ट्रांसवर्सलिटी प्रमेय: Difference between revisions
(Created page with "{{short description|Describes the transverse intersection properties of a smooth family of smooth maps}} अंतर टोपोलॉजी में, फ्रा...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Describes the transverse intersection properties of a smooth family of smooth maps}} | {{short description|Describes the transverse intersection properties of a smooth family of smooth maps}} | ||
[[ अंतर टोपोलॉजी ]] में, | [[ अंतर टोपोलॉजी |अवकल सांस्थिति]] में '''ट्रांसवर्सलिटी प्रमेय''' या '''अनुप्रस्थ प्रमेय''', जिसे फ्रांसीसी गणितज्ञ रेने थॉम के बाद से थॉम अनुप्रस्थ प्रमेय के रूप में भी जाना जाता है इसका एक प्रमुख परिणाम है जो समतल मानचित्र के समतल समूह के अनुप्रस्थ प्रतिच्छेदन गुणों का वर्णन करता है यह कहता है कि [[ट्रांसवर्सलिटी (गणित)|अनुप्रस्थ (गणित)]] एक [[सामान्य संपत्ति]] है किसी भी समतल मानचित्र <math>f\colon X\rightarrow Y</math> को अपेक्षाकृत रूप से छोटी राशि से एक मानचित्र में विकृत किया जा सकता है जो किसी दिए गए बहुआयामी <math>Z \subseteq Y</math> के लिए अनुप्रस्थ है पोंट्रीगिन-थॉम निर्माण के साथ, यह [[सह-बोर्डवाद सिद्धांत]] का तकनीकी मुख्य भाग है और शल्य सिद्धांत के लिए प्रारम्भिक बिंदु है अनुप्रस्थ प्रमेय का परिमित-आयामी संस्करण भी एक संपत्ति की सामान्यता स्थापित करने के लिए बहुत ही उपयोगी उपकरण है जो वास्तविक मापदंडों की एक सीमित संख्या पर निर्भर होता है और जो गैर-रैखिक समीकरणों की एक प्रणाली का उपयोग करके व्यक्त किया जा सकता है अनुप्रस्थ प्रमेय के अनंत-आयामी संस्करण का उपयोग करके इसे एक अनंत-आयामी प्राचलीकरण तक विस्तृत किया जा सकता है। | ||
== परिमित-आयामी संस्करण == | == परिमित-आयामी संस्करण == | ||
=== | === पूर्ववर्ती परिभाषाएँ === | ||
माना कि <math>f\colon X\rightarrow Y</math> समतल बहुआयामी के बीच एक समतल मानचित्र है और माना कि <math>Z</math> का बहुआयामी <math>Y</math> है तब <math>f</math> का अनुप्रस्थ <math>Z</math> है इस प्रकार से <math>f \pitchfork Z</math> को निर्धारित किया गया है यदि प्रत्येक के लिए <math>x\in f^{-1}\left(Z\right)</math> है तब: | |||
: <math>\operatorname{im}\left( df_x \right) + T_{f\left(x\right)} Z = T_{f\left(x\right)} Y</math>. | : <math>\operatorname{im}\left( df_x \right) + T_{f\left(x\right)} Z = T_{f\left(x\right)} Y</math>. | ||
यह अनुप्रस्थ के विषय में एक महत्वपूर्ण परिणाम बताता है कि यदि एक सुगम मानचित्र <math>f</math> के अनुप्रस्थ <math>Z</math> है तब <math>f^{-1}\left(Z\right)</math> का एक नियमित बहुआयामी <math>X</math> है। | |||
यदि <math>X</math> सीमा के साथ बहुआयामी है तो हम मानचित्र के प्रतिबंध को <math>f</math> सीमा तक परिभाषित कर सकते हैं जैसे <math>\partial f\colon\partial X \rightarrow Y</math> मानचित्र <math>\partial f</math> के लिए सहज है और यह हमें पिछले परिणाम का विस्तार करने की स्वीकृति देता है यदि दोनों <math>f \pitchfork Z</math> और <math>\partial f \pitchfork Z</math> है तब <math>f^{-1}\left(Z\right)</math> का <math>X</math> सीमा के साथ एक नियमित बहुआयामी है: | |||
: <math>\partial f^{-1}\left( Z \right) = f^{-1}\left( Z \right) \cap \partial X</math>. | : <math>\partial f^{-1}\left( Z \right) = f^{-1}\left( Z \right) \cap \partial X</math>. | ||
=== पैरामीट्रिक | === पैरामीट्रिक अनुप्रस्थ प्रमेय === | ||
मानचित्र | मानचित्र <math>F\colon X\times S \rightarrow Y</math> पर विचार करें और <math>f_s\left(x\right) = F\left(x,s\right)</math> को परिभाषित करें कि यह मानचित्र का एक समुच्चय <math>f_s\colon X\rightarrow Y</math> उत्पन्न करता है हमें आवश्यकता है कि <math>S</math> को एक (समतल) बहुआयामी और <math>F</math> को समतल मानकर समुच्चय समतल रूप से भिन्न हो जिसके लिए पैरामीट्रिक अनुप्रस्थ प्रमेय का एक कथन है: | ||
मान लीजिए कि <math>F\colon X \times S \rightarrow Y</math> बहुआयामी का एक समतल मानचि है जहाँ <math>X</math> केवल सीमा है और माना <math>Z</math> का कोई उप बहुआयामी <math>Y</math> हो और यदि दोनों <math>F</math> और <math>\partial F</math> के अनुप्रस्थ <math>Z</math> हैं तो लगभग प्रत्येक <math>s\in S</math> के लिए दोनों <math>f_s</math> और <math>\partial f_s</math> का अनुप्रस्थ <math>Z</math> होता है। | |||
=== अधिक सामान्य अनुप्रस्थ प्रमेय === | |||
उपरोक्त पैरामीट्रिक अनुप्रस्थ प्रमेय कई प्राथमिक अनुप्रयोगों (गिलेमिन और पोलैक द्वारा पुस्तक देखें) के लिए पर्याप्त है अधिक सामान्य कथन हैं (सामूहिक रूप से अनुप्रस्थ प्रमेय के रूप में जाने जाते हैं) जो पैरामीट्रिक अनुप्रस्थ प्रमेय को प्रयुक्त करते हैं और अधिक सामान्य अनुप्रयोगों के लिए आवश्यक हैं। | |||
अनौपचारिक रूप से, अनुप्रस्थ प्रमेय कहता है कि मानचित्र का समुच्चय जो किसी दिए गए उप बहुआयामी के लिए अनुप्रस्थ है एक सघन या कुछ स्थितियों में केवल सघन <math>G_\delta</math>) मानचित्र के समुच्चय का उप समुच्चय है इस प्रकार के कथन को शुद्ध बनाने के लिए, मानचित्र के विचाराधीन समष्टि को परिभाषित करना आवश्यक है और इसमें सांस्थिति क्या है कई संभावनाएं हैं इसके लिए हिर्श की पुस्तक देखें। | |||
अधिक | सामान्यतः थॉम्स अनुप्रस्थ प्रमेय द्वारा जो समझा जाता है वह [[जेट (गणित)]] अनुप्रस्थ के विषय में एक अधिक प्रभावशाली कथन है हिर्श, गोलूबिट्स्की और गुइलेमिन की पुस्तकें देखें। जिसका मूल संदर्भ थॉम बीओएल एसओसी मैट मेक्सिकाना (2) 1 (1956) पीपी. 59-71 है। | ||
[[जॉन माथेर (गणितज्ञ)]] ने 1970 के दशक में एक और भी सामान्य परिणाम सिद्ध किया जिसे बहुआयामी जेट अनुप्रस्थ प्रमेय कहा जाता है जिसके लिए गोलूबित्सकी और गुइलेमिन की पुस्तक देखें। | |||
== अनंत-आयामी संस्करण == | |||
अनुप्रस्थ प्रमेय का अनंत-आयामी संस्करण इस विषय को ध्यान में रखता है कि बहुआयामी को बानाख बीजगणित समष्टि में मॉडल किया जा सकता है।{{Citation needed|reason=I can't find this statement in references and doubt its veracity|date=July 2017}} | |||
=== औपचारिक कथन === | |||
मान लीजिए कि <math>F: X \times S \to Y</math> बनाच बहुआयामी का एक <math>C^k</math> मानचित्र है। | |||
मान लीजिए: | |||
# <math>X, S</math> और <math>Y</math> गैर-रिक्त हैं और <math>C^\infty</math> एक क्षेत्र में रिक्त समष्टि के साथ बनाच बहुआयामी <math>\mathbb{K}</math> है। | |||
# <math>C^k</math> मानचित्र <math>F:X \times S \to Y</math> के साथ <math>k\geq 1</math> में नियमित मान के रूप में <math>y</math> है। | |||
# प्रत्येक पैरामीटर के लिए <math>s\in S</math>, मानचित्र <math>f_s(x) = F(x,s)</math> का एक [[फ्रेडहोम ऑपरेटर|फ्रेडहोम संक्रियक]] है जहाँ <math>\operatorname{ind} Df_s(x)<k</math> प्रत्येक के लिए <math>x\in f_{s}^{-1}(\{y\})</math> है। | |||
# अभिसरण <math>s_n \to s</math> पर <math>S</math> जैसा कि <math>n \to \infty</math> और <math>F(x_n,s_n) = y</math> सभी के लिए <math>n</math> एक अभिसरण अनुक्रम के अस्तित्व का तात्पर्य यह है कि <math>x_n \to x</math> जैसा <math>n \to \infty</math> साथ <math>x\in X</math> है। | |||
यदि (1)-(4) को प्रयुक्त करें, तो <math>S_0 \subset S</math> एक विवृत सघन उप समुच्चय सम्मिलित है जैसे कि <math>y</math> प्रत्येक पैरामीटर <math>s\in S_0.</math> के लिए <math>f_s</math> का एक नियमित मान है। | |||
अब, एक तत्व <math>s\in S_0</math> को ठीक करें यदि कोई संख्या <math>n\geq 0</math> सम्मिलित है साथ ही <math>\operatorname{ind} Df_s(x) = n</math> के सभी समाधान के लिए <math>x\in X</math> का <math>f_s(x) = y</math>, फिर समाधान समुच्चय <math>f_s^{-1}(\{y\})</math> एक के लिए <math>n</math> बहुआयामी हैं और <math>C^k</math> बनाच बहुआयामी या समाधान रिक्त समुच्चय है। | |||
ध्यान दें कि | ध्यान दें कि यदि <math>\operatorname{ind} Df_s(x) = 0</math> के सभी समाधान के लिए <math>f_s(x) = y,</math> है तो वहाँ एक विवृत सघन उपसमुच्चय <math>S_0</math> का <math>S</math> सम्मिलित है जैसे कि प्रत्येक निश्चित पैरामीटर के लिए अधिक से अधिक सूक्ष्म रूप से कई समाधान <math>s\in S_0</math> हैं इसके अतिरिक्त ये सभी समाधान नियमित हैं। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 10:53, 20 April 2023
अवकल सांस्थिति में ट्रांसवर्सलिटी प्रमेय या अनुप्रस्थ प्रमेय, जिसे फ्रांसीसी गणितज्ञ रेने थॉम के बाद से थॉम अनुप्रस्थ प्रमेय के रूप में भी जाना जाता है इसका एक प्रमुख परिणाम है जो समतल मानचित्र के समतल समूह के अनुप्रस्थ प्रतिच्छेदन गुणों का वर्णन करता है यह कहता है कि अनुप्रस्थ (गणित) एक सामान्य संपत्ति है किसी भी समतल मानचित्र को अपेक्षाकृत रूप से छोटी राशि से एक मानचित्र में विकृत किया जा सकता है जो किसी दिए गए बहुआयामी के लिए अनुप्रस्थ है पोंट्रीगिन-थॉम निर्माण के साथ, यह सह-बोर्डवाद सिद्धांत का तकनीकी मुख्य भाग है और शल्य सिद्धांत के लिए प्रारम्भिक बिंदु है अनुप्रस्थ प्रमेय का परिमित-आयामी संस्करण भी एक संपत्ति की सामान्यता स्थापित करने के लिए बहुत ही उपयोगी उपकरण है जो वास्तविक मापदंडों की एक सीमित संख्या पर निर्भर होता है और जो गैर-रैखिक समीकरणों की एक प्रणाली का उपयोग करके व्यक्त किया जा सकता है अनुप्रस्थ प्रमेय के अनंत-आयामी संस्करण का उपयोग करके इसे एक अनंत-आयामी प्राचलीकरण तक विस्तृत किया जा सकता है।
परिमित-आयामी संस्करण
पूर्ववर्ती परिभाषाएँ
माना कि समतल बहुआयामी के बीच एक समतल मानचित्र है और माना कि का बहुआयामी है तब का अनुप्रस्थ है इस प्रकार से को निर्धारित किया गया है यदि प्रत्येक के लिए है तब:
- .
यह अनुप्रस्थ के विषय में एक महत्वपूर्ण परिणाम बताता है कि यदि एक सुगम मानचित्र के अनुप्रस्थ है तब का एक नियमित बहुआयामी है।
यदि सीमा के साथ बहुआयामी है तो हम मानचित्र के प्रतिबंध को सीमा तक परिभाषित कर सकते हैं जैसे मानचित्र के लिए सहज है और यह हमें पिछले परिणाम का विस्तार करने की स्वीकृति देता है यदि दोनों और है तब का सीमा के साथ एक नियमित बहुआयामी है:
- .
पैरामीट्रिक अनुप्रस्थ प्रमेय
मानचित्र पर विचार करें और को परिभाषित करें कि यह मानचित्र का एक समुच्चय उत्पन्न करता है हमें आवश्यकता है कि को एक (समतल) बहुआयामी और को समतल मानकर समुच्चय समतल रूप से भिन्न हो जिसके लिए पैरामीट्रिक अनुप्रस्थ प्रमेय का एक कथन है:
मान लीजिए कि बहुआयामी का एक समतल मानचि है जहाँ केवल सीमा है और माना का कोई उप बहुआयामी हो और यदि दोनों और के अनुप्रस्थ हैं तो लगभग प्रत्येक के लिए दोनों और का अनुप्रस्थ होता है।
अधिक सामान्य अनुप्रस्थ प्रमेय
उपरोक्त पैरामीट्रिक अनुप्रस्थ प्रमेय कई प्राथमिक अनुप्रयोगों (गिलेमिन और पोलैक द्वारा पुस्तक देखें) के लिए पर्याप्त है अधिक सामान्य कथन हैं (सामूहिक रूप से अनुप्रस्थ प्रमेय के रूप में जाने जाते हैं) जो पैरामीट्रिक अनुप्रस्थ प्रमेय को प्रयुक्त करते हैं और अधिक सामान्य अनुप्रयोगों के लिए आवश्यक हैं।
अनौपचारिक रूप से, अनुप्रस्थ प्रमेय कहता है कि मानचित्र का समुच्चय जो किसी दिए गए उप बहुआयामी के लिए अनुप्रस्थ है एक सघन या कुछ स्थितियों में केवल सघन ) मानचित्र के समुच्चय का उप समुच्चय है इस प्रकार के कथन को शुद्ध बनाने के लिए, मानचित्र के विचाराधीन समष्टि को परिभाषित करना आवश्यक है और इसमें सांस्थिति क्या है कई संभावनाएं हैं इसके लिए हिर्श की पुस्तक देखें।
सामान्यतः थॉम्स अनुप्रस्थ प्रमेय द्वारा जो समझा जाता है वह जेट (गणित) अनुप्रस्थ के विषय में एक अधिक प्रभावशाली कथन है हिर्श, गोलूबिट्स्की और गुइलेमिन की पुस्तकें देखें। जिसका मूल संदर्भ थॉम बीओएल एसओसी मैट मेक्सिकाना (2) 1 (1956) पीपी. 59-71 है।
जॉन माथेर (गणितज्ञ) ने 1970 के दशक में एक और भी सामान्य परिणाम सिद्ध किया जिसे बहुआयामी जेट अनुप्रस्थ प्रमेय कहा जाता है जिसके लिए गोलूबित्सकी और गुइलेमिन की पुस्तक देखें।
अनंत-आयामी संस्करण
अनुप्रस्थ प्रमेय का अनंत-आयामी संस्करण इस विषय को ध्यान में रखता है कि बहुआयामी को बानाख बीजगणित समष्टि में मॉडल किया जा सकता है।[citation needed]
औपचारिक कथन
मान लीजिए कि बनाच बहुआयामी का एक मानचित्र है।
मान लीजिए:
- और गैर-रिक्त हैं और एक क्षेत्र में रिक्त समष्टि के साथ बनाच बहुआयामी है।
- मानचित्र के साथ में नियमित मान के रूप में है।
- प्रत्येक पैरामीटर के लिए , मानचित्र का एक फ्रेडहोम संक्रियक है जहाँ प्रत्येक के लिए है।
- अभिसरण पर जैसा कि और सभी के लिए एक अभिसरण अनुक्रम के अस्तित्व का तात्पर्य यह है कि जैसा साथ है।
यदि (1)-(4) को प्रयुक्त करें, तो एक विवृत सघन उप समुच्चय सम्मिलित है जैसे कि प्रत्येक पैरामीटर के लिए का एक नियमित मान है।
अब, एक तत्व को ठीक करें यदि कोई संख्या सम्मिलित है साथ ही के सभी समाधान के लिए का , फिर समाधान समुच्चय एक के लिए बहुआयामी हैं और बनाच बहुआयामी या समाधान रिक्त समुच्चय है।
ध्यान दें कि यदि के सभी समाधान के लिए है तो वहाँ एक विवृत सघन उपसमुच्चय का सम्मिलित है जैसे कि प्रत्येक निश्चित पैरामीटर के लिए अधिक से अधिक सूक्ष्म रूप से कई समाधान हैं इसके अतिरिक्त ये सभी समाधान नियमित हैं।
संदर्भ
- Arnold, Vladimir I. (1988). Geometrical Methods in the Theory of Ordinary Differential Equations. Springer. ISBN 0-387-96649-8.
- Golubitsky, Martin; Guillemin, Victor (1974). Stable Mappings and Their Singularities. Springer-Verlag. ISBN 0-387-90073-X.
- Guillemin, Victor; Pollack, Alan (1974). Differential Topology. Prentice-Hall. ISBN 0-13-212605-2.
- Hirsch, Morris W. (1976). Differential Topology. Springer. ISBN 0-387-90148-5.
- Thom, René (1954). "Quelques propriétés globales des variétés differentiables". Commentarii Mathematici Helvetici. 28 (1): 17–86. doi:10.1007/BF02566923.
- Thom, René (1956). "Un lemme sur les applications différentiables". Bol. Soc. Mat. Mexicana. 2 (1): 59–71.
- Zeidler, Eberhard (1997). Nonlinear Functional Analysis and Its Applications: Part 4: Applications to Mathematical Physics. Springer. ISBN 0-387-96499-1.