स्यूडोहोलोमॉर्फिक वक्र: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[टोपोलॉजी]] और [[ज्यामिति]] में, एक स्यूडोहोलोमोर्फिक वक्र (या '' | गणित में, विशेष रूप से [[टोपोलॉजी|सांस्थिति]] और [[ज्यामिति]] में, एक '''स्यूडोहोलोमोर्फिक वक्र''' (या '''''j''-पूर्णसममितिक वक्र''') [[रीमैन सतह]] से एक लगभग सम्मिश्र प्रसमष्टि में एक [[चिकना नक्शा|सरल]] मानचित्र है जो कॉची-रीमैन समीकरणों को संतुष्ट करता है। 1985 में मिखाइल ग्रोमोव (गणितज्ञ) द्वारा प्रस्तुत किए गए, स्यूडोहोलोमोर्फिक वक्रों ने तब से [[सिंपलेक्टिक मैनिफोल्ड|सममिती प्रसमष्टि]] के अध्ययन में मूल परिवर्तन किया है। विशेष रूप से, वे ग्रोमोव-विटन अचर और [[फ्लोर होमोलॉजी|तल समरूपता]] की ओर ले जाते हैं, और [[स्ट्रिंग सिद्धांत]] में एक प्रमुख भूमिका निभाते हैं। | ||
== परिभाषा == | == परिभाषा == | ||
मान लीजिए <math>X</math> लगभग जटिल संरचना के साथ लगभग सम्मिश्र प्रसमष्टि <math>J</math> हो। तब <math>C</math> को जटिल संरचना <math>j</math> के साथ एक सरल रीमैन सतह (जिसे [[बीजगणितीय वक्र]] भी कहा जाता है) मान ले। <math>X</math> में एक स्यूडोहोलोमॉर्फिक वक्र एक मानचित्र <math>f : C \to X</math> है जो कॉची-रीमैन समीकरण को संतुष्ट करता है। | |||
:<math>\bar \partial_{j, J} f := \frac{1}{2}(df + J \circ df \circ j) = 0.</math> | :<math>\bar \partial_{j, J} f := \frac{1}{2}(df + J \circ df \circ j) = 0.</math> | ||
चूँकि <math>J^2 = -1</math>, यह स्थिति इसके समतुल्य है | |||
:<math>J \circ df = df \circ j,</math> | :<math>J \circ df = df \circ j,</math> | ||
जिसका सीधा सा | जिसका सीधा सा तात्पर्य है कि अवकलन <math>df</math> जटिल-रैखिक है, अर्थात <math>J</math> प्रत्येक स्पर्शी समष्टि का मानचित्र बनाता है। | ||
:<math>T_xf(C)\subseteq T_xX</math> | :<math>T_xf(C)\subseteq T_xX</math> | ||
स्पष्टीकरण में तकनीकी कारणों से प्रायः कुछ प्रकार के असमघाती पद <math>\nu</math> को प्रस्तुत करना और अव्यवस्थित कॉची-रीमैन समीकरण को पूर्ण करने वाले मानचित्रों का अध्ययन करना होता है। | |||
:<math>\bar \partial_{j, J} f = \nu.</math> | :<math>\bar \partial_{j, J} f = \nu.</math> | ||
इस समीकरण को संतुष्ट करने वाले स्यूडोहोलोमॉर्फिक वक्र को | इस समीकरण को संतुष्ट करने वाले स्यूडोहोलोमॉर्फिक वक्र a को विशेष रूप से <math>(j, J, \nu)</math>-पूर्णसममितिक वक्र कहा जा सकता है। व्यतिक्रम <math>\nu</math> कभी-कभी [[हैमिल्टनियन वेक्टर क्षेत्र]] (विशेष रूप से तल सिद्धांत में) द्वारा उत्पन्न माना जाता है, लेकिन सामान्य रूप से इसकी आवश्यकता नहीं होती है। | ||
एक स्यूडोहोलोमॉर्फिक वक्र, इसकी परिभाषा के अनुसार, | एक स्यूडोहोलोमॉर्फिक वक्र, इसकी परिभाषा के अनुसार, सदैव पैरामीट्रिज्ड होता है। अनुप्रयोगों में प्रायः अप्रतिबंधित वक्र में वास्तविक रूप से रोचक होते है, जिसका तात्पर्य है कि <math>X</math>अंत:स्थापित दो-उप प्रसमष्टि (या निमज्जित) ताकि पुनः प्राचलीकरण संरचना को संरक्षित करने वाले प्रक्षेत्र के पुनर्मूल्यांकन द्वारा प्रणाली स्थापित हो सके। ग्रोमोव-विटन अचर की स्थिति में, उदाहरण के लिए, हम स्थायी श्रेणी <math>g</math> के सिर्फ संवृत प्रसमष्टि प्रक्षेत्र <math>C</math> पर विचार करते हैं, और जब हम <math>C</math> पर <math>n</math> चिह्नित बिंदु (या संवेधन) प्रस्तुत करते हैं। तब छिद्रित यूलर विशेषता <math>2 - 2 g - n</math> ऋणात्मक होती है, जिसके कारण <math>C</math> के बहुत से पूर्णसममितिक पुनः प्राचलीकरण हैं जो चिह्नित बिंदुओं को संरक्षित करता है। प्रक्षेत्र वक्र <math>C</math> वक्र के डेलिग्ने-ममफोर्ड मॉड्युली समष्टि का एक अवयव है। | ||
== | == उत्कृष्ट कॉची-रीमैन समीकरणों के साथ समानता == | ||
प्रामाणिक स्थिति तब होती है जब <math>X</math> और <math>C</math> दोनों केवल सम्मिश्र संख्या तल हैं। वास्तविक निर्देशांक में | |||
:<math>j = J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},</math> | :<math>j = J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},</math> | ||
और | और | ||
:<math>df = \begin{bmatrix} du/dx & du/dy \\ dv/dx & dv/dy \end{bmatrix},</math> | :<math>df = \begin{bmatrix} du/dx & du/dy \\ dv/dx & dv/dy \end{bmatrix},</math> | ||
जहाँ <math>f(x, y) = (u(x, y), v(x, y))</math> इन आव्यूह को दो अलग-अलग क्रमों में गुणा करने के बाद, तुरंत यह समीकरण दिखाई देता है | |||
:<math>J \circ df = df \circ j</math> | :<math>J \circ df = df \circ j</math> | ||
ऊपर लिखा गया | ऊपर लिखा गया उत्कृष्ट कॉची-रीमैन समीकरणों के समान है | ||
:<math>\begin{cases} du/dx = dv/dy \\ dv/dx = -du/dy. \end{cases}</math> | :<math>\begin{cases} du/dx = dv/dy \\ dv/dx = -du/dy. \end{cases}</math> | ||
== | ==सममिती सांस्थिति में अनुप्रयोग == | ||
यद्यपि उन्हें किसी भी लगभग | यद्यपि उन्हें किसी भी लगभग सम्मिश्र प्रसमष्टि के लिए परिभाषित किया जा सकता है, स्यूडोहोलोमोर्फिक वक्र विशेष रूप से दिलचस्प होते हैं जब <math>J</math> एक [[सहानुभूतिपूर्ण रूप|सममिती रूप]] <math>\omega</math> के साथ अन्तः क्रिया करता है। एक लगभग जटिल संरचना <math>J</math> को सामान्य <math>\omega</math>-गौण यदि और केवल यदि कहा जाता है | ||
:<math>\omega(v, J v) > 0</math> | :<math>\omega(v, J v) > 0</math> | ||
सभी अशून्य स्पर्शरेखा सदिशों के लिए <math>v</math> | सभी अशून्य स्पर्शरेखा सदिशों के लिए <math>v</math> ताम्यता का तात्पर्य है कि सूत्र | ||
:<math>(v, w) = \frac{1}{2}\left(\omega(v, Jw) + \omega(w, Jv)\right)</math> | :<math>(v, w) = \frac{1}{2}\left(\omega(v, Jw) + \omega(w, Jv)\right)</math> | ||
[[रिमेंनियन मीट्रिक|रिमेंनियन आव्यूह]] <math>X</math> को परिभाषित करता है। ग्रोमोव ने दिखाया कि, दिए गए <math>\omega</math> के लिए <math>\omega</math>-ताम्यता <math>J</math> की समष्टि गैर-रिक्त और संकुचनशील है। उन्होंने इस सिद्धांत का उपयोग बेलन में गोले के सममिती संबंधी अंतःस्थापन से संबंधित एक गैर-संकुचित प्रमेय को प्रमाणित करने के लिए किया। | |||
ग्रोमोव ने दिखाया कि स्यूडोहोलोमॉर्फिक | ग्रोमोव ने दिखाया कि स्यूडोहोलोमॉर्फिक वक्र (अतिरिक्त निर्दिष्ट शर्तों को पूरा करने वाले) के कुछ [[मोडुली स्पेस|मोडुली]] समष्टि [[ कॉम्पैक्ट जगह |सुसंहति]] हैं, और उस तरीके का वर्णन किया है जिसमें स्यूडोहोलोमॉर्फिक वक्र यादृच्छिक हो सकते हैं जब केवल परिमित ऊर्जा ग्रहण की जाती है। परिमित ऊर्जा की स्थिति सबसे विशेष रूप से एक निश्चित समरूपता वर्ग के साथ वक्रों के लिए एक सममिती प्रसमष्टि में होती है जहां j भी <math>\omega</math>-गौण या <math>\omega</math>-संगत होते है। यह ग्रोमोव की सुसंहति प्रमेय (सांस्थिति) जो अब स्थिर मानचित्रों का उपयोग करके बहुत सामान्यीकृत है, ग्रोमोव-विटन अचर की परिभाषा को संभव बनाता है, जो सममिती प्रसमष्टि में स्यूडोहोलोमोर्फिक वक्रों की गणना करता है। | ||
स्यूडोहोलोमोर्फिक | स्यूडोहोलोमोर्फिक वक्र के सुसंहति मोडुली समष्टि का उपयोग तल समरूपता के निर्माण के लिए भी किया जाता है, जो [[एंड्रियास फ्लोर|एंड्रियास]] तल (और बाद के लेखकों, अधिक सामान्यता में) [[हैमिल्टनियन प्रवाह]] के निश्चित बिंदुओं की संख्या के संबंध में व्लादिमीर अर्नोल्ड के प्रसिद्ध अनुमान को प्रमाणित करने के लिए उपयोग किया जाता है। | ||
== भौतिकी में अनुप्रयोग == | == भौतिकी में अनुप्रयोग == | ||
प्ररूप II स्ट्रिंग सिद्धांत में, कोई उन सतहों पर विचार करता है जो स्ट्रिंग्स द्वारा खोजी जाती हैं क्योंकि वे कैलाबी-यॉ 3-गुना में पथ के साथ संचारण करते हैं। [[क्वांटम यांत्रिकी]] के [[पथ अभिन्न सूत्रीकरण|पथ समाकलन सूत्रीकरण]] के बाद, ऐसी सभी सतहों के स्थान पर कुछ निश्चित समकलों की गणना करना चाहता है। क्योंकि ऐसी समष्टि अनंत-आयामी है, ये पथ समाकल सामान्य रूप से गणितीय रूप से अच्छी तरह से परिभाषित नहीं हैं। हालांकि, [[एक मोड|प्रणाली]] के अंतर्गत यह निष्कर्ष निकाला जा सकता है कि सतहों को स्यूडोहोलोमोर्फिक वक्रों द्वारा पैरामीट्रिज्ड किया जाता है, और इसलिए पथ समाकल स्यूडोहोलोमोर्फिक वक्र (या बल्कि स्थिर मानचित्र) के मोडुली समष्टि पर समाकल तक कम हो जाते हैं, जो परिमित-आयामी होते हैं। संवृत प्रकार आईआईए स्ट्रिंग सिद्धांत में, उदाहरण के लिए, ये समाकल परिशुद्ध ग्रोमोव-विटन अचर हैं। | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[होलोमॉर्फिक वक्र]] | * [[होलोमॉर्फिक वक्र|पूर्णसममितिक वक्र]] | ||
==संदर्भ== | ==संदर्भ== | ||
* [[Dusa McDuff]] and [[Dietmar Salamon]], ''J-Holomorphic Curves and Symplectic Topology'', American Mathematical Society colloquium publications, 2004. {{isbn|0-8218-3485-1}}. | * [[Dusa McDuff]] and [[Dietmar Salamon]], ''J-Holomorphic Curves and Symplectic Topology'', American Mathematical Society colloquium publications, 2004. {{isbn|0-8218-3485-1}}. | ||
* [[Mikhail Leonidovich Gromov]], Pseudo holomorphic curves in symplectic manifolds. | * [[Mikhail Leonidovich Gromov]], Pseudo holomorphic curves in symplectic manifolds. Inventiones Mathematicae vol. 82, 1985, pgs. 307-347. | ||
* {{ cite journal | * {{ cite journal | ||
| last = Donaldson | | last = Donaldson |
Revision as of 08:37, 20 April 2023
गणित में, विशेष रूप से सांस्थिति और ज्यामिति में, एक स्यूडोहोलोमोर्फिक वक्र (या j-पूर्णसममितिक वक्र) रीमैन सतह से एक लगभग सम्मिश्र प्रसमष्टि में एक सरल मानचित्र है जो कॉची-रीमैन समीकरणों को संतुष्ट करता है। 1985 में मिखाइल ग्रोमोव (गणितज्ञ) द्वारा प्रस्तुत किए गए, स्यूडोहोलोमोर्फिक वक्रों ने तब से सममिती प्रसमष्टि के अध्ययन में मूल परिवर्तन किया है। विशेष रूप से, वे ग्रोमोव-विटन अचर और तल समरूपता की ओर ले जाते हैं, और स्ट्रिंग सिद्धांत में एक प्रमुख भूमिका निभाते हैं।
परिभाषा
मान लीजिए लगभग जटिल संरचना के साथ लगभग सम्मिश्र प्रसमष्टि हो। तब को जटिल संरचना के साथ एक सरल रीमैन सतह (जिसे बीजगणितीय वक्र भी कहा जाता है) मान ले। में एक स्यूडोहोलोमॉर्फिक वक्र एक मानचित्र है जो कॉची-रीमैन समीकरण को संतुष्ट करता है।
चूँकि , यह स्थिति इसके समतुल्य है
जिसका सीधा सा तात्पर्य है कि अवकलन जटिल-रैखिक है, अर्थात प्रत्येक स्पर्शी समष्टि का मानचित्र बनाता है।
स्पष्टीकरण में तकनीकी कारणों से प्रायः कुछ प्रकार के असमघाती पद को प्रस्तुत करना और अव्यवस्थित कॉची-रीमैन समीकरण को पूर्ण करने वाले मानचित्रों का अध्ययन करना होता है।
इस समीकरण को संतुष्ट करने वाले स्यूडोहोलोमॉर्फिक वक्र a को विशेष रूप से -पूर्णसममितिक वक्र कहा जा सकता है। व्यतिक्रम कभी-कभी हैमिल्टनियन वेक्टर क्षेत्र (विशेष रूप से तल सिद्धांत में) द्वारा उत्पन्न माना जाता है, लेकिन सामान्य रूप से इसकी आवश्यकता नहीं होती है।
एक स्यूडोहोलोमॉर्फिक वक्र, इसकी परिभाषा के अनुसार, सदैव पैरामीट्रिज्ड होता है। अनुप्रयोगों में प्रायः अप्रतिबंधित वक्र में वास्तविक रूप से रोचक होते है, जिसका तात्पर्य है कि अंत:स्थापित दो-उप प्रसमष्टि (या निमज्जित) ताकि पुनः प्राचलीकरण संरचना को संरक्षित करने वाले प्रक्षेत्र के पुनर्मूल्यांकन द्वारा प्रणाली स्थापित हो सके। ग्रोमोव-विटन अचर की स्थिति में, उदाहरण के लिए, हम स्थायी श्रेणी के सिर्फ संवृत प्रसमष्टि प्रक्षेत्र पर विचार करते हैं, और जब हम पर चिह्नित बिंदु (या संवेधन) प्रस्तुत करते हैं। तब छिद्रित यूलर विशेषता ऋणात्मक होती है, जिसके कारण के बहुत से पूर्णसममितिक पुनः प्राचलीकरण हैं जो चिह्नित बिंदुओं को संरक्षित करता है। प्रक्षेत्र वक्र वक्र के डेलिग्ने-ममफोर्ड मॉड्युली समष्टि का एक अवयव है।
उत्कृष्ट कॉची-रीमैन समीकरणों के साथ समानता
प्रामाणिक स्थिति तब होती है जब और दोनों केवल सम्मिश्र संख्या तल हैं। वास्तविक निर्देशांक में
और
जहाँ इन आव्यूह को दो अलग-अलग क्रमों में गुणा करने के बाद, तुरंत यह समीकरण दिखाई देता है
ऊपर लिखा गया उत्कृष्ट कॉची-रीमैन समीकरणों के समान है
सममिती सांस्थिति में अनुप्रयोग
यद्यपि उन्हें किसी भी लगभग सम्मिश्र प्रसमष्टि के लिए परिभाषित किया जा सकता है, स्यूडोहोलोमोर्फिक वक्र विशेष रूप से दिलचस्प होते हैं जब एक सममिती रूप के साथ अन्तः क्रिया करता है। एक लगभग जटिल संरचना को सामान्य -गौण यदि और केवल यदि कहा जाता है
सभी अशून्य स्पर्शरेखा सदिशों के लिए ताम्यता का तात्पर्य है कि सूत्र
रिमेंनियन आव्यूह को परिभाषित करता है। ग्रोमोव ने दिखाया कि, दिए गए के लिए -ताम्यता की समष्टि गैर-रिक्त और संकुचनशील है। उन्होंने इस सिद्धांत का उपयोग बेलन में गोले के सममिती संबंधी अंतःस्थापन से संबंधित एक गैर-संकुचित प्रमेय को प्रमाणित करने के लिए किया।
ग्रोमोव ने दिखाया कि स्यूडोहोलोमॉर्फिक वक्र (अतिरिक्त निर्दिष्ट शर्तों को पूरा करने वाले) के कुछ मोडुली समष्टि सुसंहति हैं, और उस तरीके का वर्णन किया है जिसमें स्यूडोहोलोमॉर्फिक वक्र यादृच्छिक हो सकते हैं जब केवल परिमित ऊर्जा ग्रहण की जाती है। परिमित ऊर्जा की स्थिति सबसे विशेष रूप से एक निश्चित समरूपता वर्ग के साथ वक्रों के लिए एक सममिती प्रसमष्टि में होती है जहां j भी -गौण या -संगत होते है। यह ग्रोमोव की सुसंहति प्रमेय (सांस्थिति) जो अब स्थिर मानचित्रों का उपयोग करके बहुत सामान्यीकृत है, ग्रोमोव-विटन अचर की परिभाषा को संभव बनाता है, जो सममिती प्रसमष्टि में स्यूडोहोलोमोर्फिक वक्रों की गणना करता है।
स्यूडोहोलोमोर्फिक वक्र के सुसंहति मोडुली समष्टि का उपयोग तल समरूपता के निर्माण के लिए भी किया जाता है, जो एंड्रियास तल (और बाद के लेखकों, अधिक सामान्यता में) हैमिल्टनियन प्रवाह के निश्चित बिंदुओं की संख्या के संबंध में व्लादिमीर अर्नोल्ड के प्रसिद्ध अनुमान को प्रमाणित करने के लिए उपयोग किया जाता है।
भौतिकी में अनुप्रयोग
प्ररूप II स्ट्रिंग सिद्धांत में, कोई उन सतहों पर विचार करता है जो स्ट्रिंग्स द्वारा खोजी जाती हैं क्योंकि वे कैलाबी-यॉ 3-गुना में पथ के साथ संचारण करते हैं। क्वांटम यांत्रिकी के पथ समाकलन सूत्रीकरण के बाद, ऐसी सभी सतहों के स्थान पर कुछ निश्चित समकलों की गणना करना चाहता है। क्योंकि ऐसी समष्टि अनंत-आयामी है, ये पथ समाकल सामान्य रूप से गणितीय रूप से अच्छी तरह से परिभाषित नहीं हैं। हालांकि, प्रणाली के अंतर्गत यह निष्कर्ष निकाला जा सकता है कि सतहों को स्यूडोहोलोमोर्फिक वक्रों द्वारा पैरामीट्रिज्ड किया जाता है, और इसलिए पथ समाकल स्यूडोहोलोमोर्फिक वक्र (या बल्कि स्थिर मानचित्र) के मोडुली समष्टि पर समाकल तक कम हो जाते हैं, जो परिमित-आयामी होते हैं। संवृत प्रकार आईआईए स्ट्रिंग सिद्धांत में, उदाहरण के लिए, ये समाकल परिशुद्ध ग्रोमोव-विटन अचर हैं।
यह भी देखें
संदर्भ
- Dusa McDuff and Dietmar Salamon, J-Holomorphic Curves and Symplectic Topology, American Mathematical Society colloquium publications, 2004. ISBN 0-8218-3485-1.
- Mikhail Leonidovich Gromov, Pseudo holomorphic curves in symplectic manifolds. Inventiones Mathematicae vol. 82, 1985, pgs. 307-347.
- Donaldson, Simon K. (October 2005). "What Is...a Pseudoholomorphic Curve?" (PDF). Notices of the American Mathematical Society. 52 (9): 1026–1027. Retrieved 2008-01-17.