त्रिक अवस्था: Difference between revisions
No edit summary |
|||
Line 3: | Line 3: | ||
[[File:Spin multiplicity diagram.svg|thumb|[[एकल अवस्था]], [[ दोहरी स्थिति ]] और ट्रिपलेट स्टेट्स में परमाणुओं के उदाहरण।]][[क्वांटम यांत्रिकी]] में, एक त्रिक क्वांटम संख्या s = 1 के [[स्पिन (भौतिकी)]] के साथ एक प्रणाली की क्वांटम स्थिति है, जैसे कि स्पिन घटक के तीन अनुमत मान हैं, ms = -1, 0, और +1। | [[File:Spin multiplicity diagram.svg|thumb|[[एकल अवस्था]], [[ दोहरी स्थिति ]] और ट्रिपलेट स्टेट्स में परमाणुओं के उदाहरण।]][[क्वांटम यांत्रिकी]] में, एक त्रिक क्वांटम संख्या s = 1 के [[स्पिन (भौतिकी)]] के साथ एक प्रणाली की क्वांटम स्थिति है, जैसे कि स्पिन घटक के तीन अनुमत मान हैं, ms = -1, 0, और +1। | ||
स्पिन (भौतिकी), क्वांटम यांत्रिकी के संदर्भ में, एक यांत्रिक घूर्णन नहीं है, बल्कि एक अधिक अमूर्त अवधारणा है जो एक कण | स्पिन (भौतिकी), क्वांटम यांत्रिकी के संदर्भ में, एक यांत्रिक घूर्णन नहीं है, बल्कि एक अधिक अमूर्त अवधारणा है जो एक कण की आंतरिक कोणीय गति की विशेषता है। यह परमाणु लंबाई के पैमाने पर प्रणालियों के लिए विशेष रूप से महत्वपूर्ण है, जैसे व्यक्तिगत परमाणु, प्रोटॉन या [[इलेक्ट्रॉनों]]। | ||
दैनिक जीवन में मिलने वाले लगभग सभी अणु एकल अवस्था में मौजूद होते हैं, लेकिन [[आणविक ऑक्सीजन]] एक अपवाद है।<ref name=":0">{{cite journal |last1=Borden |first1=Weston Thatcher |last2=Hoffmann |first2=Roald |last3=Stuyver |first3=Thijs |last4=Chen |first4=Bo |date=2017 |title=Dioxygen: What Makes This Triplet Diradical Kinetically Persistent? |journal=JACS |volume=139|issue=26 |pages=9010–9018 |doi=10.1021/jacs.7b04232 |pmid=28613073 |doi-access=free }}</ref> कमरे के तापमान पर, ओ<sub>2</sub> एक त्रिक अवस्था में मौजूद होता है, जो केवल [[निषिद्ध संक्रमण]] को एकल अवस्था में बनाकर रासायनिक प्रतिक्रिया से गुजर सकता है। | दैनिक जीवन में मिलने वाले लगभग सभी अणु एकल अवस्था में मौजूद होते हैं, लेकिन [[आणविक ऑक्सीजन]] एक अपवाद है।<ref name=":0">{{cite journal |last1=Borden |first1=Weston Thatcher |last2=Hoffmann |first2=Roald |last3=Stuyver |first3=Thijs |last4=Chen |first4=Bo |date=2017 |title=Dioxygen: What Makes This Triplet Diradical Kinetically Persistent? |journal=JACS |volume=139|issue=26 |pages=9010–9018 |doi=10.1021/jacs.7b04232 |pmid=28613073 |doi-access=free }}</ref> कमरे के तापमान पर, ओ<sub>2</sub> एक त्रिक अवस्था में मौजूद होता है, जो केवल [[निषिद्ध संक्रमण]] को एकल अवस्था में बनाकर रासायनिक प्रतिक्रिया से गुजर सकता है। ऊष्मागतिक रूप से सबसे मजबूत ऑक्सीडेंट में से एक होने के बावजूद यह इसे गतिज रूप से गैर-प्रतिक्रियाशील बनाता है। फोटोकैमिकल या थर्मल एक्टिवेशन इसे [[सिंगलेट ऑक्सीजन|एकल अवस्था]] में ला सकता है, जो इसे गतिज रूप से और साथ ही ऊष्मागतिक रूप से एक बहुत मजबूत ऑक्सीडेंट बनाता है। | ||
__TOC__ | __TOC__ |
Revision as of 08:56, 19 April 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (December 2010) (Learn how and when to remove this template message) |
क्वांटम यांत्रिकी में, एक त्रिक क्वांटम संख्या s = 1 के स्पिन (भौतिकी) के साथ एक प्रणाली की क्वांटम स्थिति है, जैसे कि स्पिन घटक के तीन अनुमत मान हैं, ms = -1, 0, और +1।
स्पिन (भौतिकी), क्वांटम यांत्रिकी के संदर्भ में, एक यांत्रिक घूर्णन नहीं है, बल्कि एक अधिक अमूर्त अवधारणा है जो एक कण की आंतरिक कोणीय गति की विशेषता है। यह परमाणु लंबाई के पैमाने पर प्रणालियों के लिए विशेष रूप से महत्वपूर्ण है, जैसे व्यक्तिगत परमाणु, प्रोटॉन या इलेक्ट्रॉनों।
दैनिक जीवन में मिलने वाले लगभग सभी अणु एकल अवस्था में मौजूद होते हैं, लेकिन आणविक ऑक्सीजन एक अपवाद है।[1] कमरे के तापमान पर, ओ2 एक त्रिक अवस्था में मौजूद होता है, जो केवल निषिद्ध संक्रमण को एकल अवस्था में बनाकर रासायनिक प्रतिक्रिया से गुजर सकता है। ऊष्मागतिक रूप से सबसे मजबूत ऑक्सीडेंट में से एक होने के बावजूद यह इसे गतिज रूप से गैर-प्रतिक्रियाशील बनाता है। फोटोकैमिकल या थर्मल एक्टिवेशन इसे एकल अवस्था में ला सकता है, जो इसे गतिज रूप से और साथ ही ऊष्मागतिक रूप से एक बहुत मजबूत ऑक्सीडेंट बनाता है।
दो चक्कर - 1/2 कण
एक प्रणाली में दो स्पिन-1/2 कणों के साथ - उदाहरण के लिए हाइड्रोजन की जमीनी अवस्था में प्रोटॉन और इलेक्ट्रॉन - किसी दिए गए अक्ष पर मापा जाता है, प्रत्येक कण को या तो अप स्पिन किया जा सकता है या नीचे स्पिन किया जा सकता है, इसलिए प्रणाली में सभी में चार आधार अवस्थाएँ होती हैं
आधार अवस्था को लेबल करने के लिए एकल कण स्पिन का उपयोग करना, जहां प्रत्येक संयोजन में पहला तीर और दूसरा तीर क्रमशः पहले कण और दूसरे कण की स्पिन दिशा को इंगित करता है।
अधिक सख्ती से
कहाँ और दो कणों के स्पिन हैं, और और z अक्ष पर उनके प्रक्षेपण हैं। चूंकि स्पिन-1/2 कणों के लिए, आधार अवस्था एक 2-आयामी स्थान को फैलाती है, आधार अवस्था एक 4-आयामी स्थान को फैलाती हैं।
अब कुल चक्रण और पहले से परिभाषित अक्ष पर इसके प्रक्षेपण की गणना क्लेब्स-गॉर्डन गुणांकों का उपयोग करके क्वांटम यांत्रिकी में कोणीय गति को जोड़ने के नियमों का उपयोग करके की जा सकती है। सामान्य रूप में
चार आधार अवस्थाओ में प्रतिस्थापन
में उनके प्रतिनिधित्व के साथ दिए गए कुल स्पिन के लिए संभावित मान लौटाता है आधार। कुल स्पिन कोणीय संवेग 1 के साथ तीन अवस्थाएँ हैं:[2][3]
जो सममित हैं और चौथी अवस्था कुल स्पिन कोणीय गति 0 के साथ है:
जो विषम है। परिणाम यह है कि दो स्पिन-1/2 कणों का संयोजन 1 या 0 का कुल स्पिन ले सकता है, यह इस बात पर निर्भर करता है कि वे एक त्रिक या एकल अवस्था में हैं या नहीं।
एक गणितीय दृष्टिकोण
प्रतिनिधित्व सिद्धांत के संदर्भ में, क्या हुआ है कि स्पिन समूह एसयू(2) = स्पिन(3) के दो संयुग्मित 2-आयामी स्पिन प्रतिनिधित्व (जैसा कि यह 3-आयामी क्लिफोर्ड बीजगणित के अंदर बैठता है) ने 4 आयामी प्रतिनिधित्व का उत्पादन करने के लिए प्रदिश किया है। 4 आयामी प्रतिनिधित्व सामान्य ऑर्थोगोनल समूह एसओ (3) में उतरता है और इसलिए इसकी वस्तुएं प्रदिश हैं, जो उनके स्पिन की अभिन्नता के अनुरूप हैं। 4 आयामी प्रतिनिधित्व एक आयामी तुच्छ प्रतिनिधित्व (एकल, एक अदिश, स्पिन शून्य) और एक त्रि-आयामी प्रतिनिधित्व (ट्रिपलेट, स्पिन 1) के योग में विघटित होता है जो कि SO(3) के मानक प्रतिनिधित्व से अधिक कुछ नहीं है। . इस प्रकार त्रिक में "तीन" को भौतिक स्थान के तीन घूर्णन अक्षों के साथ पहचाना जा सकता है।
यह भी देखें
- सिंगलेट अवस्था
- दोहरी अवस्था
- विचित्र
- कोनेदार गति
- पॉल मैट्रिसेस
- स्पिन बहुलता
- स्पिन क्वांटम संख्या
- स्पिन - 1/2
- स्पिन टेंसर
- स्पिनर
संदर्भ
- ↑ Borden, Weston Thatcher; Hoffmann, Roald; Stuyver, Thijs; Chen, Bo (2017). "Dioxygen: What Makes This Triplet Diradical Kinetically Persistent?". JACS. 139 (26): 9010–9018. doi:10.1021/jacs.7b04232. PMID 28613073.
- ↑ Townsend, John S. (1992). क्वांटम यांत्रिकी के लिए एक आधुनिक दृष्टिकोण. New York: McGraw-Hill. p. 149. ISBN 0-07-065119-1. OCLC 23650343.
- ↑ Spin and Spin–Addition
- Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 978-0-13-111892-8.
- Shankar, R. (1994). "chapter 14-Spin". Principles of Quantum Mechanics (2nd ed.). Springer. ISBN 978-0-306-44790-7.