कप उत्पाद: Difference between revisions
(TEXT) |
(TEXT) |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से [[बीजगणितीय टोपोलॉजी|बीजगणितीय संस्थितिविज्ञान]] में, कप उत्पाद डिग्री ''p'' और ''q'' के दो | गणित में, विशेष रूप से [[बीजगणितीय टोपोलॉजी|बीजगणितीय संस्थितिविज्ञान]] में, कप उत्पाद डिग्री ''p'' और ''q'' के दो सहचक्रों को जोड़ने की एक विधि है, डिग्री ''p'' + ''q'' के एक समग्र सहचक्र बनता है। यह सह समरूपता में एक सहयोगी (और वितरण) श्रेणीबद्ध क्रमविनिमेय उत्पाद संचालन को परिभाषित करता है, एक समष्टि ''X '' के सह समरूपता को श्रेणीबद्ध वलय,'' H<sup>∗</sup>(X),'' जिसे [[कोहोलॉजी रिंग|सह समरूपता वलय]] कहा जाता है। कप उत्पाद 1935-1938 तक जे. डब्ल्यू. अलेक्जेंडर, एडुआर्ड सीच और [[हस्लर व्हिटनी]] के काम में प्रस्तावित किया गया था, और, पूर्ण सामान्यता में, 1944 में [[सैमुअल एलेनबर्ग]] द्वारा प्रस्तावित किया गया था। | ||
== परिभाषा == | == परिभाषा == | ||
[[एकवचन कोहोलॉजी|विलक्षण सह समरूपता]] में, कप उत्पाद एक | [[एकवचन कोहोलॉजी|विलक्षण सह समरूपता]] में, कप उत्पाद एक रचना है जो एक[[ वर्गीकृत अंगूठी | सांस्थितिक समष्टि]] X के श्रेणीबद्ध सह [[समरूपता वलय]] ''H''<sup>∗</sup>(''X'') पर एक उत्पाद देता है। | ||
रचना [[कोचेन (बीजीय टोपोलॉजी)|कोचेन (बीजीय संस्थितिविज्ञान)]] के उत्पाद से साथ प्रारंभ होता है: यदि <math>\alpha^p</math> एक ''p''-कोचेन है और <math>\beta^q</math> एक ''q''-कोचैन है, तो | |||
:<math>(\alpha^p \smile \beta^q)(\sigma) = \alpha^p(\sigma \circ \iota_{0,1, ... p}) \cdot \beta^q(\sigma \circ \iota_{p, p+1 ,..., p + q})</math> | :<math>(\alpha^p \smile \beta^q)(\sigma) = \alpha^p(\sigma \circ \iota_{0,1, ... p}) \cdot \beta^q(\sigma \circ \iota_{p, p+1 ,..., p + q})</math> | ||
जहां σ एक[[ एकवचन समरूपता | विलक्षण]] (p + q) [[संकेतन|-संकेतन]] है और <math>\iota_S , S \subset \{0,1,...,p+q \} </math> S द्वारा विस्तरित किए गए संकेतन का विहित [[एम्बेडिंग|अंतःस्थापित]] है <math>(p+q)</math>-[[संकेतन]] जिसका शीर्षों को <math>\{0,...,p+q \}</math> द्वारा अनुक्रमित किया जाता है। | जहां σ एक[[ एकवचन समरूपता | विलक्षण]] (p + q) [[संकेतन|-संकेतन]] है और <math>\iota_S , S \subset \{0,1,...,p+q \} </math> S द्वारा विस्तरित किए गए संकेतन का विहित [[एम्बेडिंग|अंतःस्थापित]] है <math>(p+q)</math>-[[संकेतन]] जिसका शीर्षों को <math>\{0,...,p+q \}</math> द्वारा अनुक्रमित किया जाता है। | ||
Line 17: | Line 17: | ||
सह समरूपता में कप उत्पाद संचालन अस्मिता को संतुष्ट करता है | सह समरूपता में कप उत्पाद संचालन अस्मिता को संतुष्ट करता है | ||
:<math>\alpha^p \smile \beta^q = (-1)^{pq}(\beta^q \smile \alpha^p)</math> | :<math>\alpha^p \smile \beta^q = (-1)^{pq}(\beta^q \smile \alpha^p)</math> | ||
ताकि संबंधित गुणन | ताकि संबंधित गुणन श्रेणीबद्ध-क्रमविनिमेय हो। | ||
कप उत्पाद क्रियात्मक है, निम्नलिखित अर्थों में: यदि | कप उत्पाद क्रियात्मक है, निम्नलिखित अर्थों में: यदि | ||
Line 34: | Line 34: | ||
<math>X</math> और <math>X \times X</math> के श्रृंखला परिसरों के संदर्भ में, जहां पहला मानचित्र कुनेथ मानचित्र है और दूसरा विकर्ण <math> \Delta \colon X \to X \times X</math> द्वारा प्रेरित मानचित्र है। | <math>X</math> और <math>X \times X</math> के श्रृंखला परिसरों के संदर्भ में, जहां पहला मानचित्र कुनेथ मानचित्र है और दूसरा विकर्ण <math> \Delta \colon X \to X \times X</math> द्वारा प्रेरित मानचित्र है। | ||
यह संयोजना सह समरूपता के संदर्भ में एक अच्छी तरह से परिभाषित मानचित्र देने के लिए भागफल से पारित होती है, यह कप उत्पाद है। यह दृष्टिकोण समरूपता के लिए एक कप उत्पाद के अस्तित्व की व्याख्या करता है, लेकिन समरूपता के लिए नहीं: <math> \Delta \colon X \to X \times X</math> एक मानचित्र प्रेरित करता है <math>\Delta^* \colon H^\bullet(X \times X) \to H^\bullet(X)</math> लेकिन एक मानचित्र भी प्रेरित करेगा <math>\Delta_* \colon H_\bullet(X) \to H_\bullet(X \times X)</math>, जो किसी उत्पाद को परिभाषित करने की अनुमति देने के लिए | यह संयोजना सह समरूपता के संदर्भ में एक अच्छी तरह से परिभाषित मानचित्र देने के लिए भागफल से पारित होती है, यह कप उत्पाद है। यह दृष्टिकोण समरूपता के लिए एक कप उत्पाद के अस्तित्व की व्याख्या करता है, लेकिन समरूपता के लिए नहीं: <math> \Delta \colon X \to X \times X</math> एक मानचित्र प्रेरित करता है <math>\Delta^* \colon H^\bullet(X \times X) \to H^\bullet(X)</math> लेकिन एक मानचित्र भी प्रेरित करेगा <math>\Delta_* \colon H_\bullet(X) \to H_\bullet(X \times X)</math>, जो किसी उत्पाद को परिभाषित करने की अनुमति देने के लिए असत् प्रकार से जाता है। हालांकि यह कैप उत्पाद को परिभाषित करने में उपयोगी है। | ||
कप उत्पाद की इस प्रस्तुति से द्विरेखीयता आती है, अर्थात <math> (u_1 + u_2) \smile v = u_1 \smile v + u_2 \smile v </math> और <math> u \smile (v_1 + v_2) = u \smile v_1 + u \smile v_2. </math> | कप उत्पाद की इस प्रस्तुति से द्विरेखीयता आती है, अर्थात <math> (u_1 + u_2) \smile v = u_1 \smile v + u_2 \smile v </math> और <math> u \smile (v_1 + v_2) = u \smile v_1 + u \smile v_2. </math> | ||
== उदाहरण == | == उदाहरण == | ||
कप उत्पादों का उपयोग समान सह समरूपता समूहों के साथ | कप उत्पादों का उपयोग समान सह समरूपता समूहों के साथ समष्टि के वैज से बहुरूपता को अलग करने के लिए किया जा सकता है। समष्टि <math>X:= S^2\vee S^1\vee S^1</math> में टोरस T के समान सह समरूपता समूह हैं, लेकिन एक अलग कप उत्पाद के साथ है। X के प्रकरण में <math>S^1</math> प्रतियों से जुड़े [[cochain|कोचेन]] का गुणन पतित है, जबकि T गुणा में पहले सह समरूपता समूह में टोरस को 2-सेल आरेख के रूप में विघटित करने के लिए उपयोजित किया जा सकता है, इस प्रकार Z के समान उत्पाद होता है (अधिक सामान्यतः M जहां यह आधार प्रतिरूपक है)। | ||
== अन्य परिभाषाएँ == | == अन्य परिभाषाएँ == | ||
Line 46: | Line 46: | ||
=== कप उत्पाद और ज्यामितीय प्रतिच्छेदन === | === कप उत्पाद और ज्यामितीय प्रतिच्छेदन === | ||
[[File:Linking Number 1.svg|thumb|[[लिंकिंग नंबर|योजक संख्या]] को शृंखला के पूरक पर गैर-लुप्त होने वाले कप उत्पाद के संदर्भ में परिभाषित किया जा सकता है। <math>\mathbb{R}^3</math> विरूपण में इन दो जुड़े मंडलियों का पूरक एक टोरस और 2-गोले के एक वैज योग के लिए वापस जाता है, जिसमें डिग्री 1 में एक गैर-लुप्त होने वाला कप उत्पाद होता है।]]अभिविन्यस्त बहुरूपता के लिए, एक ज्यामितीय अनुमान है कि <nowiki>''कप उत्पाद प्रतिच्छेदन के लिए | [[File:Linking Number 1.svg|thumb|[[लिंकिंग नंबर|योजक संख्या]] को शृंखला के पूरक पर गैर-लुप्त होने वाले कप उत्पाद के संदर्भ में परिभाषित किया जा सकता है। <math>\mathbb{R}^3</math> विरूपण में इन दो जुड़े मंडलियों का पूरक एक टोरस और 2-गोले के एक वैज योग के लिए वापस जाता है, जिसमें डिग्री 1 में एक गैर-लुप्त होने वाला कप उत्पाद होता है।]]अभिविन्यस्त बहुरूपता के लिए, एक ज्यामितीय अनुमान है कि <nowiki>''कप उत्पाद प्रतिच्छेदन के लिए द्वैध है''</nowiki>।<ref name=":0">{{Cite web|url=https://math.berkeley.edu/~hutching/teach/215b-2011/cup.pdf|title=कप उत्पाद और चौराहों|last=Hutchings|first=Michael|date=|website=|archive-url=|archive-date=|access-date=}}</ref><ref>{{Citation|last=Ciencias TV|title=Informal talk in Derived Geometry (Jacob Lurie)|date=2016-12-10|url=https://www.youtube.com/watch?v=YWpD6c69k_M |archive-url=https://ghostarchive.org/varchive/youtube/20211221/YWpD6c69k_M |archive-date=2021-12-21 |url-status=live|accessdate=2018-04-26}}{{cbignore}}</ref> | ||
वास्तव में, <math>M</math> को आयाम <math>n</math> के एक उन्मुख सुचारू बहुरूपता होने दें। यदि दो उपबहुरूपता <math>A,B</math> सहआयाम <math>i</math> और <math>j</math> [[ट्रांसवर्सलिटी (गणित)|अनुप्रस्थतः]] प्रतिच्छेद करते हैं, तो उनका प्रतिच्छेदन <math>A \cap B</math> फिर से सहआयाम <math>i+j</math> का एक उपबहुरूपता है। समावेशन के अंतर्गत इन बहुरूपता के मौलिक समरूपता वर्गों की प्रतिबिंबो को लेकर, समरूपता पर एक द्विरैखिक उत्पाद प्राप्त कर सकते हैं। यह उत्पाद कप उत्पाद के लिए | वास्तव में, <math>M</math> को आयाम <math>n</math> के एक उन्मुख सुचारू बहुरूपता होने दें। यदि दो उपबहुरूपता <math>A,B</math> सहआयाम <math>i</math> और <math>j</math> [[ट्रांसवर्सलिटी (गणित)|अनुप्रस्थतः]] प्रतिच्छेद करते हैं, तो उनका प्रतिच्छेदन <math>A \cap B</math> फिर से सहआयाम <math>i+j</math> का एक उपबहुरूपता है। समावेशन के अंतर्गत इन बहुरूपता के मौलिक समरूपता वर्गों की प्रतिबिंबो को लेकर, समरूपता पर एक द्विरैखिक उत्पाद प्राप्त कर सकते हैं। यह उत्पाद कप उत्पाद के लिए पॉइनकेयर द्वैध है, इस अर्थ में कि पॉइनकेयर की जोड़ी <math>[A]^*, [B]^* \in H^{i},H^{j}</math> लेने पर निम्नलिखित समानता है: | ||
<math>[A]^* \smile [B]^*=[A \cap B]^* \in H^{i+j}(X, \mathbb Z)</math>.<ref name=":0" /> | <math>[A]^* \smile [B]^*=[A \cap B]^* \in H^{i+j}(X, \mathbb Z)</math>.<ref name=":0" /> | ||
Line 54: | Line 54: | ||
== मैसी उत्पाद == | == मैसी उत्पाद == | ||
[[File:BorromeanRings.svg|thumb|[[मैसी उत्पाद]] कप उत्पाद का सामान्यीकरण करते हैं, जिससे किसी को उच्च क्रम योजक संख्या, [[मिल्नोर इनवेरिएंट्स|मिल्नोर अपरिवर्तनीय]] को परिभाषित करने की अनुमति मिलती | [[File:BorromeanRings.svg|thumb|[[मैसी उत्पाद]] कप उत्पाद का सामान्यीकरण करते हैं, जिससे किसी को उच्च क्रम योजक संख्या, [[मिल्नोर इनवेरिएंट्स|मिल्नोर अपरिवर्तनीय]] को परिभाषित करने की अनुमति मिलती है।]] | ||
{{main|मैसी उत्पाद}} | {{main|मैसी उत्पाद}} | ||
Revision as of 08:57, 20 April 2023
गणित में, विशेष रूप से बीजगणितीय संस्थितिविज्ञान में, कप उत्पाद डिग्री p और q के दो सहचक्रों को जोड़ने की एक विधि है, डिग्री p + q के एक समग्र सहचक्र बनता है। यह सह समरूपता में एक सहयोगी (और वितरण) श्रेणीबद्ध क्रमविनिमेय उत्पाद संचालन को परिभाषित करता है, एक समष्टि X के सह समरूपता को श्रेणीबद्ध वलय, H∗(X), जिसे सह समरूपता वलय कहा जाता है। कप उत्पाद 1935-1938 तक जे. डब्ल्यू. अलेक्जेंडर, एडुआर्ड सीच और हस्लर व्हिटनी के काम में प्रस्तावित किया गया था, और, पूर्ण सामान्यता में, 1944 में सैमुअल एलेनबर्ग द्वारा प्रस्तावित किया गया था।
परिभाषा
विलक्षण सह समरूपता में, कप उत्पाद एक रचना है जो एक सांस्थितिक समष्टि X के श्रेणीबद्ध सह समरूपता वलय H∗(X) पर एक उत्पाद देता है।
रचना कोचेन (बीजीय संस्थितिविज्ञान) के उत्पाद से साथ प्रारंभ होता है: यदि एक p-कोचेन है और एक q-कोचैन है, तो
जहां σ एक विलक्षण (p + q) -संकेतन है और S द्वारा विस्तरित किए गए संकेतन का विहित अंतःस्थापित है -संकेतन जिसका शीर्षों को द्वारा अनुक्रमित किया जाता है।
अनौपचारिक रूप से, p-वाँ अग्र फलक है और क्रमशः σ का q-वाँ पार्श्व फलक है।
कोचेन और के कप उत्पाद की सहसीमा किसके द्वारा दी गई है
दो सह चक्र का कप उत्पाद फिर से एक सह चक्र है, और एक सह चक्र के साथ एक सहसीमा का उत्पाद (किसी भी क्रम में) एक सहसीमा है। कप उत्पाद संचालन सह समरूपता पर द्विरैखिक संचालन को प्रेरित करता है,
गुण
सह समरूपता में कप उत्पाद संचालन अस्मिता को संतुष्ट करता है
ताकि संबंधित गुणन श्रेणीबद्ध-क्रमविनिमेय हो।
कप उत्पाद क्रियात्मक है, निम्नलिखित अर्थों में: यदि
एक सतत फलन है, और
सह समरूपता में प्रेरित समरूपता है, तब
H *(Y) में सभी वर्गों α, β के लिए है। दूसरे शब्दों में, f * एक (श्रेणीबद्ध) वलय समरूपता है।
व्याख्या
कप उत्पाद को देखना संभव है जैसा कि निम्नलिखित संयोजना से प्रेरित है:
और के श्रृंखला परिसरों के संदर्भ में, जहां पहला मानचित्र कुनेथ मानचित्र है और दूसरा विकर्ण द्वारा प्रेरित मानचित्र है।
यह संयोजना सह समरूपता के संदर्भ में एक अच्छी तरह से परिभाषित मानचित्र देने के लिए भागफल से पारित होती है, यह कप उत्पाद है। यह दृष्टिकोण समरूपता के लिए एक कप उत्पाद के अस्तित्व की व्याख्या करता है, लेकिन समरूपता के लिए नहीं: एक मानचित्र प्रेरित करता है लेकिन एक मानचित्र भी प्रेरित करेगा , जो किसी उत्पाद को परिभाषित करने की अनुमति देने के लिए असत् प्रकार से जाता है। हालांकि यह कैप उत्पाद को परिभाषित करने में उपयोगी है।
कप उत्पाद की इस प्रस्तुति से द्विरेखीयता आती है, अर्थात और
उदाहरण
कप उत्पादों का उपयोग समान सह समरूपता समूहों के साथ समष्टि के वैज से बहुरूपता को अलग करने के लिए किया जा सकता है। समष्टि में टोरस T के समान सह समरूपता समूह हैं, लेकिन एक अलग कप उत्पाद के साथ है। X के प्रकरण में प्रतियों से जुड़े कोचेन का गुणन पतित है, जबकि T गुणा में पहले सह समरूपता समूह में टोरस को 2-सेल आरेख के रूप में विघटित करने के लिए उपयोजित किया जा सकता है, इस प्रकार Z के समान उत्पाद होता है (अधिक सामान्यतः M जहां यह आधार प्रतिरूपक है)।
अन्य परिभाषाएँ
कप उत्पाद और अंतर रूप
डी रम सह समरूपता में, विभेदक रूपों के कप उत्पाद वैज उत्पाद से प्रेरित होते हैं। दूसरे शब्दों में, दो बंद अंतर रूपों का वैज उत्पाद दो मूल डे राम वर्गों के कप उत्पाद के डे राम वर्ग से संबंधित है।
कप उत्पाद और ज्यामितीय प्रतिच्छेदन
अभिविन्यस्त बहुरूपता के लिए, एक ज्यामितीय अनुमान है कि ''कप उत्पाद प्रतिच्छेदन के लिए द्वैध है''।[1][2]
वास्तव में, को आयाम के एक उन्मुख सुचारू बहुरूपता होने दें। यदि दो उपबहुरूपता सहआयाम और अनुप्रस्थतः प्रतिच्छेद करते हैं, तो उनका प्रतिच्छेदन फिर से सहआयाम का एक उपबहुरूपता है। समावेशन के अंतर्गत इन बहुरूपता के मौलिक समरूपता वर्गों की प्रतिबिंबो को लेकर, समरूपता पर एक द्विरैखिक उत्पाद प्राप्त कर सकते हैं। यह उत्पाद कप उत्पाद के लिए पॉइनकेयर द्वैध है, इस अर्थ में कि पॉइनकेयर की जोड़ी लेने पर निम्नलिखित समानता है:
.[1]
इसी तरह, योजक संख्या को प्रतिच्छेदन के संदर्भ में परिभाषित किया जा सकता है, आयामों को 1 से स्थानांतरित किया जा सकता है, या वैकल्पिक रूप से शृंखला के पूरक पर गैर-लुप्त होने वाले कप उत्पाद के संदर्भ में किया जा सकता है।
मैसी उत्पाद
कप उत्पाद एक द्विआधारी (2-एरी) संचालन है; एक त्रिगुट (3-एरी) और उच्च क्रम संचालन को परिभाषित कर सकता है जिसे मैसी उत्पाद कहा जाता है, जो कप उत्पाद को सामान्य करता है। यह एक उच्च क्रम सह समरूपता संचालन है, जो केवल आंशिक रूप से परिभाषित है (केवल कुछ त्रिगुणों के लिए परिभाषित)।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 Hutchings, Michael. "कप उत्पाद और चौराहों" (PDF).
- ↑ Ciencias TV (2016-12-10), Informal talk in Derived Geometry (Jacob Lurie), archived from the original on 2021-12-21, retrieved 2018-04-26
- James R. Munkres, "Elements of Algebraic Topology", Perseus Publishing, Cambridge Massachusetts (1984) ISBN 0-201-04586-9 (hardcover) ISBN 0-201-62728-0 (paperback)
- Glen E. Bredon, "Topology and Geometry", Springer-Verlag, New York (1993) ISBN 0-387-97926-3
- Allen Hatcher, "Algebraic Topology", Cambridge Publishing Company (2002) ISBN 0-521-79540-0