती है। चूँकि कोणीय क्षेत्र की चौड़ाई (और झुकाव सीमा) किकुची बैंड के साथ प्रयोगात्मक रूप से प्राप्त करने योग्य है, सामान्यतः अधिक छोटा है, एनीमेशन विस्तृत-कोण दृश्य प्रदान करता है कि कैसे किकुची बैंड सूचित क्रिस्टलोग्राफरों को एकल क्रिस्टल प्रतिरूप के अभिविन्यास स्थान के मध्य अपना मार्ग परीक्षण में सहायता करते हैं।
वास्तविक अंतरिक्ष एनालॉग्स
किकुची रेखाएँ मोटे प्रतिरूपों की विवर्तन छवियों में जाली विमानों पर किनारे को उजागर करने का कार्य करती हैं। क्योंकि उच्च ऊर्जा वाले इलेक्ट्रॉनों के विवर्तन में ब्रैग कोण अधिक छोटे (~1⁄4 डिग्री 300 केवी के लिए), किकुची बैंड पारस्परिक स्थान में अधिक संकीर्ण होते हैं। इसका अर्थ यह भी है कि वास्तविक अंतरिक्ष छवियों में, जालीदार विमानों को किनारों पर विस्तारित होने वाली सुविधाओं से नहीं जबकि सुसंगत प्रकीर्णन से जुड़े विपरीत द्वारा सजाया जाता है। इन सुसंगत प्रकीर्णन विशेषताओं में अतिरिक्त विवर्तन (घुमावदार पन्नी में मोड़ आकृति के लिए उत्तरदायी), अधिक इलेक्ट्रॉन पैठ (जो क्रिस्टल सतहों की इलेक्ट्रॉन छवियों को स्कैन करने में इलेक्ट्रॉन चैनलिंग प्रतिरूप को उत्पन्न करता है), और जाली फ्रिंज कंट्रास्ट (जिसके परिणामस्वरूप जाली फ्रिंज की निर्भरता होती है) सम्मिलित हैं। बीम ओरिएंटेशन पर तीव्रता जो प्रतिरूप मोटाई से जुड़ा हुआ है)। चूँकि इसके विपरीत विवरण भिन्न-भिन्न होते हैं, इन सुविधाओं और किकुची मानचित्रों की जाली विमान ट्रेस ज्यामिति के समान हैं।
आकृति का घूर्णन
रॉकिंग वक्र[9] (बाएं) प्रसारित इलेक्ट्रॉन तीव्रता के भूखंड हैं, घटना इलेक्ट्रॉन बीम और प्रतिरूप में जाली विमानों के समूह के सामान्य के मध्य के कोण के फंक्शन के रूप में होते है। जैसा कि यह कोण किनारे से किसी भी दिशा में परिवर्तित होता है (जिस पर अभिविन्यास इलेक्ट्रॉन बीम जाली विमानों के समानांतर चलता है और उनके सामान्य लंबवत होता है), बीम ब्रैग विवर्तनिक स्थिति में चला जाता है और अधिक इलेक्ट्रॉनों को माइक्रोस्कोप के बैक फोकल प्लेन एपर्चर के बाहर विवर्तित किया जाता है। दाईं ओर की छवि में दिखाई गई बेंट सिलिकॉन फ़ॉइल की छवि में दिखाई देने वाली डार्क-लाइन जोड़े (बैंड) को उत्पन्न करती है।
सिलिकॉन के क्षेत्र में इस छवि को [100] बेंड कंटूर स्पाइडर, जो माइक्रोमीटर से कम आकार के अंडाकार वॉचग्लास के आकार की थी, 300 केवी इलेक्ट्रॉनों के साथ चित्रित की गई थी। यदि आप क्रिस्टल को झुकाते हैं, तो मकड़ी अंडाकार के किनारों की ओर बढ़ती है जैसे कि वह बाहर निकलने की प्रयास कर रही हो। उदाहरण के लिए, इस छवि में मकड़ी का [100] प्रतिच्छेदन दीर्घवृत्त के दाईं ओर चला गया है क्योंकि प्रतिरूप बाईं ओर झुका हुआ था।
मकड़ी के पैरों और उनके प्रतिच्छेदन को उचित उसी प्रकार से अनुक्रमित किया जा सकता है जैसा ऊपर प्रयोगात्मक किकुची प्रतिरूप पर अनुभाग में [100] के निकट किकुची प्रतिरूप के रूप में दिखाया गया है। सिद्धांत रूप में, इसलिए अंडाकार के सभी बिंदुओं पर पन्नी के वेक्टर झुकाव (मिलीरेडियन त्रुटिहीनता के साथ) को प्रतिरूप के लिए समुच्चय का उपयोग किया जा सकता है।
जाली फ्रिंज दृश्यता मानचित्र
जैसा कि आप ऊपर रॉकिंग कर्व से देख सकते हैं, प्रतिरूप मोटाई 10 नैनोमीटर और छोटी श्रेणी में चलती है (उदाहरण के लिए 300 केवी इलेक्ट्रॉनों और 0.23 एनएम के पास जाली स्पेसिंग के लिए) झुकाव की कोणीय सीमा जो विवर्तन या जाली-फ्रिंज को उत्पन्न करती है कंट्रास्ट प्रतिरूप मोटाई के व्युत्क्रमानुपाती हो जाता है। जालक-किनारे दृश्यता की ज्यामिति इसलिए नैनो सामग्री के इलेक्ट्रॉन सूक्ष्मदर्शी अध्ययन में उपयोगी हो जाती है,[10][11] ठीक वैसे ही जो वक्र रेखाएँ और किकुची रेखाएँ एकल क्रिस्टल प्रतिरूपों के अध्ययन में उपयोगी होती हैं (उदाहरण के लिए दसवीं-माइक्रोमीटर श्रेणी में मोटाई के साथ धातु और अर्धचालक प्रतिरूप)। उदाहरण के लिए नैनोस्ट्रक्चर के अनुप्रयोगों में सम्मिलित हैं: (i) भिन्न-भिन्न झुकावों पर ली गई छवियों से भिन्न-भिन्न नैनोकणों के 3डी लैटिस पैरामीटर का निर्धारण करना ,[12] (ii) अव्यवस्थित रूप से उन्मुख नैनोकण संग्रह की फ्रिंज फिंगरप्रिंटिंग करना, (iii) झुकाव के अंतर्गत फ्रिंज कंट्रास्ट परिवर्तन के आधार पर कण मोटाई मानचित्र करना, (iv) यादृच्छिक रूप से उन्मुख नैनोकण की जाली छवि से आईकोसाहेड्रल ट्विनिंग ज्ञात करना, और (v) अभिविन्यास संबंधों का विश्लेषण नैनोकणों और बेलनाकार समर्थन के मध्य होता है।
इलेक्ट्रॉन चैनलिंग प्रतिरूप
उपरोक्त सभी प्रौद्योगिकी में उन इलेक्ट्रॉनों को ज्ञात करना सम्मिलित है जो पतले प्रतिरूप से निकलते हैं, सामान्यतः संचरण इलेक्ट्रॉन माइक्रोस्कोप में होते है। दूसरी ओर, स्कैनिंग इलेक्ट्रॉन सूक्ष्मदर्शी, सामान्यतः इलेक्ट्रॉनों को "किक अप" करते हैं, जब मोटे प्रतिरूप में फ़ोकस किए गए इलेक्ट्रॉन बीम को रेखापुंज करता है। जो इलेक्ट्रॉन चैनलिंग प्रतिरूप एज-ऑन जाली विमानों से जुड़े विपरीत को प्रभवित करते हैं जो इलेक्ट्रॉन माइक्रोस्कोप माध्यमिक या बैकस्कैटरेड इलेक्ट्रॉन छवियों को स्कैन करने में दिखाई देते हैं।
इसके विपरीत पूर्व बेंड कंटूर के समान होते हैं, अर्थात इलेक्ट्रॉन जो विवर्तनिक परिस्थितियों में क्रिस्टलीय सतह में प्रवेश करते हैं, वे चैनल (ऊर्जा विलुप्त किये बिना प्रतिरूप में गहराई से प्रवेश करते हैं) और इस प्रकार ज्ञात करने के लिए प्रवेश सतह के निकट अल्प इलेक्ट्रॉनों को किक करते हैं। इसलिए अब परिचित किकुची लाइन ज्यामिति के साथ, बीम/जाली अभिविन्यास के आधार पर बैंड बनते हैं।
प्रथम स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोप (एसईएम) छवि विद्युत स्टील में इलेक्ट्रॉन चैनलिंग कंट्रास्ट की छवि थी।[13] चूँकि, प्रौद्योगिकी के लिए व्यावहारिक उपयोग सीमित हैं क्योंकि घर्षण क्षति या अनाकार कोटिंग की केवल पतली परत सामान्यतः कंट्रास्ट को अस्पष्ट करने के लिए पर्याप्त होती है।[14] यदि प्रतिरूप को आवेशित करने से रोकने के लिए परीक्षा से पूर्व प्रवाहकीय कोटिंग दी जानी थी, तो यह भी कंट्रास्ट को अस्पष्ट कर सकता है। दरार वाली सतहों पर, और परमाणु स्तर पर स्व-एकत्र सतहों पर, इलेक्ट्रॉन चैनलिंग प्रतिरूप आने वाले वर्षों में आधुनिक सूक्ष्मदर्शी के साथ बढ़ते हुए अनुप्रयोग को देखने की संभावना है।
यह भी देखें
- इलेक्ट्रॉन विवर्तन
- इलेक्ट्रॉन बैकस्कैटर विवर्तन (ईबीएसडी)
संदर्भ
- ↑ David B. Williams; C. Barry Carter (1996). Transmission electron microscopy: A textbook for materials science. Plenum Press, NY. ISBN 978-0-306-45324-3.
- ↑ K. Saruwatari; J. Akai; Y. Fukumori; N. Ozaki; H. Nagasawa; T. Kogure (2008). "टीईएम में किकुची पैटर्न का उपयोग करके बायोमिनरल का क्रिस्टल ओरिएंटेशन विश्लेषण". J. Mineral. Petrol. Sci. 103: 16–22. doi:10.2465/jmps.070611.
- ↑ Earl J. Kirkland (1998). इलेक्ट्रॉन माइक्रोस्कोपी में उन्नत कंप्यूटिंग. Plenum Press, NY. p. 151. ISBN 978-0-306-45936-8.
- ↑ S. Kikuchi (1928). "अभ्रक द्वारा कैथोड किरणों का विवर्तन". Japanese Journal of Physics. 5 (3061): 83–96. Bibcode:1928Natur.121.1019N. doi:10.1038/1211019a0.
- ↑ P. Hirsch; A. Howie; R. Nicholson; D. W. Pashley; M. J. Whelan (1977). पतले क्रिस्टल की इलेक्ट्रॉन माइक्रोस्कोपी. Butterworths/Krieger, London/Malabar FL. ISBN 978-0-88275-376-8.
- ↑ R. W. James (1982). "Chapter VIII". एक्स-रे के विवर्तन के ऑप्टिकल सिद्धांत'. Ox Bow Press, Woodbridge, Connecticut. ISBN 978-0-918024-23-7.
- ↑ J. C. H. Spence and J. Zuo (1992). "Ch. 9". इलेक्ट्रॉन सूक्ष्म विवर्तन. Plenum, New York. ISBN 978-0-306-44262-9.
- ↑ E. Levine; W. L. Bell; G. Thomas (1966). "Further applications of Kikuchi diffraction patterns; Kikuchi maps". Journal of Applied Physics. 37 (5): 2141–2148. Bibcode:1966JAP....37.2141L. doi:10.1063/1.1708749.
- ↑ H. Hashimoto; A. Howie; M. J. Whelan (1962). "Anomalous Electron Absorption Effects in Metal Foils: Theory and Comparison with Experiment". Proceedings of the Royal Society A. 269 (1336): 80. Bibcode:1962RSPSA.269...80H. doi:10.1098/rspa.1962.0164. S2CID 97942498.
- ↑ P. Fraundorf; Wentao Qin; P. Moeck; Eric Mandell (2005). "नैनोक्रिस्टल जाली फ्रिंज की समझ बनाना". Journal of Applied Physics. 98 (11): 114308–114308–10. arXiv:cond-mat/0212281. Bibcode:2005JAP....98k4308F. doi:10.1063/1.2135414. S2CID 13681236.
- ↑ P. Wang; A. L. Bleloch; U. Falke; P. J. Goodhew (2006). "HAADF STEM का उपयोग करते हुए नैनोक्रिस्टलाइन सामग्री में लैटिस कंट्रास्ट दृश्यता के ज्यामितीय पहलू". Ultramicroscopy. 106 (4–5): 277–283. doi:10.1016/j.ultramic.2005.09.005.
- ↑ Wentao Qin; P. Fraundorf (2003). "दो झुकावों पर प्रत्यक्ष-अंतरिक्ष छवियों से जाली पैरामीटर". Ultramicroscopy. 94 (3–4): 245–262. arXiv:cond-mat/0001139. doi:10.1016/S0304-3991(02)00335-2. PMID 12524195. S2CID 10524417.
- ↑ Knoll M. (1935). "Aufladepotentiel und sekundäremission elektronenbestrahlter körper (Static potential and secondary emission of bodies under electron irradiation)". Z. Tech. Phys. 11: 467–475.
- ↑ J. I. Goldstein; D. E. Newbury; P. Echlin; D. C. Joy; A. D. Romig Jr.; C. E. Lyman; C. Fiori; E. Lifshin (1992). स्कैनिंग इलेक्ट्रॉन माइक्रोस्कोपी और एक्स-रे माइक्रोएनालिसिस. Plenum Press, NY. ISBN 978-0-306-44175-2.
बाहरी संबंध
- Calculate patterns with WebEMApS at UIUC.
- Some interactive 3D maps at UM Saint Louis.
- Calculate Kikuchi map or patterns with free software PTCLab [1].