पॉलिमर भौतिकी: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
जबकि यह [[संघनित पदार्थ भौतिकी]] के परिप्रेक्ष्य पर केंद्रित है, बहुलक भौतिकी मूल रूप से [[सांख्यिकीय भौतिकी]] की एक शाखा है। पॉलिमर भौतिकी और [[बहुलक रसायन]] विज्ञान भी [[बहुलक विज्ञान]] के क्षेत्र से संबंधित हैं, जहाँ इसे पॉलिमर का अनुप्रयुक्त भाग माना जाता है। | जबकि यह [[संघनित पदार्थ भौतिकी]] के परिप्रेक्ष्य पर केंद्रित है, बहुलक भौतिकी मूल रूप से [[सांख्यिकीय भौतिकी]] की एक शाखा है। पॉलिमर भौतिकी और [[बहुलक रसायन]] विज्ञान भी [[बहुलक विज्ञान]] के क्षेत्र से संबंधित हैं, जहाँ इसे पॉलिमर का अनुप्रयुक्त भाग माना जाता है। | ||
पॉलिमर बड़े अणु होते हैं और इस प्रकार नियतात्मक पद्धति का उपयोग करके | पॉलिमर बड़े अणु होते हैं और इस प्रकार नियतात्मक पद्धति का उपयोग करके समाधान करने के लिए बहुत जटिल होते हैं। फिर भी, सांख्यिकीय दृष्टिकोण परिणाम दे सकते हैं और अधिकांशतः प्रासंगिक होते हैं, क्योंकि बड़े पॉलिमर (अर्थात्, कई मोनोमर्स वाले पॉलिमर) असीम रूप से कई मोनोमर्स की [[थर्मोडायनामिक सीमा|ऊष्मप्रवैगिकी सीमा]] में कुशलता से वर्णित हैं (चूंकि वास्तविक बनावट स्पष्ट रूप से परिमित है)। | ||
थर्मल उतार-चढ़ाव तरल समाधानों में पॉलिमर के बनावट को लगातार प्रभावित करते हैं, और उनके प्रभाव को | थर्मल उतार-चढ़ाव तरल समाधानों में पॉलिमर के बनावट को लगातार प्रभावित करते हैं, और उनके प्रभाव को मॉडलिंग करने के लिए [[सांख्यिकीय यांत्रिकी]] और गतिकी के सिद्धांतों का उपयोग करने की आवश्यकता होती है। एक परिणाम के रूप में, तापमान समाधान में पॉलिमर के भौतिक व्यवहार को दृढ़ता से प्रभावित करता है, जिससे चरण संक्रमण होता है, पिघलता है, और इसी प्रकार से चलता है। | ||
बहुलक भौतिकी के लिए सांख्यिकीय दृष्टिकोण एक बहुलक और या तो | बहुलक भौतिकी के लिए सांख्यिकीय दृष्टिकोण एक बहुलक और या तो [[एक प्रकार कि गति]], या अन्य प्रकार के यादृच्छिक चलने के बीच समानता पर आधारित है, [[आत्म-परहेज चलना]] सरल यादृच्छिक चलने के अनुरूप, सबसे सरल संभव बहुलक मॉडल आदर्श श्रृंखला द्वारा प्रस्तुत किया जाता है। पॉलिमर लक्षण वर्णन के लिए प्रायोगिक दृष्टिकोण भी सामान्य हैं, [[बहुलक लक्षण वर्णन]] विधियों का उपयोग करते हुए, जैसे कि बनावट बहिष्करण क्रोमैटोग्राफी, [[विस्कोमेट्री]], गतिशील प्रकाश बिखरने और पॉलिमराइजेशन प्रतिक्रियाएं ([[ACOMP|एसीओएमपी]]) की स्वचालित निरंतर ऑनलाइन देख-रेख <ref>US patent 6052184 and US Patent 6653150, other patents pending</ref><ref>F. H. Florenzano; R. Strelitzki; W. F. Reed, "Absolute, Online Monitoring of Polymerization Reactions", Macromolecules 1998, 31(21), 7226-7238</ref> या पॉलिमर के रासायनिक, भौतिक और भौतिक गुणों का निर्धारण करता है, इन प्रयोग की विधियों ने, पॉलिमर के गुणजों की बेहतर समझ के लिए भी गणितीय मॉडल बनाने में मदद की है। | ||
* [[ | *[[फ्लोरी]] को बहुलक भौतिकी के क्षेत्र की स्थापना करने वाला पहला वैज्ञानिक माना जाता है।<ref name="flory_53" /> | ||
* [[ | *फ्रांसीसी वैज्ञानिकों ने 70 के दशक से बहुत (उदाहरण के लिए [[पियरे-गिल्स डे गेनेस]], जे डेस क्लोइज़ॉक्स) योगदान दिया है।<ref name="dg_79" /><ref>{{cite book| author1-last=des Cloiseaux| author1-first= Jacques| author2-last=Jannink| author2-first= Gerard|title=समाधान में पॉलिमर|publisher=Oxford University Press|date=1991| doi= 10.1002/pola.1992.080300733}}</ref> | ||
*[[डोई]] और [[सैम एडवर्ड्स (भौतिक विज्ञानी)]] ने बहुलक भौतिकी में एक बहुत प्रसिद्ध पुस्तक लिखी है।<ref name="d_e_86" /> | |||
*भौतिकी के सोवियत/रूसी स्कूल (आई. एम. लाइफशिट्ज, ए. यू. ग्रोसबर्ग, ए. आर. खोखलोव, वी. एन. पोक्रोव्स्की) बहुलक भौतिकी के विकास में बहुत सक्रिय रहे हैं।<ref>Vladimir Pokrovski, The Mesoscopic Theory of Polymer Dynamics, Springer, 2010</ref><ref>A. Yu. Grosberg, A.R. Khokhlov. Statistical Physics of Macromolecules, 1994, American Institute o Physics</ref> | |||
{{Condensed matter physics}} | {{Condensed matter physics}} | ||
== | == मॉडल == | ||
बहुलक श्रृंखलाओं के | बहुलक श्रृंखलाओं के मॉडल दो प्रकारों में विभाजित होते हैं: आदर्श मॉडल और वास्तविक मॉडल, आदर्श श्रृंखला मॉडल मानते हैं कि श्रृंखला मोनोमर्स के बीच कोई अंतःक्रिया नहीं होती है। यह धारणा कुछ बहुलक प्रणालियों के लिए मान्य है, जहां मोनोमर के बीच सकारात्मक और नकारात्मक बातचीत प्रभावी रूप से रद्द हो जाती है। आदर्श श्रृंखला मॉडल अधिक जटिल प्रणालियों की जांच के लिए एक अच्छा प्रारंभिक बिंदु प्रदान करते हैं और अधिक पैरामीटर वाले समीकरणों के लिए अनुकूल हैं। | ||
=== आदर्श | === आदर्श श्रृंखला === | ||
* स्वतंत्र रूप से जुड़ी श्रृंखला बहुलक का सबसे सरल | * स्वतंत्र रूप से जुड़ी श्रृंखला बहुलक का सबसे सरल मॉडल है। इस मॉडल में, निश्चित लंबाई के बहुलक खंड रैखिक रूप से जुड़े हुए हैं, और सभी बंधन और मरोड़ कोण परिवर्तनीय हैं।<ref>H. Yamakawa, "Helical Wormlike Chains in Polymer Solution", (Springer Verlag, Berlin, 1997)</ref> इसलिए बहुलक को एक साधारण यादृच्छिक चाल और आदर्श श्रृंखला द्वारा वर्णित किया जा सकता है। बॉन्ड स्ट्रेचिंग का प्रतिनिधित्व करने के लिए एक्सटेंसिबल स्पष्टीकरण को सम्मलित करने के लिए मॉडल को बढ़ाया जा सकता है।<ref name=BSG>{{cite journal|last1=Buche|first1=M.R.|last2=Silberstein|first2=M.N.|last3=Grutzik|first3=S.J.|title=एक्स्टेंसिबल लिंक के साथ स्वतंत्र रूप से जुड़ी हुई जंजीर|journal=Phys. Rev. E|volume=106|pages=024502|year=2022|issue=2–1 |doi=10.1103/PhysRevE.106.024502|pmid=36109919 |arxiv=2203.05421 |s2cid=247362917 }}</ref> | ||
* स्वतंत्र | *स्वतंत्र -रोटेटिंग श्रृंखला स्वतंत्र -जॉइंट श्रृंखला मॉडल को इस बात को ध्यान में रखते हुए सुधारती है कि पॉलीमर स्पष्टीकरण विशिष्ट रासायनिक बॉन्डिंग के कारण निकटतम इकाइयों के लिए एक निश्चित बॉन्ड कोण बनाते हैं। इस निश्चित कोण के अनुसार, खंड अभी भी घूमने के लिए स्वतंत्र हैं और सभी मरोड़ वाले कोण समान रूप से होने की संभावना है। | ||
* बाधित रोटेशन | * बाधित रोटेशन मॉडल मानता है कि मरोड़ कोण एक संभावित ऊर्जा से बाधित है। यह प्रत्येक मरोड़ कोण की संभाव्यता को [[बोल्ट्जमान कारक]] के समानुपाती बनाता है: | ||
:<math>P(\theta)\propto{}\exp\left(-U(\theta)/kT\right)</math>, | :<math>P(\theta)\propto{}\exp\left(-U(\theta)/kT\right)</math>, जहाँ <math>U(\theta)</math> संभावित है जो <math>\theta</math> के प्रत्येक मान की प्रायिकता निर्धारित करता है। | ||
* घूर्णी समावयवी अवस्था | *घूर्णी समावयवी अवस्था मॉडल में, अनुमत मरोड़ कोण घूर्णी संभावित ऊर्जा में मिनीमा की स्थिति से निर्धारित होते हैं। बॉन्ड की लंबाई और बॉन्ड कोण स्थिर हैं। | ||
* | *वर्म जैसी श्रृंखला एक अधिक जटिल मॉडल है। यह दृढ़ता की लंबाई को ध्यान में रखता है। पॉलिमर पूरी प्रकार से लचीले नहीं होते हैं; उन्हें झुकाने के लिए ऊर्जा की आवश्यकता होती है। [[दृढ़ता लंबाई]] के नीचे लंबाई के पैमाने पर, बहुलक कमोबेश एक कठोर छड़ के जैसे व्यवहार करता है। | ||
=== | === रियल श्रृंखला === | ||
श्रृंखला मोनोमर्स के बीच सहभागिता को बहिष्कृत मात्रा के रूप में प्रतिरूपित किया जा सकता है। यह श्रृंखला की संरूपण संभावनाओं में कमी का कारण बनता है, और एक स्व-परहेज यादृच्छिक चलने की ओर जाता है। स्व-परहेज रैंडम वॉक में साधारण रैंडम वॉक के भिन्न-भिन्न आँकड़े होते हैं। | |||
== विलायक और तापमान प्रभाव == | == विलायक और तापमान प्रभाव == | ||
एकल बहुलक श्रृंखला के आँकड़े विलायक में बहुलक की घुलनशीलता पर निर्भर करते हैं। एक विलायक के लिए जिसमें बहुलक बहुत घुलनशील (एक अच्छा विलायक) होता है, श्रृंखला अधिक विस्तारित होती है, जबकि एक विलायक के लिए जिसमें बहुलक अघुलनशील या बकठिनाई घुलनशील (एक खराब विलायक) होता है, श्रृंखला खंड एक दूसरे के करीब रहते हैं। एक बहुत खराब विलायक की सीमा में बहुलक श्रृंखला मात्र एक कठिन क्षेत्र बनाने के लिए ढह जाती है, जबकि एक अच्छे विलायक में बहुलक-द्रव संपर्कों की संख्या को अधिकतम करने के लिए श्रृंखला सूज जाती है। इस स्थिति के लिए फ्लोरी के माध्य क्षेत्र दृष्टिकोण का उपयोग करके परिभ्रमण की त्रिज्या का अनुमान लगाया जाता है, जो कि परिभ्रमण की त्रिज्या के लिए एक स्केलिंग उत्पन्न करता है: | एकल बहुलक श्रृंखला के आँकड़े विलायक में बहुलक की घुलनशीलता पर निर्भर करते हैं। एक विलायक के लिए जिसमें बहुलक बहुत घुलनशील (एक अच्छा विलायक) होता है, श्रृंखला अधिक विस्तारित होती है, जबकि एक विलायक के लिए जिसमें बहुलक अघुलनशील या बकठिनाई घुलनशील (एक खराब विलायक) होता है, श्रृंखला खंड एक दूसरे के करीब रहते हैं। एक बहुत खराब विलायक की सीमा में बहुलक श्रृंखला मात्र एक कठिन क्षेत्र बनाने के लिए ढह जाती है, जबकि एक अच्छे विलायक में बहुलक-द्रव संपर्कों की संख्या को अधिकतम करने के लिए श्रृंखला सूज जाती है। इस स्थिति के लिए फ्लोरी के माध्य क्षेत्र दृष्टिकोण का उपयोग करके परिभ्रमण की त्रिज्या का अनुमान लगाया जाता है, जो कि परिभ्रमण की त्रिज्या के लिए एक स्केलिंग उत्पन्न करता है: | ||
::<math>R_g \sim N^\nu</math>, | ::<math>R_g \sim N^\nu</math>, | ||
जहाँ <math>R_g</math> बहुलक के परिभ्रमण की त्रिज्या है, <math>N</math> श्रृंखला के बंधन खंडों (पोलीमराइजेशन की डिग्री के बराबर) की संख्या है और <math>\nu</math> फ्लोरी प्रतिपादक है। | |||
अच्छे विलायक के लिए, <math>\nu\approx3/5</math>; गरीब विलायक के लिए, <math>\nu=1/3</math> | अच्छे विलायक के लिए, <math>\nu\approx3/5</math>; गरीब विलायक के लिए, <math>\nu=1/3</math>, इसलिए, अच्छे विलायक में बहुलक का बनावट बड़ा होता है और यह [[भग्न]] वस्तु की प्रकार व्यवहार करता है। खराब विलायक में यह एक ठोस गोले की प्रकार व्यवहार करता है। | ||
तथाकथित में <math>\theta</math> विलायक, <math>\nu=1/2</math>, जो साधारण रैंडम वॉक का परिणाम है। श्रृंखला ऐसा व्यवहार करती है मानो वह एक आदर्श श्रृंखला हो। | तथाकथित में <math>\theta</math> विलायक, <math>\nu=1/2</math>, जो साधारण रैंडम वॉक का परिणाम है। श्रृंखला ऐसा व्यवहार करती है मानो वह एक आदर्श श्रृंखला हो। | ||
Line 43: | Line 45: | ||
विलायक की गुणवत्ता तापमान पर भी निर्भर करती है। एक लचीले बहुलक के लिए, कम तापमान खराब गुणवत्ता के अनुरूप हो सकता है और उच्च तापमान उसी विलायक को अच्छा बनाता है। एक विशेष तापमान जिसे थीटा (θ) तापमान कहा जाता है, पर विलायक एक आदर्श श्रृंखला की प्रकार व्यवहार करता है। | विलायक की गुणवत्ता तापमान पर भी निर्भर करती है। एक लचीले बहुलक के लिए, कम तापमान खराब गुणवत्ता के अनुरूप हो सकता है और उच्च तापमान उसी विलायक को अच्छा बनाता है। एक विशेष तापमान जिसे थीटा (θ) तापमान कहा जाता है, पर विलायक एक आदर्श श्रृंखला की प्रकार व्यवहार करता है। | ||
== बहिष्कृत | == बहिष्कृत आयतन इंटरैक्शन == | ||
आदर्श श्रृंखला | आदर्श श्रृंखला मॉडल मानता है कि बहुलक खंड एक दूसरे के साथ ओवरलैप कर सकते हैं जैसे कि श्रृंखला एक प्रेत श्रृंखला थी। वास्तव में, दो खंड एक ही समय में एक ही स्थान पर कब्जा नहीं कर सकते, खंडों के बीच की इस बातचीत को बहिष्कृत आयतन इंटरैक्शन कहा जाता है। | ||
[[बहिष्कृत मात्रा]] का सबसे सरल सूत्रीकरण स्व-परहेज रैंडम वॉक है, एक रैंडम वॉक जो अपने पिछले पथ को दोहरा नहीं सकता है। तीन आयामों में एन चरणों के इस चलने का एक मार्ग बहिष्कृत | [[बहिष्कृत मात्रा]] का सबसे सरल सूत्रीकरण स्व-परहेज रैंडम वॉक है, एक रैंडम वॉक जो अपने पिछले पथ को दोहरा नहीं सकता है। तीन आयामों में एन चरणों के इस चलने का एक मार्ग बहिष्कृत आयतन इंटरैक्शन के साथ एक बहुलक की रचना का प्रतिनिधित्व करता है। इस मॉडल की स्व-परहेज प्रकृति के कारण, संभावित अनुरूपताओं की संख्या में अधिक कमी आई है। परिभ्रमण की त्रिज्या आम तौर पर आदर्श श्रृंखला की तुलना में बड़ी होती है। | ||
==लचीलापन और पुनरावृत्ति == | ==लचीलापन और पुनरावृत्ति == | ||
पॉलिमर लचीला है या नहीं यह ब्याज के पैमाने पर निर्भर करता है। उदाहरण के लिए, डबल-स्ट्रैंडेड [[डीएनए]] की पर्सिस्टेंस लंबाई लगभग 50 एनएम है। 50 एनएम से छोटे लंबाई के पैमाने को देखते हुए, यह कमोबेश एक कठोर छड़ की प्रकार व्यवहार करता है।<ref>G.McGuinness, ''Polymer Physics'', Oxford University Press, p347</ref> 50 एनएम से अधिक बड़े पैमाने पर, यह एक लचीली श्रृंखला की प्रकार व्यवहार करता है। | पॉलिमर लचीला है या नहीं यह ब्याज के पैमाने पर निर्भर करता है। उदाहरण के लिए, डबल-स्ट्रैंडेड [[डीएनए]] की पर्सिस्टेंस लंबाई लगभग 50 एनएम है। 50 एनएम से छोटे लंबाई के पैमाने को देखते हुए, यह कमोबेश एक कठोर छड़ की प्रकार व्यवहार करता है।<ref>G.McGuinness, ''Polymer Physics'', Oxford University Press, p347</ref> 50 एनएम से अधिक बड़े पैमाने पर, यह एक लचीली श्रृंखला की प्रकार व्यवहार करता है। | ||
रिप्टेशन मूल रूप से उलझे हुए, बहुत लंबे रैखिक की तापीय गति है | रिप्टेशन मूल रूप से उलझे हुए, बहुत लंबे रैखिक की तापीय गति है, बहुलक में [[बड़े अणुओं]] पिघलता है या केंद्रित बहुलक समाधान, शब्द से व्युत्पन्न, [[ दोहराव |दोहराव]] एक दूसरे के माध्यम से रेंगने वाले सांपों के समान होने के रूप में उलझी हुई बहुलक श्रृंखलाओं की गति का सुझाव देता है।<ref name="Rubinstein">{{cite conference | url=http://www.aps.org/units/dpoly/resources/degennes.cfm | title=उलझे हुए पॉलिमर की गतिशीलता| publisher=American Physical Society | access-date=6 April 2015 | author=Rubinstein, Michael |date=March 2008 | conference=Pierre-Gilles de Gennes Symposium | location=New Orleans, LA}}</ref> पियरे-गिल्स डी गेनेस ने 1971 में बहुलक भौतिकी में पुनरावृत्ति की अवधारणा को इसकी लंबाई पर एक मैक्रोमोलेक्यूल की गतिशीलता की निर्भरता की व्याख्या करने के लिए प्रस्तुत किया (और नाम दिया), एक अनाकार बहुलक में चिपचिपा प्रवाह को समझाने के लिए एक तंत्र के रूप में पुनरावृत्ति का उपयोग किया जाता है।<ref>{{Cite journal | last1 = De Gennes | first1 = P. G. | title = उलझे हुए पॉलिमर| doi = 10.1063/1.2915700 | journal = Physics Today | publisher = American Institute of Physics | volume = 36 | issue = 6 | pages = 33–39 | year = 1983 | quote = साँप जैसी गति पर आधारित एक सिद्धांत जिसके द्वारा मोनोमर्स की श्रृंखला पिघल में चलती है, रियोलॉजी, प्रसार, बहुलक-बहुलक वेल्डिंग, रासायनिक कैनेटीक्स और जैव प्रौद्योगिकी की हमारी समझ को बढ़ा रही है।|bibcode = 1983PhT....36f..33D }}</ref><ref>{{Cite journal | last1 = De Gennes | first1 = P. G. | title = निश्चित बाधाओं की उपस्थिति में एक बहुलक श्रृंखला का पुनरावृत्ति| doi = 10.1063/1.1675789 | journal = The Journal of Chemical Physics | publisher = American Institute of Physics | volume = 55 | issue = 2 | pages = 572–579 | year = 1971 |bibcode = 1971JChPh..55..572D }}</ref> सैम एडवर्ड्स (भौतिक विज्ञानी) और मसाओ दोई ने पश्चात प्रत्यावर्तन सिद्धांत को परिष्कृत किया।<ref>{{citation |title=Samuel Edwards: Boltzmann Medallist 1995 |publisher=IUPAP Commission on Statistical Physics |url=http://iupap.cii.fc.ul.pt/Boltz_Award/BA1995.html |access-date=2013-02-20 |url-status=dead |archive-url=https://web.archive.org/web/20131017061732/http://iupap.cii.fc.ul.pt/Boltz_Award/BA1995.html |archive-date=2013-10-17 }}</ref><ref name="flow">{{Cite journal | last1 = Doi | first1 = M. | last2 = Edwards | first2 = S. F. | doi = 10.1039/f29787401789 | title = Dynamics of concentrated polymer systems. Part 1.?Brownian motion in the equilibrium state | journal = Journal of the Chemical Society, Faraday Transactions 2 | volume = 74 | pages = 1789–1801 | year = 1978 }}</ref> [[व्लादिमीर पोक्रोव्स्की]] द्वारा पॉलिमर की थर्मल गति का सुसंगत सिद्धांत दिया गया था<ref>{{Cite journal | last1 = Pokrovskii | first1 = V. N. | doi = 10.1016/j.physa.2005.10.028 | title = मेसोस्कोपिक दृष्टिकोण में एक रेखीय मैक्रोमोलेक्यूल के रेप्टेशन-ट्यूब गतिकी का औचित्य| journal = Physica A: Statistical Mechanics and Its Applications | volume = 366 | pages = 88–106| year = 2006 |bibcode = 2006PhyA..366...88P }}</ref> .<ref>{{Cite journal | last1 = Pokrovskii | first1 = V. N. | title = रेखीय मैक्रोमोलेक्युलस की गति के दोहराव और प्रसार के तरीके| doi = 10.1134/S1063776108030205 | journal = Journal of Experimental and Theoretical Physics | volume = 106 | issue = 3 | pages = 604–607 | year = 2008 | bibcode = 2008JETP..106..604P | s2cid = 121054836 }}</ref> <ref>{{Cite book|title=पॉलिमर डायनेमिक्स का मेसोस्कोपिक सिद्धांत, दूसरा संस्करण।|last=Pokrovskii|first=Vladimir|series=Springer Series in Chemical Physics |publisher=Springer, Dordrecht-Heidelberg-London-New York.|year=2010|volume=95 |isbn=978-90-481-2230-1|url=https://link.springer.com/book/10.1007%2F978-90-481-2231-8|pages=|doi=10.1007/978-90-481-2231-8 }}</ref> इसी प्रकार की घटनाएं प्रोटीन में भी होती हैं।<ref>{{Cite journal | ||
बहुलक में [[बड़े अणुओं]] पिघलता है या केंद्रित बहुलक | |||
| pmid = 11575938 | | pmid = 11575938 | ||
| year = 2001 | | year = 2001 | ||
Line 72: | Line 73: | ||
== उदाहरण | == उदाहरण मॉडल (सरल यादृच्छिक-चलना, स्वतंत्र रूप से संयुक्त) == | ||
1950 के दशक के बाद से लंबी श्रृंखला वाले [[पॉलिमर]] का अध्ययन सांख्यिकीय यांत्रिकी के दायरे में समस्याओं का एक स्रोत रहा है। चूंकि एक कारण यह है कि वैज्ञानिक अपने अध्ययन में रुचि रखते थे कि बहुलक श्रृंखला के व्यवहार को नियंत्रित करने वाले समीकरण श्रृंखला रसायन शास्त्र से स्वतंत्र | 1950 के दशक के बाद से लंबी श्रृंखला वाले [[पॉलिमर]] का अध्ययन सांख्यिकीय यांत्रिकी के दायरे में समस्याओं का एक स्रोत रहा है। चूंकि एक कारण यह है कि वैज्ञानिक अपने अध्ययन में रुचि रखते थे कि बहुलक श्रृंखला के व्यवहार को नियंत्रित करने वाले समीकरण श्रृंखला रसायन शास्त्र से स्वतंत्र थे, क्या अधिक है, गवर्निंग समीकरण स्पेस में एक यादृच्छिक चलना, या विसरित चलना है। वास्तव में, श्रोडिंगर समीकरण स्वयं काल्पनिक समय में एक t' = it [[प्रसार समीकरण]] है। | ||
===यादृच्छिक समय में चलता है=== | ===यादृच्छिक समय में चलता है=== | ||
यादृच्छिक चलने का पहला उदाहरण | यादृच्छिक चलने का पहला उदाहरण स्पेस में एक है, जहां एक कण अपने आसपास के माध्यम में बाह्य शक्तियों के कारण एक यादृच्छिक गति से गुजरता है। एक विशिष्ट उदाहरण पानी के एक बीकर में पराग कण होगा, यदि कोई किसी प्रकार परागकण द्वारा लिए गए पथ को डाई कर सकता है, तो देखे गए पथ को यादृच्छिक चाल के रूप में परिभाषित किया जाता है। | ||
एक्स-दिशा में 1डी ट्रैक के साथ चलने वाली ट्रेन की खिलौना समस्या पर विचार करें। मान लीजिए कि ट्रेन या तो +b या -b की दूरी तय करती है (b प्रत्येक चरण के लिए समान है), यह इस बात पर निर्भर करता है कि फ़्लिप करने पर सिक्का हेड आता है या | एक्स-दिशा में 1डी ट्रैक के साथ चलने वाली ट्रेन की खिलौना समस्या पर विचार करें। मान लीजिए कि ट्रेन या तो +b या -b की दूरी तय करती है (b प्रत्येक चरण के लिए समान है), यह इस बात पर निर्भर करता है कि फ़्लिप करने पर सिक्का हेड आता है या टेल, आइए टॉय ट्रेन द्वारा उठाए जाने वाले कदमों के आँकड़ों पर विचार करके शुरुआत करें (जहाँ S<sub>i</sub>क्या वां कदम उठाया गया है): | ||
:<math>\langle S_{i} \rangle = 0</math> ; प्राथमिक समान संभावनाओं के कारण | :<math>\langle S_{i} \rangle = 0</math>; प्राथमिक समान संभावनाओं के कारण | ||
:<math>\langle S_{i} S_{j} \rangle = b^2 \delta_{ij}.</math> | :<math>\langle S_{i} S_{j} \rangle = b^2 \delta_{ij}.</math> | ||
दूसरी मात्रा को [[सहसंबंध | दूसरी मात्रा को [[सहसंबंध फंक्शन]] के रूप में जाना जाता है। डेल्टा [[क्रोनकर डेल्टा]] है जो हमें बताता है कि यदि सूचकांक i और j भिन्न हैं, तो परिणाम 0 है, लेकिन यदि i = j है तो क्रोनकर डेल्टा 1 है, इसलिए सहसंबंध फ़ंक्शन b<sub>2</sub> का मान लौटाता है। यह समझ में आता है, क्योंकि अगर i = j तो हम उसी कदम पर विचार कर रहे हैं। बल्कि मामूली तौर पर यह दिखाया जा सकता है कि एक्स-अक्ष पर ट्रेन का औसत विस्थापन 0 है; | ||
:<math>x = \sum_{i=1}^{N} S_i</math> | :<math>x = \sum_{i=1}^{N} S_i</math> | ||
Line 89: | Line 90: | ||
:<math>\langle x \rangle = \sum_{i=1}^N \langle S_i \rangle.</math> | :<math>\langle x \rangle = \sum_{i=1}^N \langle S_i \rangle.</math> | ||
जैसा कि कहा गया <math>\langle S_i \rangle = 0</math>, तो योग अभी भी 0 है। | जैसा कि कहा गया <math>\langle S_i \rangle = 0</math>, तो योग अभी भी 0 है। | ||
समस्या के मूल माध्य वर्ग मान की गणना करने के लिए ऊपर प्रदर्शित समान विधि का उपयोग करके इसे भी दिखाया जा सकता है। इस गणना का परिणाम नीचे दिया गया है | |||
समस्या के मूल माध्य वर्ग मान की गणना करने के लिए ऊपर प्रदर्शित समान विधि का उपयोग करके इसे भी दिखाया जा सकता है। इस गणना का परिणाम नीचे दिया गया है, | |||
:<math>x_\mathrm{rms} = \sqrt {\langle x^2 \rangle} = b \sqrt N. </math> | :<math>x_\mathrm{rms} = \sqrt {\langle x^2 \rangle} = b \sqrt N. </math> | ||
प्रसार समीकरण से यह दिखाया जा सकता है कि एक माध्यम में एक विसरित कण की गति उस समय की जड़ के समानुपाती होती है, जिसके लिए प्रणाली विसरित होती रही है, जहां आनुपातिकता स्थिरांक प्रसार स्थिरांक की जड़ है। उपरोक्त संबंध, चूंकि कॉस्मैटिक रूप से भिन्न-भिन्न समान भौतिकी को प्रकट करता है, जहां N मात्र स्थानांतरित किए गए चरणों की संख्या है (समय के साथ शिथिल रूप से जुड़ा हुआ है) और b विशेषता चरण की लंबाई है। परिणामस्वरूप हम प्रसार को एक यादृच्छिक चलने की प्रक्रिया के रूप में मान सकते हैं। | प्रसार समीकरण से यह दिखाया जा सकता है कि एक माध्यम में एक विसरित कण की गति उस समय की जड़ के समानुपाती होती है, जिसके लिए प्रणाली विसरित होती रही है, जहां आनुपातिकता स्थिरांक प्रसार स्थिरांक की जड़ है। उपरोक्त संबंध, चूंकि कॉस्मैटिक रूप से भिन्न-भिन्न समान भौतिकी को प्रकट करता है, जहां N मात्र स्थानांतरित किए गए चरणों की संख्या है (समय के साथ शिथिल रूप से जुड़ा हुआ है) और b विशेषता चरण की लंबाई है। परिणामस्वरूप हम प्रसार को एक यादृच्छिक चलने की प्रक्रिया के रूप में मान सकते हैं। | ||
=== | ===स्पेस में यादृच्छिक चहलकदमी=== | ||
{{main| | {{main|आदर्श श्रृंखला}} | ||
स्पेस में रैंडम वॉक को समय में रैंडम वॉकर द्वारा लिए गए पथ के स्नैपशॉट के रूप में सोचा जा सकता है। ऐसा ही एक उदाहरण लंबी श्रृंखला वाले पॉलिमर का स्थानिक विन्यास है। | |||
एक स्वतंत्र रूप से संयुक्त, गैर-अंतःक्रियात्मक बहुलक श्रृंखला पर विचार करके, एंड-टू-एंड | स्पेस में दो प्रकार के रैंडम वॉक होते हैं: सेल्फ अवॉयडिंग वॉक सेल्फ अवॉयडिंग रैंडम वॉक, जहां पॉलीमर श्रृंखला के लिंक इंटरैक्ट करते हैं और स्पेस में ओवरलैप नहीं होते हैं, और प्योर रैंडम वॉक, जहां पॉलीमर श्रृंखला के लिंक नॉन हैं -इंटरैक्टिंग और लिंक एक दूसरे के ऊपर झूठ बोलने के लिए स्वतंत्र हैं। पूर्व प्रकार भौतिक प्रणालियों पर सबसे अधिक लागू होता है, लेकिन उनके समाधान पहले सिद्धांतों से प्राप्त करना कठिन होता है। | ||
एक स्वतंत्र रूप से संयुक्त, गैर-अंतःक्रियात्मक बहुलक श्रृंखला पर विचार करके, एंड-टू-एंड सदिश है | |||
:<math>\mathbf{R} = \sum_{i=1}^{N} \mathbf r_i</math> | :<math>\mathbf{R} = \sum_{i=1}^{N} \mathbf r_i</math> | ||
जहां आर<sub>''i''</sub> श्रृंखला में i-वें लिंक की सदिश स्थिति है। | जहां आर<sub>''i''</sub> श्रृंखला में i-वें लिंक की सदिश स्थिति है। | ||
* <math>\langle \mathbf{r}_{i} \rangle = 0</math> ; | [[केंद्रीय सीमा प्रमेय]] के परिणामस्वरूप, यदि N ≫ 1 तो हम एंड-टू-एंड सदिश के लिए गॉसियन वितरण की अपेक्षा करते हैं। हम स्वयं लिंक्स के आँकड़ों का विवरण भी दे सकते हैं; | ||
* <math>\langle \mathbf{r}_{i} \cdot \mathbf{r}_{j} \rangle = 3 b^2 \delta_{ij}</math> ; श्रृंखला की सभी कड़ियाँ एक दूसरे से असंबद्ध हैं | |||
* <math>\langle \mathbf{r}_{i} \rangle = 0</math>; स्पेस की आइसोट्रॉपी द्वारा | |||
* <math>\langle \mathbf{r}_{i} \cdot \mathbf{r}_{j} \rangle = 3 b^2 \delta_{ij}</math>; श्रृंखला की सभी कड़ियाँ एक दूसरे से असंबद्ध हैं | |||
व्यक्तिगत लिंक के आँकड़ों का उपयोग करके, यह आसानी से दिखाया जाता है | व्यक्तिगत लिंक के आँकड़ों का उपयोग करके, यह आसानी से दिखाया जाता है | ||
Line 119: | Line 123: | ||
:<math>\Omega \left ( \mathbf{R} \right ) = c P\left ( \mathbf{R} \right )</math> | :<math>\Omega \left ( \mathbf{R} \right ) = c P\left ( \mathbf{R} \right )</math> | ||
जहाँ c एक मनमाना आनुपातिकता स्थिरांक है। हमारे वितरण | जहाँ c एक मनमाना आनुपातिकता स्थिरांक है। हमारे वितरण फंक्शन को देखते हुए, 'आर' = '0' के अनुरूप एक उच्चिष्ठता है। शारीरिक रूप से यह मात्रा अधिक माइक्रोस्टेट होने के कारण होती है, जिसमें किसी भी अन्य माइक्रोस्टेट की तुलना में 0 का एंड-टू-एंड सदिश होता है। अब विचार करके | ||
:<math>S \left ( \mathbf {R} \right ) = k_B \ln \Omega {\left ( \mathbf R \right) } </math> | :<math>S \left ( \mathbf {R} \right ) = k_B \ln \Omega {\left ( \mathbf R \right) } </math> | ||
Line 127: | Line 131: | ||
:<math>\Delta F = k_B T \frac {3R^2}{2Nb^2} = \frac {1}{2} K R^2 \quad ; K = \frac {3 k_B T}{Nb^2}.</math> | :<math>\Delta F = k_B T \frac {3R^2}{2Nb^2} = \frac {1}{2} K R^2 \quad ; K = \frac {3 k_B T}{Nb^2}.</math> | ||
जो हुक के नियम का पालन करते हुए एक | जो हुक के नियम का पालन करते हुए एक स्प्रिंग की [[संभावित ऊर्जा]] के समान रूप है। | ||
इस परिणाम को एंट्रोपिक | इस परिणाम को एंट्रोपिक स्प्रिंग परिणाम के रूप में जाना जाता है और यह कहने के बराबर है कि एक बहुलक श्रृंखला को खींचने पर आप इसे (पसंदीदा) संतुलन स्थिति से दूर खींचने के लिए प्रणाली पर काम कर रहे हैं। इसका एक उदाहरण एक सामान्य इलास्टिक बैंड है, जो लंबी श्रृंखला (रबर) पॉलिमर से बना है। लोचदार बैंड को खींचकर आप प्रणाली पर काम कर रहे हैं और बैंड पारंपरिक स्प्रिंग की प्रकार व्यवहार करता है, सिवाय इसके कि धातु के स्प्रिंग के स्थिति के विपरीत, किए गए सभी काम थर्मल ऊर्जा के रूप में तत्काल दिखाई देते हैं, जितना ऊष्मप्रवैगिकी रूप से इसी प्रकार के स्थिति में एक पिस्टन में एक आदर्श गैस को संपीडित करना है। | ||
यह पहली बार में आश्चर्यजनक हो सकता है कि बहुलक श्रृंखला को खींचने में किया गया कार्य पूरी प्रकार से तंत्र के एन्ट्रॉपी में परिवर्तन के परिणामस्वरूप होने वाले परिवर्तन से संबंधित हो सकता है। | यह पहली बार में आश्चर्यजनक हो सकता है कि बहुलक श्रृंखला को खींचने में किया गया कार्य पूरी प्रकार से तंत्र के एन्ट्रॉपी में परिवर्तन के परिणामस्वरूप होने वाले परिवर्तन से संबंधित हो सकता है। चूंकि, यह उन प्रणालियों के लिए विशिष्ट है जो किसी भी ऊर्जा को संभावित ऊर्जा के रूप में संग्रहीत नहीं करते हैं, जैसे कि आदर्श गैसें, इस प्रकार की प्रणालियाँ किसी दिए गए तापमान पर पूरी प्रकार से एन्ट्रापी परिवर्तन से संचालित होती हैं, जब भी ऐसा स्थिति होता है जिसे परिवेश पर काम करने की अनुमति दी जाती है (जैसे कि जब एक इलास्टिक बैंड अनुबंध करके पर्यावरण पर काम करता है, या एक आदर्श गैस विस्तार करके पर्यावरण पर काम करता है)। क्योंकि ऐसे स्थितियों में मुक्त ऊर्जा परिवर्तन आंतरिक (संभावित) ऊर्जा रूपांतरण के अतिरिक्त पूरी प्रकार से एन्ट्रापी परिवर्तन से प्राप्त होता है, दोनों ही स्थितियों में किया गया कार्य पूरी प्रकार से बहुलक में तापीय ऊर्जा से खींचा जा सकता है, तापीय ऊर्जा के कार्य में रूपांतरण की 100% दक्षता के साथ आदर्श गैस और बहुलक दोनों में, यह संकुचन से भौतिक एंट्रॉपी वृद्धि से संभव हो जाता है जो तापीय ऊर्जा के अवशोषण से एंट्रॉपी के नुकसान के लिए तैयार होता है, और सामग्री को ठंडा करता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 09:46, 31 March 2023
पॉलीमर भौतिकी का क्षेत्र है जो क्रमशः पॉलिमर, उनके उतार-चढ़ाव, सातत्य यांत्रिकी, साथ ही पॉलिमर और मोनोमर्स के क्षरण और बहुलकीकरण से जुड़े रासायनिक कैनेटीक्स का अध्ययन करता है।Cite error: Closing </ref>
missing for <ref>
tag[1][2]
जबकि यह संघनित पदार्थ भौतिकी के परिप्रेक्ष्य पर केंद्रित है, बहुलक भौतिकी मूल रूप से सांख्यिकीय भौतिकी की एक शाखा है। पॉलिमर भौतिकी और बहुलक रसायन विज्ञान भी बहुलक विज्ञान के क्षेत्र से संबंधित हैं, जहाँ इसे पॉलिमर का अनुप्रयुक्त भाग माना जाता है।
पॉलिमर बड़े अणु होते हैं और इस प्रकार नियतात्मक पद्धति का उपयोग करके समाधान करने के लिए बहुत जटिल होते हैं। फिर भी, सांख्यिकीय दृष्टिकोण परिणाम दे सकते हैं और अधिकांशतः प्रासंगिक होते हैं, क्योंकि बड़े पॉलिमर (अर्थात्, कई मोनोमर्स वाले पॉलिमर) असीम रूप से कई मोनोमर्स की ऊष्मप्रवैगिकी सीमा में कुशलता से वर्णित हैं (चूंकि वास्तविक बनावट स्पष्ट रूप से परिमित है)।
थर्मल उतार-चढ़ाव तरल समाधानों में पॉलिमर के बनावट को लगातार प्रभावित करते हैं, और उनके प्रभाव को मॉडलिंग करने के लिए सांख्यिकीय यांत्रिकी और गतिकी के सिद्धांतों का उपयोग करने की आवश्यकता होती है। एक परिणाम के रूप में, तापमान समाधान में पॉलिमर के भौतिक व्यवहार को दृढ़ता से प्रभावित करता है, जिससे चरण संक्रमण होता है, पिघलता है, और इसी प्रकार से चलता है।
बहुलक भौतिकी के लिए सांख्यिकीय दृष्टिकोण एक बहुलक और या तो एक प्रकार कि गति, या अन्य प्रकार के यादृच्छिक चलने के बीच समानता पर आधारित है, आत्म-परहेज चलना सरल यादृच्छिक चलने के अनुरूप, सबसे सरल संभव बहुलक मॉडल आदर्श श्रृंखला द्वारा प्रस्तुत किया जाता है। पॉलिमर लक्षण वर्णन के लिए प्रायोगिक दृष्टिकोण भी सामान्य हैं, बहुलक लक्षण वर्णन विधियों का उपयोग करते हुए, जैसे कि बनावट बहिष्करण क्रोमैटोग्राफी, विस्कोमेट्री, गतिशील प्रकाश बिखरने और पॉलिमराइजेशन प्रतिक्रियाएं (एसीओएमपी) की स्वचालित निरंतर ऑनलाइन देख-रेख [3][4] या पॉलिमर के रासायनिक, भौतिक और भौतिक गुणों का निर्धारण करता है, इन प्रयोग की विधियों ने, पॉलिमर के गुणजों की बेहतर समझ के लिए भी गणितीय मॉडल बनाने में मदद की है।
- फ्लोरी को बहुलक भौतिकी के क्षेत्र की स्थापना करने वाला पहला वैज्ञानिक माना जाता है।[5]
- फ्रांसीसी वैज्ञानिकों ने 70 के दशक से बहुत (उदाहरण के लिए पियरे-गिल्स डे गेनेस, जे डेस क्लोइज़ॉक्स) योगदान दिया है।[6][7]
- डोई और सैम एडवर्ड्स (भौतिक विज्ञानी) ने बहुलक भौतिकी में एक बहुत प्रसिद्ध पुस्तक लिखी है।[1]
- भौतिकी के सोवियत/रूसी स्कूल (आई. एम. लाइफशिट्ज, ए. यू. ग्रोसबर्ग, ए. आर. खोखलोव, वी. एन. पोक्रोव्स्की) बहुलक भौतिकी के विकास में बहुत सक्रिय रहे हैं।[8][9]
संघनित पदार्थ भौतिकी |
---|
मॉडल
बहुलक श्रृंखलाओं के मॉडल दो प्रकारों में विभाजित होते हैं: आदर्श मॉडल और वास्तविक मॉडल, आदर्श श्रृंखला मॉडल मानते हैं कि श्रृंखला मोनोमर्स के बीच कोई अंतःक्रिया नहीं होती है। यह धारणा कुछ बहुलक प्रणालियों के लिए मान्य है, जहां मोनोमर के बीच सकारात्मक और नकारात्मक बातचीत प्रभावी रूप से रद्द हो जाती है। आदर्श श्रृंखला मॉडल अधिक जटिल प्रणालियों की जांच के लिए एक अच्छा प्रारंभिक बिंदु प्रदान करते हैं और अधिक पैरामीटर वाले समीकरणों के लिए अनुकूल हैं।
आदर्श श्रृंखला
- स्वतंत्र रूप से जुड़ी श्रृंखला बहुलक का सबसे सरल मॉडल है। इस मॉडल में, निश्चित लंबाई के बहुलक खंड रैखिक रूप से जुड़े हुए हैं, और सभी बंधन और मरोड़ कोण परिवर्तनीय हैं।[10] इसलिए बहुलक को एक साधारण यादृच्छिक चाल और आदर्श श्रृंखला द्वारा वर्णित किया जा सकता है। बॉन्ड स्ट्रेचिंग का प्रतिनिधित्व करने के लिए एक्सटेंसिबल स्पष्टीकरण को सम्मलित करने के लिए मॉडल को बढ़ाया जा सकता है।[11]
- स्वतंत्र -रोटेटिंग श्रृंखला स्वतंत्र -जॉइंट श्रृंखला मॉडल को इस बात को ध्यान में रखते हुए सुधारती है कि पॉलीमर स्पष्टीकरण विशिष्ट रासायनिक बॉन्डिंग के कारण निकटतम इकाइयों के लिए एक निश्चित बॉन्ड कोण बनाते हैं। इस निश्चित कोण के अनुसार, खंड अभी भी घूमने के लिए स्वतंत्र हैं और सभी मरोड़ वाले कोण समान रूप से होने की संभावना है।
- बाधित रोटेशन मॉडल मानता है कि मरोड़ कोण एक संभावित ऊर्जा से बाधित है। यह प्रत्येक मरोड़ कोण की संभाव्यता को बोल्ट्जमान कारक के समानुपाती बनाता है:
- , जहाँ संभावित है जो के प्रत्येक मान की प्रायिकता निर्धारित करता है।
- घूर्णी समावयवी अवस्था मॉडल में, अनुमत मरोड़ कोण घूर्णी संभावित ऊर्जा में मिनीमा की स्थिति से निर्धारित होते हैं। बॉन्ड की लंबाई और बॉन्ड कोण स्थिर हैं।
- वर्म जैसी श्रृंखला एक अधिक जटिल मॉडल है। यह दृढ़ता की लंबाई को ध्यान में रखता है। पॉलिमर पूरी प्रकार से लचीले नहीं होते हैं; उन्हें झुकाने के लिए ऊर्जा की आवश्यकता होती है। दृढ़ता लंबाई के नीचे लंबाई के पैमाने पर, बहुलक कमोबेश एक कठोर छड़ के जैसे व्यवहार करता है।
रियल श्रृंखला
श्रृंखला मोनोमर्स के बीच सहभागिता को बहिष्कृत मात्रा के रूप में प्रतिरूपित किया जा सकता है। यह श्रृंखला की संरूपण संभावनाओं में कमी का कारण बनता है, और एक स्व-परहेज यादृच्छिक चलने की ओर जाता है। स्व-परहेज रैंडम वॉक में साधारण रैंडम वॉक के भिन्न-भिन्न आँकड़े होते हैं।
विलायक और तापमान प्रभाव
एकल बहुलक श्रृंखला के आँकड़े विलायक में बहुलक की घुलनशीलता पर निर्भर करते हैं। एक विलायक के लिए जिसमें बहुलक बहुत घुलनशील (एक अच्छा विलायक) होता है, श्रृंखला अधिक विस्तारित होती है, जबकि एक विलायक के लिए जिसमें बहुलक अघुलनशील या बकठिनाई घुलनशील (एक खराब विलायक) होता है, श्रृंखला खंड एक दूसरे के करीब रहते हैं। एक बहुत खराब विलायक की सीमा में बहुलक श्रृंखला मात्र एक कठिन क्षेत्र बनाने के लिए ढह जाती है, जबकि एक अच्छे विलायक में बहुलक-द्रव संपर्कों की संख्या को अधिकतम करने के लिए श्रृंखला सूज जाती है। इस स्थिति के लिए फ्लोरी के माध्य क्षेत्र दृष्टिकोण का उपयोग करके परिभ्रमण की त्रिज्या का अनुमान लगाया जाता है, जो कि परिभ्रमण की त्रिज्या के लिए एक स्केलिंग उत्पन्न करता है:
- ,
जहाँ बहुलक के परिभ्रमण की त्रिज्या है, श्रृंखला के बंधन खंडों (पोलीमराइजेशन की डिग्री के बराबर) की संख्या है और फ्लोरी प्रतिपादक है।
अच्छे विलायक के लिए, ; गरीब विलायक के लिए, , इसलिए, अच्छे विलायक में बहुलक का बनावट बड़ा होता है और यह भग्न वस्तु की प्रकार व्यवहार करता है। खराब विलायक में यह एक ठोस गोले की प्रकार व्यवहार करता है।
तथाकथित में विलायक, , जो साधारण रैंडम वॉक का परिणाम है। श्रृंखला ऐसा व्यवहार करती है मानो वह एक आदर्श श्रृंखला हो।
विलायक की गुणवत्ता तापमान पर भी निर्भर करती है। एक लचीले बहुलक के लिए, कम तापमान खराब गुणवत्ता के अनुरूप हो सकता है और उच्च तापमान उसी विलायक को अच्छा बनाता है। एक विशेष तापमान जिसे थीटा (θ) तापमान कहा जाता है, पर विलायक एक आदर्श श्रृंखला की प्रकार व्यवहार करता है।
बहिष्कृत आयतन इंटरैक्शन
आदर्श श्रृंखला मॉडल मानता है कि बहुलक खंड एक दूसरे के साथ ओवरलैप कर सकते हैं जैसे कि श्रृंखला एक प्रेत श्रृंखला थी। वास्तव में, दो खंड एक ही समय में एक ही स्थान पर कब्जा नहीं कर सकते, खंडों के बीच की इस बातचीत को बहिष्कृत आयतन इंटरैक्शन कहा जाता है।
बहिष्कृत मात्रा का सबसे सरल सूत्रीकरण स्व-परहेज रैंडम वॉक है, एक रैंडम वॉक जो अपने पिछले पथ को दोहरा नहीं सकता है। तीन आयामों में एन चरणों के इस चलने का एक मार्ग बहिष्कृत आयतन इंटरैक्शन के साथ एक बहुलक की रचना का प्रतिनिधित्व करता है। इस मॉडल की स्व-परहेज प्रकृति के कारण, संभावित अनुरूपताओं की संख्या में अधिक कमी आई है। परिभ्रमण की त्रिज्या आम तौर पर आदर्श श्रृंखला की तुलना में बड़ी होती है।
लचीलापन और पुनरावृत्ति
पॉलिमर लचीला है या नहीं यह ब्याज के पैमाने पर निर्भर करता है। उदाहरण के लिए, डबल-स्ट्रैंडेड डीएनए की पर्सिस्टेंस लंबाई लगभग 50 एनएम है। 50 एनएम से छोटे लंबाई के पैमाने को देखते हुए, यह कमोबेश एक कठोर छड़ की प्रकार व्यवहार करता है।[12] 50 एनएम से अधिक बड़े पैमाने पर, यह एक लचीली श्रृंखला की प्रकार व्यवहार करता है।
रिप्टेशन मूल रूप से उलझे हुए, बहुत लंबे रैखिक की तापीय गति है, बहुलक में बड़े अणुओं पिघलता है या केंद्रित बहुलक समाधान, शब्द से व्युत्पन्न, दोहराव एक दूसरे के माध्यम से रेंगने वाले सांपों के समान होने के रूप में उलझी हुई बहुलक श्रृंखलाओं की गति का सुझाव देता है।[13] पियरे-गिल्स डी गेनेस ने 1971 में बहुलक भौतिकी में पुनरावृत्ति की अवधारणा को इसकी लंबाई पर एक मैक्रोमोलेक्यूल की गतिशीलता की निर्भरता की व्याख्या करने के लिए प्रस्तुत किया (और नाम दिया), एक अनाकार बहुलक में चिपचिपा प्रवाह को समझाने के लिए एक तंत्र के रूप में पुनरावृत्ति का उपयोग किया जाता है।[14][15] सैम एडवर्ड्स (भौतिक विज्ञानी) और मसाओ दोई ने पश्चात प्रत्यावर्तन सिद्धांत को परिष्कृत किया।[16][17] व्लादिमीर पोक्रोव्स्की द्वारा पॉलिमर की थर्मल गति का सुसंगत सिद्धांत दिया गया था[18] .[19] [20] इसी प्रकार की घटनाएं प्रोटीन में भी होती हैं।[21]
उदाहरण मॉडल (सरल यादृच्छिक-चलना, स्वतंत्र रूप से संयुक्त)
1950 के दशक के बाद से लंबी श्रृंखला वाले पॉलिमर का अध्ययन सांख्यिकीय यांत्रिकी के दायरे में समस्याओं का एक स्रोत रहा है। चूंकि एक कारण यह है कि वैज्ञानिक अपने अध्ययन में रुचि रखते थे कि बहुलक श्रृंखला के व्यवहार को नियंत्रित करने वाले समीकरण श्रृंखला रसायन शास्त्र से स्वतंत्र थे, क्या अधिक है, गवर्निंग समीकरण स्पेस में एक यादृच्छिक चलना, या विसरित चलना है। वास्तव में, श्रोडिंगर समीकरण स्वयं काल्पनिक समय में एक t' = it प्रसार समीकरण है।
यादृच्छिक समय में चलता है
यादृच्छिक चलने का पहला उदाहरण स्पेस में एक है, जहां एक कण अपने आसपास के माध्यम में बाह्य शक्तियों के कारण एक यादृच्छिक गति से गुजरता है। एक विशिष्ट उदाहरण पानी के एक बीकर में पराग कण होगा, यदि कोई किसी प्रकार परागकण द्वारा लिए गए पथ को डाई कर सकता है, तो देखे गए पथ को यादृच्छिक चाल के रूप में परिभाषित किया जाता है।
एक्स-दिशा में 1डी ट्रैक के साथ चलने वाली ट्रेन की खिलौना समस्या पर विचार करें। मान लीजिए कि ट्रेन या तो +b या -b की दूरी तय करती है (b प्रत्येक चरण के लिए समान है), यह इस बात पर निर्भर करता है कि फ़्लिप करने पर सिक्का हेड आता है या टेल, आइए टॉय ट्रेन द्वारा उठाए जाने वाले कदमों के आँकड़ों पर विचार करके शुरुआत करें (जहाँ Siक्या वां कदम उठाया गया है):
- ; प्राथमिक समान संभावनाओं के कारण
दूसरी मात्रा को सहसंबंध फंक्शन के रूप में जाना जाता है। डेल्टा क्रोनकर डेल्टा है जो हमें बताता है कि यदि सूचकांक i और j भिन्न हैं, तो परिणाम 0 है, लेकिन यदि i = j है तो क्रोनकर डेल्टा 1 है, इसलिए सहसंबंध फ़ंक्शन b2 का मान लौटाता है। यह समझ में आता है, क्योंकि अगर i = j तो हम उसी कदम पर विचार कर रहे हैं। बल्कि मामूली तौर पर यह दिखाया जा सकता है कि एक्स-अक्ष पर ट्रेन का औसत विस्थापन 0 है;
जैसा कि कहा गया , तो योग अभी भी 0 है।
समस्या के मूल माध्य वर्ग मान की गणना करने के लिए ऊपर प्रदर्शित समान विधि का उपयोग करके इसे भी दिखाया जा सकता है। इस गणना का परिणाम नीचे दिया गया है,
प्रसार समीकरण से यह दिखाया जा सकता है कि एक माध्यम में एक विसरित कण की गति उस समय की जड़ के समानुपाती होती है, जिसके लिए प्रणाली विसरित होती रही है, जहां आनुपातिकता स्थिरांक प्रसार स्थिरांक की जड़ है। उपरोक्त संबंध, चूंकि कॉस्मैटिक रूप से भिन्न-भिन्न समान भौतिकी को प्रकट करता है, जहां N मात्र स्थानांतरित किए गए चरणों की संख्या है (समय के साथ शिथिल रूप से जुड़ा हुआ है) और b विशेषता चरण की लंबाई है। परिणामस्वरूप हम प्रसार को एक यादृच्छिक चलने की प्रक्रिया के रूप में मान सकते हैं।
स्पेस में यादृच्छिक चहलकदमी
स्पेस में रैंडम वॉक को समय में रैंडम वॉकर द्वारा लिए गए पथ के स्नैपशॉट के रूप में सोचा जा सकता है। ऐसा ही एक उदाहरण लंबी श्रृंखला वाले पॉलिमर का स्थानिक विन्यास है।
स्पेस में दो प्रकार के रैंडम वॉक होते हैं: सेल्फ अवॉयडिंग वॉक सेल्फ अवॉयडिंग रैंडम वॉक, जहां पॉलीमर श्रृंखला के लिंक इंटरैक्ट करते हैं और स्पेस में ओवरलैप नहीं होते हैं, और प्योर रैंडम वॉक, जहां पॉलीमर श्रृंखला के लिंक नॉन हैं -इंटरैक्टिंग और लिंक एक दूसरे के ऊपर झूठ बोलने के लिए स्वतंत्र हैं। पूर्व प्रकार भौतिक प्रणालियों पर सबसे अधिक लागू होता है, लेकिन उनके समाधान पहले सिद्धांतों से प्राप्त करना कठिन होता है।
एक स्वतंत्र रूप से संयुक्त, गैर-अंतःक्रियात्मक बहुलक श्रृंखला पर विचार करके, एंड-टू-एंड सदिश है
जहां आरi श्रृंखला में i-वें लिंक की सदिश स्थिति है।
केंद्रीय सीमा प्रमेय के परिणामस्वरूप, यदि N ≫ 1 तो हम एंड-टू-एंड सदिश के लिए गॉसियन वितरण की अपेक्षा करते हैं। हम स्वयं लिंक्स के आँकड़ों का विवरण भी दे सकते हैं;
- ; स्पेस की आइसोट्रॉपी द्वारा
- ; श्रृंखला की सभी कड़ियाँ एक दूसरे से असंबद्ध हैं
व्यक्तिगत लिंक के आँकड़ों का उपयोग करके, यह आसानी से दिखाया जाता है
- .
ध्यान दें कि यह अंतिम परिणाम वही है जो समय में यादृच्छिक चलने के लिए मिला है।
यह मानते हुए, जैसा कि कहा गया है, कि बहुत बड़ी संख्या में समान बहुलक श्रृंखलाओं के लिए एंड-टू-एंड वैक्टर का वितरण गॉसियन है, प्रायिकता वितरण का निम्न रूप है
यह हमारे किस काम का? याद रखें कि समसंभाव्यता के सिद्धांत के अनुसार प्राथमिक प्रायिकता, कुछ भौतिक मान पर माइक्रोस्टेट्स की संख्या, Ω, उस भौतिक मान पर प्रायिकता वितरण के सीधे आनुपातिक होती है, अर्थात;
जहाँ c एक मनमाना आनुपातिकता स्थिरांक है। हमारे वितरण फंक्शन को देखते हुए, 'आर' = '0' के अनुरूप एक उच्चिष्ठता है। शारीरिक रूप से यह मात्रा अधिक माइक्रोस्टेट होने के कारण होती है, जिसमें किसी भी अन्य माइक्रोस्टेट की तुलना में 0 का एंड-टू-एंड सदिश होता है। अब विचार करके
जहाँ F हेल्महोल्ट्ज़ मुक्त ऊर्जा है, और यह दिखाया जा सकता है
जो हुक के नियम का पालन करते हुए एक स्प्रिंग की संभावित ऊर्जा के समान रूप है।
इस परिणाम को एंट्रोपिक स्प्रिंग परिणाम के रूप में जाना जाता है और यह कहने के बराबर है कि एक बहुलक श्रृंखला को खींचने पर आप इसे (पसंदीदा) संतुलन स्थिति से दूर खींचने के लिए प्रणाली पर काम कर रहे हैं। इसका एक उदाहरण एक सामान्य इलास्टिक बैंड है, जो लंबी श्रृंखला (रबर) पॉलिमर से बना है। लोचदार बैंड को खींचकर आप प्रणाली पर काम कर रहे हैं और बैंड पारंपरिक स्प्रिंग की प्रकार व्यवहार करता है, सिवाय इसके कि धातु के स्प्रिंग के स्थिति के विपरीत, किए गए सभी काम थर्मल ऊर्जा के रूप में तत्काल दिखाई देते हैं, जितना ऊष्मप्रवैगिकी रूप से इसी प्रकार के स्थिति में एक पिस्टन में एक आदर्श गैस को संपीडित करना है।
यह पहली बार में आश्चर्यजनक हो सकता है कि बहुलक श्रृंखला को खींचने में किया गया कार्य पूरी प्रकार से तंत्र के एन्ट्रॉपी में परिवर्तन के परिणामस्वरूप होने वाले परिवर्तन से संबंधित हो सकता है। चूंकि, यह उन प्रणालियों के लिए विशिष्ट है जो किसी भी ऊर्जा को संभावित ऊर्जा के रूप में संग्रहीत नहीं करते हैं, जैसे कि आदर्श गैसें, इस प्रकार की प्रणालियाँ किसी दिए गए तापमान पर पूरी प्रकार से एन्ट्रापी परिवर्तन से संचालित होती हैं, जब भी ऐसा स्थिति होता है जिसे परिवेश पर काम करने की अनुमति दी जाती है (जैसे कि जब एक इलास्टिक बैंड अनुबंध करके पर्यावरण पर काम करता है, या एक आदर्श गैस विस्तार करके पर्यावरण पर काम करता है)। क्योंकि ऐसे स्थितियों में मुक्त ऊर्जा परिवर्तन आंतरिक (संभावित) ऊर्जा रूपांतरण के अतिरिक्त पूरी प्रकार से एन्ट्रापी परिवर्तन से प्राप्त होता है, दोनों ही स्थितियों में किया गया कार्य पूरी प्रकार से बहुलक में तापीय ऊर्जा से खींचा जा सकता है, तापीय ऊर्जा के कार्य में रूपांतरण की 100% दक्षता के साथ आदर्श गैस और बहुलक दोनों में, यह संकुचन से भौतिक एंट्रॉपी वृद्धि से संभव हो जाता है जो तापीय ऊर्जा के अवशोषण से एंट्रॉपी के नुकसान के लिए तैयार होता है, और सामग्री को ठंडा करता है।
यह भी देखें
- फ़ाइल गतिकी
- भौतिकी में प्रकाशनों की सूची#बहुलक भौतिकी।
- पॉलिमर लक्षण वर्णन
- प्रोटीन गतिकी
- पुनरावृत्ति
- कोमल पदार्थ
- फ्लोरी-हगिन्स समाधान सिद्धांत
संदर्भ
- ↑ 1.0 1.1 एम. दोई और एस. एफ. एडवर्ड्स, द थ्योरी ऑफ़ पॉलीमर डायनामिक्स ऑक्सफ़ोर्ड यूनिवर्सिटी इंक एनवाई, 1986
- ↑ Michael Rubinstein and Ralph H. Colby, Polymer Physics Oxford University Press, 2003
- ↑ US patent 6052184 and US Patent 6653150, other patents pending
- ↑ F. H. Florenzano; R. Strelitzki; W. F. Reed, "Absolute, Online Monitoring of Polymerization Reactions", Macromolecules 1998, 31(21), 7226-7238
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedflory_53
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs nameddg_79
- ↑ des Cloiseaux, Jacques; Jannink, Gerard (1991). समाधान में पॉलिमर. Oxford University Press. doi:10.1002/pola.1992.080300733.
- ↑ Vladimir Pokrovski, The Mesoscopic Theory of Polymer Dynamics, Springer, 2010
- ↑ A. Yu. Grosberg, A.R. Khokhlov. Statistical Physics of Macromolecules, 1994, American Institute o Physics
- ↑ H. Yamakawa, "Helical Wormlike Chains in Polymer Solution", (Springer Verlag, Berlin, 1997)
- ↑ Buche, M.R.; Silberstein, M.N.; Grutzik, S.J. (2022). "एक्स्टेंसिबल लिंक के साथ स्वतंत्र रूप से जुड़ी हुई जंजीर". Phys. Rev. E. 106 (2–1): 024502. arXiv:2203.05421. doi:10.1103/PhysRevE.106.024502. PMID 36109919. S2CID 247362917.
- ↑ G.McGuinness, Polymer Physics, Oxford University Press, p347
- ↑ Rubinstein, Michael (March 2008). उलझे हुए पॉलिमर की गतिशीलता. Pierre-Gilles de Gennes Symposium. New Orleans, LA: American Physical Society. Retrieved 6 April 2015.
- ↑ De Gennes, P. G. (1983). "उलझे हुए पॉलिमर". Physics Today. American Institute of Physics. 36 (6): 33–39. Bibcode:1983PhT....36f..33D. doi:10.1063/1.2915700.
साँप जैसी गति पर आधारित एक सिद्धांत जिसके द्वारा मोनोमर्स की श्रृंखला पिघल में चलती है, रियोलॉजी, प्रसार, बहुलक-बहुलक वेल्डिंग, रासायनिक कैनेटीक्स और जैव प्रौद्योगिकी की हमारी समझ को बढ़ा रही है।
- ↑ De Gennes, P. G. (1971). "निश्चित बाधाओं की उपस्थिति में एक बहुलक श्रृंखला का पुनरावृत्ति". The Journal of Chemical Physics. American Institute of Physics. 55 (2): 572–579. Bibcode:1971JChPh..55..572D. doi:10.1063/1.1675789.
- ↑ Samuel Edwards: Boltzmann Medallist 1995, IUPAP Commission on Statistical Physics, archived from the original on 2013-10-17, retrieved 2013-02-20
- ↑ Doi, M.; Edwards, S. F. (1978). "Dynamics of concentrated polymer systems. Part 1.?Brownian motion in the equilibrium state". Journal of the Chemical Society, Faraday Transactions 2. 74: 1789–1801. doi:10.1039/f29787401789.
- ↑ Pokrovskii, V. N. (2006). "मेसोस्कोपिक दृष्टिकोण में एक रेखीय मैक्रोमोलेक्यूल के रेप्टेशन-ट्यूब गतिकी का औचित्य". Physica A: Statistical Mechanics and Its Applications. 366: 88–106. Bibcode:2006PhyA..366...88P. doi:10.1016/j.physa.2005.10.028.
- ↑ Pokrovskii, V. N. (2008). "रेखीय मैक्रोमोलेक्युलस की गति के दोहराव और प्रसार के तरीके". Journal of Experimental and Theoretical Physics. 106 (3): 604–607. Bibcode:2008JETP..106..604P. doi:10.1134/S1063776108030205. S2CID 121054836.
- ↑ Pokrovskii, Vladimir (2010). पॉलिमर डायनेमिक्स का मेसोस्कोपिक सिद्धांत, दूसरा संस्करण।. Springer Series in Chemical Physics. Vol. 95. Springer, Dordrecht-Heidelberg-London-New York. doi:10.1007/978-90-481-2231-8. ISBN 978-90-481-2230-1.
- ↑ Bu, Z; Cook, J; Callaway, D. J. (2001). "Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin". Journal of Molecular Biology. 312 (4): 865–73. doi:10.1006/jmbi.2001.5006. PMID 11575938. S2CID 23418562.